Current and Future Diagnostics for Hepatitis C Virus Infection
Abstract
:1. Introduction
2. Genome and Virion Structure
3. Biomarkers and Diagnostic Testing
4. Current Detection Methods
4.1. Serological Assays
4.1.1. Enzyme Immunoassay (EIA)
4.1.2. Rapid Immunoassays
4.2. Molecular and Nucleic Acid-Based Detection
4.2.1. Polymerase Chain Reaction (PCR) Based Tests
4.2.2. Branched DNA Assays (bDNA)
4.2.3. Transcription-Mediated Amplification (TMA)
4.3. Non-Invasive and Point-of-Care Testing
4.3.1. Dried Blood Tests
4.3.2. Point-of-Care NAAT Testing
5. Emerging and Future Detection Methods
5.1. Isothermal Amplification Based Tests
5.1.1. Loop-Mediated Isothermal Amplification (LAMP)
5.1.2. AP-LAMP
5.1.3. Other LAMP Assays
5.2. Surface Plasmon Resonance Based Testing
5.3. Microfluidics
5.4. Electrochemical-Based Sensing
5.5. CRISPR
6. Future Directions and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoofnagle, J.H. Course and Outcome of Hepatitis C. Hepatology 2002, 36, s21–s29. [Google Scholar] [CrossRef] [PubMed]
- Rantala, M.; van de Laar, M.J. Surveillance and Epidemiology of Hepatitis B and C in Europe—A Review. Eurosurveillance 2008, 13, 18880. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (U.S.). The ABCs of Hepatitis—for Health Professionals. Available online: https://stacks.cdc.gov/view/cdc/130187 (accessed on 29 November 2024).
- Ohto, H.; Terazawa, S.; Sasaki, N.; Sasaki, N.; Hino, K.; Ishiwata, C.; Kako, M.; Ujiie, N.; Endo, C.; Matsui, A.; et al. Transmission of Hepatitis C Virus from Mothers to Infants. N. Engl. J. Med. 1994, 330, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Choo, Q.-L.; Kuo, G.; Weiner, A.J.; Overby, L.R.; Bradley, D.W.; Houghton, M. Isolation of a CDNA CLone Derived from a Blood-Borne Non-A, Non-B Viral Hepatitis Genome. Science 1989, 244, 359–362. [Google Scholar] [CrossRef]
- Kuo, G.; Choo, Q.-L.; Alter, H.J.; Gitnick, G.L.; Redeker, A.G.; Purcell, R.H.; Miyamura, T.; Dienstag, J.L.; Alter, M.J.; Stevens, C.E.; et al. An Assay for Circulating Antibodies to a Major Etiologic Virus of Human Non-A, Non-B Hepatitis. Science 1989, 244, 362–364. [Google Scholar] [CrossRef]
- World Health Organization. Global Hepatitis Report 2024: Action for Access in Low- and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Kwo, P.Y.; Poordad, F.; Asatryan, A.; Wang, S.; Wyles, D.L.; Hassanein, T.; Felizarta, F.; Sulkowski, M.S.; Gane, E.; Maliakkal, B.; et al. Glecaprevir and Pibrentasvir Yield High Response Rates in Patients with HCV Genotype 1–6 without Cirrhosis. J. Hepatol. 2017, 67, 263–271. [Google Scholar] [CrossRef]
- Guntipalli, P.; Pakala, R.; Kumari Gara, S.; Ahmed, F.; Bhatnagar, A.; Endaya Coronel, M.-K.; Razzack, A.A.; Solimando, A.G.; Thompson, A.; Andrews, K.; et al. Worldwide Prevalence, Genotype Distribution and Management of Hepatitis C. Acta Gastro Enterol. Belg. 2021, 84, 633–652. [Google Scholar] [CrossRef]
- Clinicalinfo.HIV.gov. Hepatitis C Virus. Available online: https://clinicalinfo.hiv.gov/en/guidelines/hiv-clinical-guidelines-adult-and-adolescent-opportunistic-infections/hepatitis-c-virus?utm_source=chatgpt.com (accessed on 4 December 2024).
- Manns, M.P.; Buti, M.; Gane, E.; Pawlotsky, J.-M.; Razavi, H.; Terrault, N.; Younossi, Z. Hepatitis C Virus Infection. Nat. Rev. Dis. Primers 2017, 3, 17006. [Google Scholar] [CrossRef]
- Hoofnagle, J.H. Hepatitis C: The Clinical Spectrum of Disease. Hepatology 1997, 26, 15S–20S. [Google Scholar] [CrossRef]
- Hoofnagle, J. Fulminant Hepatic Failure: Summary of a Workshop*1. Hepatology 1995, 21, 240–252. [Google Scholar] [CrossRef]
- Meshram, R.J.; Kathwate, G.H.; Gacche, R.N. Progress, Evolving Therapeutic/Diagnostic Approaches, and Challenges in the Management of Hepatitis C Virus Infections. Arch. Virol. 2022, 167, 717–736. [Google Scholar] [CrossRef] [PubMed]
- Baber, A.S.; Suganthan, B.; Ramasamy, R.P. Current Advances in Hepatitis C Diagnostics. J. Biol. Eng. 2024, 18, 48. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.N.; Imamura, M.; Tanaka, J.; Chayama, K. Road to Elimination of HCV: Clinical Challenges in HCV Management. Liver Int. 2022, 42, 1935–1944. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention Clinical Screening and Diagnosis for Hepatitis C. Available online: https://www.cdc.gov/hepatitis-c/hcp/diagnosis-testing/index.html (accessed on 29 November 2024).
- Alaama, A.S.; Khattabi, H.; Mugisa, B.; Atta, H.; Hermez, J.; Hutin, Y.J. Progress towards Elimination of Viral Hepatitis by 2030 in the WHO Eastern Mediterranean Region, 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Niepmann, M.; Gerresheim, G.K. Hepatitis C Virus Translation Regulation. Int. J. Mol. Sci. 2020, 21, 2328. [Google Scholar] [CrossRef]
- Bajpai, P.S.; Collignon, L.; Sølund, C.; Madsen, L.W.; Christensen, P.B.; Øvrehus, A.; Weis, N.; Holmbeck, K.; Fahnøe, U.; Bukh, J. Full-Length Sequence Analysis of Hepatitis C Virus Genotype 3b Strains and Development of an in Vivo Infectious 3b CDNA Clone. J. Virol. 2023, 97, e0092523. [Google Scholar] [CrossRef]
- Glynn, S.A.; Wright, D.J.; Kleinman, S.H.; Hirschkorn, D.; Tu, Y.; Heldebrant, C.; Smith, R.; Giachetti, C.; Gallarda, J.; Busch, M.P. Dynamics of Viremia in Early Hepatitis C Virus Infection. Transfusion 2005, 45, 994–1002. [Google Scholar] [CrossRef]
- Mulrooney-Cousins, P.M.; Michalak, T.I. Molecular Testing in Hepatitis Virus-Related Disease. In Diagnostic Molecular Pathology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 63–77. [Google Scholar]
- Moradpour, D.; Penin, F. Hepatitis C Virus Proteins: From Structure to Function. Curr. Top. Microbiol. Immunol. 2013, 369, 113–142. [Google Scholar]
- Catanese, M.T.; Uryu, K.; Kopp, M.; Edwards, T.J.; Andrus, L.; Rice, W.J.; Silvestry, M.; Kuhn, R.J.; Rice, C.M. Ultrastructural Analysis of Hepatitis C Virus Particles. Proc. Natl. Acad. Sci. USA 2013, 110, 9505–9510. [Google Scholar] [CrossRef]
- Fusco, D.N.; Chung, R.T. Novel Therapies for Hepatitis C: Insights from the Structure of the Virus. Annu. Rev. Med. 2012, 63, 373–387. [Google Scholar] [CrossRef]
- Martinello, M.; Naggie, S.; Rockstroh, J.K.; Matthews, G. V Direct-Acting Antiviral Therapy for Treatment of Acute and Recent Hepatitis C Virus Infection: A Narrative Review. Clin. Infect. Dis. 2023, 77, S238–S244. [Google Scholar] [CrossRef] [PubMed]
- Sillanpaa, M.; Melen, K.; Porkka, P.; Fagerlund, R.; Nevalainen, K.; Lappalainen, M.; Julkunen, I. Hepatitis C Virus Core, NS3, NS4B and NS5A Are the Major Immunogenic Proteins in Humoral Immunity in Chronic HCV Infection. Virol. J. 2009, 6, 84. [Google Scholar] [CrossRef] [PubMed]
- Popescu, C.-I.; Riva, L.; Vlaicu, O.; Farhat, R.; Rouillé, Y.; Dubuisson, J. Hepatitis C Virus Life Cycle and Lipid Metabolism. Biology 2014, 3, 892–921. [Google Scholar] [CrossRef]
- Falson, P.; Bartosch, B.; Alsaleh, K.; Tews, B.A.; Loquet, A.; Ciczora, Y.; Riva, L.; Montigny, C.; Montpellier, C.; Duverlie, G.; et al. Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. J. Virol. 2015, 89, 10333–10346. [Google Scholar] [CrossRef]
- Aizaki, H.; Morikawa, K.; Fukasawa, M.; Hara, H.; Inoue, Y.; Tani, H.; Saito, K.; Nishijima, M.; Hanada, K.; Matsuura, Y.; et al. Critical Role of Virion-Associated Cholesterol and Sphingolipid in Hepatitis C Virus Infection. J. Virol. 2008, 82, 5715–5724. [Google Scholar] [CrossRef]
- Gastaminza, P.; Dryden, K.A.; Boyd, B.; Wood, M.R.; Law, M.; Yeager, M.; Chisari, F.V. Ultrastructural and Biophysical Characterization of Hepatitis C Virus Particles Produced in Cell Culture. J. Virol. 2010, 84, 10999–11009. [Google Scholar] [CrossRef]
- Merz, A.; Long, G.; Hiet, M.-S.; Brügger, B.; Chlanda, P.; Andre, P.; Wieland, F.; Krijnse-Locker, J.; Bartenschlager, R. Biochemical and Morphological Properties of Hepatitis C Virus Particles and Determination of Their Lipidome. J. Biol. Chem. 2011, 286, 3018–3032. [Google Scholar] [CrossRef]
- Yamamoto, M.; Aizaki, H.; Fukasawa, M.; Teraoka, T.; Miyamura, T.; Wakita, T.; Suzuki, T. Structural Requirements of Virion-Associated Cholesterol for Infectivity, Buoyant Density and Apolipoprotein Association of Hepatitis C Virus. J. Gen. Virol. 2011, 92, 2082–2087. [Google Scholar] [CrossRef]
- Cashman, S.B.; Marsden, B.D.; Dustin, L.B. The Humoral Immune Response to HCV: Understanding Is Key to Vaccine Development. Front. Immunol. 2014, 5, 550. [Google Scholar] [CrossRef]
- Brasher, N.A.; Adhikari, A.; Lloyd, A.R.; Tedla, N.; Bull, R.A. Hepatitis C Virus Epitope Immunodominance and B Cell Repertoire Diversity. Viruses 2021, 13, 983. [Google Scholar] [CrossRef]
- Busch, M.P.; Shafer, K.A.P. Editorial Commentary: Acute-Phase Hepatitis C Virus Infection: Implications for Research, Diagnosis, and Treatment. Clin. Infect. Dis. 2005, 40, 959–961. [Google Scholar] [CrossRef] [PubMed]
- Nübling, C.M.; Unger, G.; Chudy, M.; Raia, S.; Löwer, J. Sensitivity of HCV Core Antigen and HCV RNA Detection in the Early Infection Phase. Transfusion 2002, 42, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Tharakan, S.; Faqah, O.; Asghar, W.; Ilyas, A. Microfluidic Devices for HIV Diagnosis and Monitoring at Point-of-Care (POC) Settings. Biosensors 2022, 12, 949. [Google Scholar] [CrossRef]
- Wang, Y.; Jie, W.; Ling, J.; Yuanshuai, H. HCV Core Antigen Plays an Important Role in the Fight against HCV as an Alternative to HCV-RNA Detection. J. Clin. Lab. Anal. 2021, 35, e23755. [Google Scholar] [CrossRef]
- Feld, J.J. Hepatitis C Virus Diagnostics: The Road to Simplification. Clin. Liver Dis. 2018, 12, 125–129. [Google Scholar] [CrossRef]
- Cartwright, E.J.; Patel, P.; Kamili, S.; Wester, C. Updated Operational Guidance for Implementing CDC’s Recommendations on Testing for Hepatitis C Virus Infection. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 766–768. [Google Scholar] [CrossRef]
- Trickey, A.; Fajardo, E.; Alemu, D.; Artenie, A.A.; Easterbrook, P. Impact of Hepatitis C Virus Point-of-Care RNA Viral Load Testing Compared with Laboratory-Based Testing on Uptake of RNA Testing and Treatment, and Turnaround Times: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2023, 8, 253–270. [Google Scholar] [CrossRef]
- Ivanova Reipold, E.; Shilton, S.; Donolato, M.; Fernandez Suarez, M. Molecular Point-of-Care Testing for Hepatitis C: Available Technologies, Pipeline, and Promising Future Directions. J. Infect. Dis. 2024, 229, S342–S349. [Google Scholar] [CrossRef]
- Thomson, E.C.; Nastouli, E.; Main, J.; Karayiannis, P.; Eliahoo, J.; Muir, D.; McClure, M.O. Delayed Anti-HCV Antibody Response in HIV-Positive Men Acutely Infected with HCV. AIDS 2009, 23, 89–93. [Google Scholar] [CrossRef]
- Vanhommerig, J.W.; Thomas, X.V.; van der Meer, J.T.M.; Geskus, R.B.; Bruisten, S.M.; Molenkamp, R.; Prins, M.; Schinkel, J.; Arends, J.; van Baarle, D.; et al. Hepatitis C Virus (HCV) Antibody Dynamics Following Acute HCV Infection and Reinfection Among HIV-Infected Men Who Have Sex With Men. Clin. Infect. Dis. 2014, 59, 1678–1685. [Google Scholar] [CrossRef]
- Warkad, S.D.; Song, K.-S.; Pal, D.; Nimse, S.B. Developments in the HCV Screening Technologies Based on the Detection of Antigens and Antibodies. Sensors 2019, 19, 4257. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; McHutchinson, J.; Francis, B.; DiNello, R.; Polito, A.; Quan, S.; Nelles, M. Improved Detection of Antibodies to Hepatitis C Virus Using a Second Generation Elisa. Adv. Exp. Med. Biol. 1992, 312, 183–189. [Google Scholar] [PubMed]
- Bernvil, S.S.; Andrews, V.J.; Sasich, F. Second-Generation Anti-HCV Screening in a Saudi Arabian Donor Population. Vox Sang. 1994, 66, 33–36. [Google Scholar] [CrossRef]
- Uyttendaele, S.; Claeys, H.; Mertens, W.; Verhaert, H.; Vermylen, C. Evaluation of Third-Generation Screening and Confirmatory Assays for HCV Antibodies. Vox Sang. 1994, 66, 122–129. [Google Scholar] [CrossRef]
- Vrielink, H.; Zaaijer, H.L.; Reesink, H.W.; van der Poel, C.L.; Cuypers, H.T.M.; Lelie, P.N. Sensitivity and Specificity of Three Third-Generation Anti-Hepatitis C Virus ELISAs. Vox Sang. 1995, 69, 14–17. [Google Scholar] [CrossRef]
- Jiang, X.; Chang, L.; Yan, Y.; Ji, H.; Sun, H.; Guo, F.; Wang, L. A Study Based on Four Immunoassays: Hepatitis C Virus Antibody against Different Antigens May Have Unequal Contributions to Detection. Virol. J. 2021, 18, 137. [Google Scholar] [CrossRef]
- Hawkins, R.C. Laboratory Turnaround Time. Clin. Biochem. Rev. 2007, 28, 179–194. [Google Scholar]
- Smith, B.D.; Jewett, A.; Drobeniuc, J.; Kamili, S. Rapid Diagnostic HCV Antibody Assays. Antivir. Ther. 2012, 17, 1409–1413. [Google Scholar] [CrossRef]
- Cha, Y.J.; Park, Q.; Kang, E.-S.; Yoo, B.C.; Park, K.U.; Kim, J.-W.; Hwang, Y.-S.; Kim, M.H. Performance Evaluation of the OraQuick Hepatitis C Virus Rapid Antibody Test. Ann. Lab. Med. 2013, 33, 184–189. [Google Scholar] [CrossRef]
- Step-by-Step Instructions For OraQuick® HCV Rapid Antibody Test. Available online: https://www.health.ny.gov/diseases/communicable/hepatitis/hepatitis_c/docs/oraquick_step_by_step.pdf (accessed on 29 November 2024).
- World Health Organization. WHO Prequalifies the First Self-Test for Hepatitis C Virus. Available online: https://www.who.int/news/item/10-07-2024-who-prequalifies-the-first-self-test-for-hepatitis-c-virus (accessed on 9 December 2024).
- OraQuick OraQuick HCV Self Test. Available online: https://global.oraquick.com/media/wysiwyg/hcv/ART-3001-3729-70_V1.0.pdf (accessed on 9 December 2024).
- Fajardo, E.; Watson, V.; Kumwenda, M.; Usharidze, D.; Gogochashvili, S.; Kakhaberi, D.; Giguashvili, A.; Johnson, C.C.; Jamil, M.S.; Dacombe, R.; et al. Usability and Acceptability of Oral-Based HCV Self-Testing among Key Populations: A Mixed-Methods Evaluation in Tbilisi, Georgia. BMC Infect. Dis. 2022, 22, 510. [Google Scholar] [CrossRef]
- Medmira Multiplo Rapid HBc/HIV/HCV Antibody Test. Available online: https://medmira.com/multiplex/ (accessed on 9 December 2024).
- Freiman, J.M.; Tran, T.M.; Schumacher, S.G.; White, L.F.; Ongarello, S.; Cohn, J.; Easterbrook, P.J.; Linas, B.P.; Denkinger, C.M. Hepatitis C Core Antigen Testing for Diagnosis of Hepatitis C Virus Infection. Ann. Intern. Med. 2016, 165, 345. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.A.; Zilouchian, H.; Younas, M.A.; Asghar, W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. Biosensors 2021, 11, 206. [Google Scholar] [CrossRef]
- Scott, J.D.; Gretch, D.R. Molecular Diagnostics of Hepatitis C Virus Infection. JAMA 2007, 297, 724. [Google Scholar] [CrossRef] [PubMed]
- Pawlotsky, J.-M.; Negro, F.; Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL Recommendations on Treatment of Hepatitis C 2018. J. Hepatol. 2018, 69, 461–511. [Google Scholar] [CrossRef]
- Shahid, I.; Alzahrani, A.R.; Al-Ghamdi, S.S.; Alanazi, I.M.; Rehman, S.; Hassan, S. Hepatitis C Diagnosis: Simplified Solutions, Predictive Barriers, and Future Promises. Diagnostics 2021, 11, 1253. [Google Scholar] [CrossRef]
- Fourati, S.; Feld, J.J.; Chevaliez, S.; Luhmann, N. Approaches for Simplified HCV Diagnostic Algorithms. J. Int. AIDS Soc. 2018, 21, e25058. [Google Scholar] [CrossRef]
- Mullis, K.B.; Faloona, F.A. Specific Synthesis of DNA in Vitro via a Polymerase-Catalyzed Chain Reaction. Methods Enzymol. 1987, 155, 335–350. [Google Scholar] [CrossRef]
- Laurent, F.; Li, J.S.; Vitvitski, L.; Berby, F.; Lamelin, J.P.; Alonso, C.; Trepo, C. Importance of PCR in the Diagnosis of Hepatitis C. Rev. Fr. Transfus. Hemobiol. 1992, 35, 211–224. [Google Scholar] [CrossRef]
- Krarup, H.B.; Drewes, A.M.; Madsen, P.H. A Quantitative HCV-PCR Test for Routine Diagnostics. Scand. J. Clin. Lab. Investig. 1998, 58, 415–422. [Google Scholar] [CrossRef]
- Shen, F.; Sun, B.; Kreutz, J.E.; Davydova, E.K.; Du, W.; Reddy, P.L.; Joseph, L.J.; Ismagilov, R.F. Multiplexed Quantification of Nucleic Acids with Large Dynamic Range Using Multivolume Digital RT-PCR on a Rotational SlipChip Tested with HIV and Hepatitis C Viral Load. J. Am. Chem. Soc. 2011, 133, 17705–17712. [Google Scholar] [CrossRef]
- Zaghloul, H.; El-Shahat, M. Recombinase Polymerase Amplification as a Promising Tool in Hepatitis C Virus Diagnosis. World J. Hepatol. 2014, 6, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Singh, C.; Roy-Chowdhuri, S. Quantitative Real-Time PCR: Recent Advances. Methods Mol. Biol. 2016, 1392, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of MRNA Using Real-Time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef] [PubMed]
- Marins, E.G.; Bodinaidu, K.; Lin, M.; Deforest, A. Evaluation of the COBAS® AmpliPrep/COBAS® TaqMan® HCV Test v2.0 for HCV Viral Load Monitoring Using Dried Blood Spot Specimens. J. Virol. Methods 2017, 247, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Vermehren, J.; Colucci, G.; Gohl, P.; Hamdi, N.; Abdelaziz, A.I.; Karey, U.; Thamke, D.; Zitzer, H.; Zeuzem, S.; Sarrazin, C. Development of a Second Version of the Cobas AmpliPrep/Cobas TaqMan Hepatitis C Virus Quantitative Test with Improved Genotype Inclusivity. J. Clin. Microbiol. 2011, 49, 3309–3315. [Google Scholar] [CrossRef]
- Michelin, B.D.A.; Muller, Z.; Stelzl, E.; Marth, E.; Kessler, H.H. Evaluation of the Abbott RealTime HCV Assay for Quantitative Detection of Hepatitis C Virus RNA. J. Clin. Virol. 2007, 38, 96–100. [Google Scholar] [CrossRef]
- Bossler, A.; Gunsolly, C.; Pyne, M.T.; Rendo, A.; Rachel, J.; Mills, R.; Miller, M.; Sipley, J.; Hillyard, D.; Jenkins, S.; et al. Performance of the COBAS® AmpliPrep/COBAS TaqMan® Automated System for Hepatitis C Virus (HCV) Quantification in a Multi-Center Comparison. J. Clin. Virol. 2011, 50, 100–103. [Google Scholar] [CrossRef]
- Halfon, P.; Bourlière, M.; Pénaranda, G.; Khiri, H.; Ouzan, D. Real-Time PCR Assays for Hepatitis C Virus (HCV) RNA Quantitation Are Adequate for Clinical Management of Patients with Chronic HCV Infection. J. Clin. Microbiol. 2006, 44, 2507–2511. [Google Scholar] [CrossRef]
- Johnson, M. PCR Machines. Mater. Methods 2013, 3, 193. [Google Scholar] [CrossRef]
- Collins, M.L.; Irvine, B.; Tyner, D.; Fine, E.; Zayati, C.; Chang, C.; Horn, T.; Ahle, D.; Detmer, J.; Shen, L.P.; et al. A Branched DNA Signal Amplification Assay for Quantification of Nucleic Acid Targets below 100 Molecules/Ml. Nucleic Acids Res. 1997, 25, 2979–2984. [Google Scholar] [CrossRef]
- Hendricks, D.A.; Stowe, B.J.; Hoo, B.S.; Kolberg, J.; Irvine, B.D.; Neuwald, P.D.; Urdea, M.S.; Perrillo, R.P. Quantitation of HBV DNA in Human Serum Using a Branched DNA (BDNA) Signal Amplification Assay. Am. J. Clin. Pathol. 1995, 104, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Elbeik, T.; Markowitz, N.; Nassos, P.; Kumar, U.; Beringer, S.; Haller, B.; Ng, V. Simultaneous Runs of the Bayer VERSANT HIV-1 Version 3.0 and HCV BDNA Version 3.0 Quantitative Assays on the System 340 Platform Provide Reliable Quantitation and Improved Work Flow. J. Clin. Microbiol. 2004, 42, 3120–3127. [Google Scholar] [CrossRef] [PubMed]
- Nolte, F.S. Branched DNA Signal Amplification for Direct Quantitation of Nucleic Acid Sequences in Clinical Specimens. Adv. Clin. Chem. 1998, 33, 201–235. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.A.; Pribyl, T.M. Molecular Diagnostics for the Hepatitis C Virus. In Molecular Diagnostics; Elsevier: Amsterdam, The Netherlands, 2010; pp. 263–275. [Google Scholar]
- Trimoulet, P.; Halfon, P.; Pohier, E.; Khiri, H.; Chêne, G.; Fleury, H. Evaluation of the VERSANT HCV RNA 3.0 Assay for Quantification of Hepatitis C Virus RNA in Serum. J. Clin. Microbiol. 2002, 40, 2031–2036. [Google Scholar] [CrossRef]
- Fuchs, T.C.; Truisi, G.L.; Hewitt, P.G. Toxicogenomics in Preclinical Development. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development; Elsevier: Amsterdam, The Netherlands, 2017; pp. 893–920. [Google Scholar]
- Shen, C.-H. Amplification of Nucleic Acids. In Diagnostic Molecular Biology; Academic Press: Cambridge, MA, USA, 2019; pp. 215–247. [Google Scholar]
- Warkad, S.D.; Nimse, S.B.; Song, K.-S.; Kim, T. HCV Detection, Discrimination, and Genotyping Technologies. Sensors 2018, 18, 3423. [Google Scholar] [CrossRef]
- Gorrin, G.; Friesenhahn, M.; Lin, P.; Sanders, M.; Pollner, R.; Eguchi, B.; Pham, J.; Roma, G.; Spidle, J.; Nicol, S.; et al. Performance Evaluation of the VERSANT HCV RNA Qualitative Assay by Using Transcription-Mediated Amplification. J. Clin. Microbiol. 2003, 41, 310–317. [Google Scholar] [CrossRef]
- Hofmann, W.P.; Dries, V.; Herrmann, E.; Gärtner, B.; Zeuzem, S.; Sarrazin, C. Comparison of Transcription Mediated Amplification (TMA) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) for Detection of Hepatitis C Virus RNA in Liver Tissue. J. Clin. Virol. 2005, 32, 289–293. [Google Scholar] [CrossRef]
- Hologic Aptima® HCV Quant Dx Assay. Available online: https://www.hologic.com/hologic-products/molecular-diagnostics/aptima-hcv-quant-dx-assay?utm_source=google&utm_medium=cpc&utm_term=aptima%20hcv&utm_campaign=2023_Brand_Virology&gad_source=1&gclid=CjwKCAiA6t-6BhA3EiwAltRFGBftVUiHGQ5sBrlgZWQ06fT9IiaatOqdoAAeUjsrAfZLBXuIKfFdeRoCTaEQAvD_BwE (accessed on 9 December 2024).
- Chevaliez, S.; Dubernet, F.; Dauvillier, C.; Hézode, C.; Pawlotsky, J.-M. The New Aptima HCV Quant Dx Real-Time TMA Assay Accurately Quantifies Hepatitis C Virus Genotype 1–6 RNA. J. Clin. Virol. 2017, 91, 5–11. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Procleix Ultrio Elite Assay. Available online: https://www.fda.gov/vaccines-blood-biologics/blood-blood-products/procleix-ultrio-elite-assay (accessed on 9 December 2024).
- Grüner, N.; Stambouli, O.; Ross, R.S. Dried Blood Spots–Preparing and Processing for Use in Immunoassays and in Molecular Techniques. J. Vis. Exp. 2015, 97, 52619. [Google Scholar] [CrossRef]
- Biondi, M.J.; van Tilborg, M.; Smookler, D.; Heymann, G.; Aquino, A.; Perusini, S.; Mandel, E.; Kozak, R.A.; Cherepanov, V.; Kowgier, M.; et al. Hepatitis C Core-Antigen Testing from Dried Blood Spots. Viruses 2019, 11, 830. [Google Scholar] [CrossRef]
- McLeod, A.; Weir, A.; Aitken, C.; Gunson, R.; Templeton, K.; Molyneaux, P.; McIntyre, P.; McDonald, S.; Goldberg, D.; Hutchinson, S. Rise in Testing and Diagnosis Associated with Scotland’s Action Plan on Hepatitis C and Introduction of Dried Blood Spot Testing. J. Epidemiol. Community Health 2014, 68, 1182–1188. [Google Scholar] [CrossRef] [PubMed]
- Grebely, J.; Applegate, T.L.; Cunningham, P.; Feld, J.J. Hepatitis C Point-of-Care Diagnostics: In Search of a Single Visit Diagnosis. Expert Rev. Mol. Diagn. 2017, 17, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Gupta, E.; Agarwala, P.; Kumar, G.; Maiwall, R.; Sarin, S.K. Point-of-Care Testing (POCT) in Molecular Diagnostics: Performance Evaluation of GeneXpert HCV RNA Test in Diagnosing and Monitoring of HCV Infection. J. Clin. Virol. 2017, 88, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Lamoury, F.M.J.; Bajis, S.; Hajarizadeh, B.; Marshall, A.D.; Martinello, M.; Ivanova, E.; Catlett, B.; Mowat, Y.; Marks, P.; Amin, J.; et al. Evaluation of the Xpert HCV Viral Load Finger-Stick Point-of-Care Assay. J. Infect. Dis. 2018, 217, 1889–1896. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Permits Marketing of First Point-of-Care Hepatitis C RNA Test. Available online: https://www.fda.gov/news-events/press-announcements/fda-permits-marketing-first-point-care-hepatitis-c-rna-test (accessed on 9 December 2024).
- Llibre, A.; Shimakawa, Y.; Mottez, E.; Ainsworth, S.; Buivan, T.-P.; Firth, R.; Harrison, E.; Rosenberg, A.R.; Meritet, J.-F.; Fontanet, A.; et al. Development and Clinical Validation of the Genedrive Point-of-Care Test for Qualitative Detection of Hepatitis C Virus. Gut 2018, 67, 2017–2024. [Google Scholar] [CrossRef]
- Sharma, S.; Thomas, E.; Caputi, M.; Asghar, W. RT-LAMP-Based Molecular Diagnostic Set-Up for Rapid Hepatitis C Virus Testing. Biosensors 2022, 12, 298. [Google Scholar] [CrossRef]
- Coarsey, C.; Coleman, B.; Kabir, M.A.; Sher, M.; Asghar, W. Development of a Flow-Free Magnetic Actuation Platform for an Automated Microfluidic ELISA. RSC Adv. 2019, 9, 8159–8168. [Google Scholar] [CrossRef]
- Kabir, M.A.; Zilouchian, H.; Sher, M.; Asghar, W. Development of a Flow-Free Automated Colorimetric Detection Assay Integrated with Smartphone for Zika NS1. Diagnostics 2020, 10, 42. [Google Scholar] [CrossRef]
- Improved Clinical Specificity of the VITROS® Anti-HCV Assay. Available online: https://www.orthoclinicaldiagnostics.com/assets/pdf/Poster-ISBT-2021-HCV-PR-11277-V2.pdf (accessed on 10 December 2024).
- WHO. Prequalification of In Vitro Diagnostics PUBLIC REPORT. Available online: https://extranet.who.int/prequal/sites/default/files/whopr_files/PQDx_0374-130-00_ARCHITECT-HCV_v1.0.pdf (accessed on 10 December 2024).
- Alinity s Anti-HCV. Available online: https://www.fda.gov/vaccines-blood-biologics/blood-blood-products/alinity-s-anti-hcv (accessed on 10 December 2024).
- Alinity Anti-HCV Reagent Kit. Available online: https://www.versiti.org/getmedia/2086cb9d-867f-4c83-b5ed-2f7d41bb12c3/alinity-hcv.pdf (accessed on 10 December 2024).
- Alinity s Anti-HCV II Assay. Available online: https://www.fda.gov/vaccines-blood-biologics/alinity-s-anti-hcv-ii-assay (accessed on 10 December 2024).
- Jonas, G.; Pelzer, C.; Beckert, C.; Hausmann, M.; Kapprell, H.-P. Performance Characteristics of the ARCHITECT® Anti-HCV Assay. J. Clin. Virol. 2005, 34, 97–103. [Google Scholar] [CrossRef]
- Hepatitis C Virus Encoded Antigens (Recombinant C100-3, HCr43, NS5). Available online: https://www.fda.gov/media/73334/download?attachment (accessed on 10 December 2024).
- HEPATITIS C VIRUS ENCODED ANTIGEN (RECOMBINANT C100-3, HC-31, AND HC-34) ABBOTT HCV EIA 2.0. Available online: https://www.fda.gov/media/72001/download#:~:text=Unbound%20enzyme%20conjugate%20is%20then,is%20bound%20to%20the%20bead (accessed on 10 December 2024).
- Hepatitis C Virus Encoded Antigen (Recombinant C22-3, C200 and NS5) ORTHO® HCV Version 3.0 ELISA Test System. Available online: https://www.fda.gov/media/77425/download?attachment (accessed on 10 December 2024).
- Murex Anti-HCV (Version 4.0). Available online: https://kimhung.vn/wp-content/uploads/2020/03/Test-elisa-Murex-Anti-HCV-V4-Murex-Diasorin-2.pdf (accessed on 10 December 2024).
- DiaSorin Australia Pty Ltd—Murex Anti-HCV (Version 4.0)—Hepatitis C Virus Total Antibody IVD, Kit, Enzyme Immunoassay (EIA) (301860). Available online: https://www.tga.gov.au/resources/artg/301860 (accessed on 10 December 2024).
- Ré, V.; Gallego, S.; Treviño, E.; Barbás, G.; Domínguez, C.; Elbarcha, O.; Bepre, H.; Contigiani, M. Evaluation of Five Screening Tests Licensed in Argentina for Detection of Hepatitis C Virus Antibodies. Mem. Inst. Oswaldo Cruz 2005, 100, 303–307. [Google Scholar] [CrossRef]
- OraSure Technologies. OraQuick® HCV Rapid Antibody Test. Available online: https://orasure.com/products/OraQuick-HCV.html (accessed on 30 November 2024).
- Hepatitis C Point-of-Care Testing: What Is Its Impact on Testing and Linkage to Care? Available online: https://www.catie.ca/prevention-in-focus/hepatitis-c-point-of-care-testing-what-is-its-impact-on-testing-and-linkage-0#:~:text=In%20comparison%20to%20standard%20laboratory,Xpert%20HCV%20Viral%20Load%20Fingerstick (accessed on 10 December 2024).
- OraSure OraQuick HIV In-Home Self Test Oral Swab Rapid Antibody CLIA Waived. Available online: https://transmedco.com/oraquick-hiv-rapid-antibody-test-clia-waived-25-box/ (accessed on 10 December 2024).
- Summary Basis for Regulatory Action—NGI Ultraqual Multiplex PCR Assay. Available online: https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/May-25--2018-Summary-Basis-for-Regulatory-Action---NGI-Ultraqual-Multiplex-PCR-Assay-for-HCV--HIV-1-HIV-2--and-HBV.pdf (accessed on 10 December 2024).
- Page, K.; Feinberg, J. What Hepatitis C Virus (HCV) Diagnostic Tools Are Needed to Advance Diagnosis of Current HCV Infection in Outreach Settings and in a Nonclinical Setting? J. Infect. Dis. 2024, 229, S328–S333. [Google Scholar] [CrossRef] [PubMed]
- Truenat® HCV. Available online: https://www.molbiodiagnostics.com/product_details.php?id=22 (accessed on 10 December 2024).
- True® Nat HCV. Available online: https://www.molbiodiagnostics.com/uploads/product_download/20240919.145137~Truenat-HCV-packinsert-V-06.pdf (accessed on 10 December 2024).
- COBAS® AmpliPrep/COBAS® TaqMan® HCV Test, v2.0. Available online: https://www.aphl.org/programs/infectious_disease/Documents/CAP_CTM%20HCV%20v2%20US-IVD%20PI%20rev4%20(Dx%20claim).PDF (accessed on 10 December 2024).
- Chevaliez, S.; Bouvier-Alias, M.; Rodriguez, C.; Soulier, A.; Poveda, J.-D.; Pawlotsky, J.-M. The Cobas AmpliPrep/Cobas TaqMan HCV Test, Version 2.0, Real-Time PCR Assay Accurately Quantifies Hepatitis C Virus Genotype 4 RNA. J. Clin. Microbiol. 2013, 51, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Pas, S.; Molenkamp, R.; Schinkel, J.; Rebers, S.; Copra, C.; Seven-Deniz, S.; Thamke, D.; de Knegt, R.J.; Haagmans, B.L.; Schutten, M. Performance Evaluation of the New Roche Cobas AmpliPrep/Cobas TaqMan HCV Test, Version 2.0, for Detection and Quantification of Hepatitis C Virus RNA. J. Clin. Microbiol. 2013, 51, 238–242. [Google Scholar] [CrossRef]
- REALTIME HCV VIRAL LOAD. Available online: https://www.molecular.abbott/us/en/products/infectious-disease/realtime-hcv-viral-load (accessed on 10 December 2024).
- Wiesmann, F.; Naeth, G.; Sarrazin, C.; Berger, A.; Kaiser, R.; Ehret, R.; Knechten, H.; Braun, P. Variation Analysis of Six HCV Viral Load Assays Using Low Viremic HCV Samples in the Range of the Clinical Decision Points for HCV Protease Inhibitors. Med. Microbiol. Immunol. 2015, 204, 515–525. [Google Scholar] [CrossRef]
- Abbott RealTime HCV. Available online: https://www.molecular.abbott/content/dam/add/molecular/products/infectious-disease/realtime-hcv-viral-load/realtime-hcv-package-insert.pdf (accessed on 15 December 2024).
- Genedrive®. Available online: https://www.sysmex-egypt.com/products/products-detail/genedriver/ (accessed on 10 December 2024).
- Padhi, A.; Gupta, E.; Singh, G.; Agarwal, R.; Sharma, M.K.; Sarin, S.K. Evaluation of the Point of Care Molecular Diagnostic Genedrive HCV ID Kit for the Detection of HCV RNA in Clinical Samples. Epidemiol. Infect. 2020, 1–23. [Google Scholar] [CrossRef]
- Lamoury, F.M.J.; Njouom, R.; Amougou-Atsama, M.; Yiagnigni Mfopou, E.; Berishvili, N.; Sologashvili, M.; Fajardo, E.; Malobela, A.; Macé, A.; Chirehwa, M.; et al. Diagnostic Performance and Usability of the Genedrive® HCV ID Kit in Two Decentralized Settings in Cameroon and Georgia. Diagnostics 2021, 11, 746. [Google Scholar] [CrossRef]
- Miriad Rapid HBc/HIVHCV Antibody Test. Available online: https://medmira.com/wp-content/uploads/2018/01/ADAICUVZIS0001EN-Rev-0_1-8-x-14-Miriad-HBcHIVHCV-Package-Insert-English.pdf (accessed on 15 December 2024).
- VERSANT HCV RNA Qualitative Assay (TMA). Available online: https://www.siemens-healthineers.com/nl/molecular-diagnostics/molecular-diagnostics-in-vitro-diagnostics/versant-hcv-rna-qualitative-assay (accessed on 10 December 2024).
- Saludes, V.; González, V.; Planas, R.; Matas, L.; Ausina, V.; Martró, E. Tools for the Diagnosis of Hepatitis C Virus Infection and Hepatic Fibrosis Staging. World J. Gastroenterol. 2014, 20, 3431–3442. [Google Scholar] [CrossRef]
- Hepatitis C Virus HCV Quantitative NAAT. Available online: https://www.eurofins-viracor.com/test-menu/33257-hepatitis-c-virus-hcv-quantitative-naat/ (accessed on 10 December 2024).
- Procleix Ultrio® Assay. Available online: https://www.fda.gov/media/85280/download (accessed on 10 December 2024).
- VERSANT HCV RNA 3.0 Assay (BDNA). Available online: https://www.siemens-healthineers.com/nl/molecular-diagnostics/molecular-diagnostics-in-vitro-diagnostics/versant-hcv-rna-3-assay (accessed on 10 December 2024).
- He, H.; Luo, G.; Zhang, J.; Tang, L.; Zhou, Y.; Hu, B.; Dai, J.; Huang, Z. Signal Extraction, Transformation, and Magnification for Ultrasensitive and Specific Detection of Nucleic Acids. Anal. Chem. 2021, 93, 10611–10618. [Google Scholar] [CrossRef]
- Xue, C.; Luo, M.; Wang, L.; Li, C.; Hu, S.; Yu, X.; Yuan, P.; Wu, Z.-S. Stimuli-Responsive Autonomous-Motion Molecular Machine for Sensitive Simultaneous Fluorescence Imaging of Intracellular MicroRNAs. Anal. Chem. 2021, 93, 9869–9877. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, X.; Hildebrandt, N. When Nanoworlds Collide: Implementing DNA Amplification, Nanoparticles, Molecules, and FRET into a Single MicroRNA Biosensor. Nano Lett. 2021, 21, 4802–4808. [Google Scholar] [CrossRef]
- Craw, P.; Balachandran, W. Isothermal Nucleic Acid Amplification Technologies for Point-of-Care Diagnostics: A Critical Review. Lab Chip 2012, 12, 2469. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chen, C.-C.; Wei, S.-C.; Lu, H.-H.; Liang, Y.-H.; Lin, C.-W. Diagnostic Devices for Isothermal Nucleic Acid Amplification. Sensors 2012, 12, 8319–8337. [Google Scholar] [CrossRef]
- Zanoli, L.M.; Spoto, G. Isothermal Amplification Methods for the Detection of Nucleic Acids in Microfluidic Devices. Biosensors 2013, 3, 18–43. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-Mediated Isothermal Amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Nagamine, K.; Hase, T.; Notomi, T. Accelerated Reaction by Loop-Mediated Isothermal Amplification Using Loop Primers. Mol. Cell. Probes 2002, 16, 223–229. [Google Scholar] [CrossRef]
- Kabir, M.A.; Zilouchian, H.; Caputi, M.; Asghar, W. Advances in HIV Diagnosis and Monitoring. Crit. Rev. Biotechnol. 2020, 40, 623–638. [Google Scholar] [CrossRef]
- Poon, L.L.M.; Leung, C.S.W.; Chan, K.H.; Lee, J.H.C.; Yuen, K.Y.; Guan, Y.; Peiris, J.S.M. Detection of Human Influenza A Viruses by Loop-Mediated Isothermal Amplification. J. Clin. Microbiol. 2005, 43, 427–430. [Google Scholar] [CrossRef]
- Yoshida, N.; Fujino, M.; Miyata, A.; Nagai, T.; Kamada, M.; Sakiyama, H.; Ihara, T.; Kumagai, T.; Okafuji, T.; Okafuji, T.; et al. Mumps Virus Reinfection Is Not a Rare Event Confirmed by Reverse Transcription Loop-mediated Isothermal Amplification. J. Med. Virol. 2008, 80, 517–523. [Google Scholar] [CrossRef]
- Parida, M.; Posadas, G.; Inoue, S.; Hasebe, F.; Morita, K. Real-Time Reverse Transcription Loop-Mediated Isothermal Amplification for Rapid Detection of West Nile Virus. J. Clin. Microbiol. 2004, 42, 257–263. [Google Scholar] [CrossRef]
- Yoneyama, T.; Kiyohara, T.; Shimasaki, N.; Kobayashi, G.; Ota, Y.; Notomi, T.; Totsuka, A.; Wakita, T. Rapid and Real-Time Detection of Hepatitis A Virus by Reverse Transcription Loop-Mediated Isothermal Amplification Assay. J. Virol. Methods 2007, 145, 162–168. [Google Scholar] [CrossRef]
- Lan, X.; Yang, B.; Li, B.Y.; Yin, X.P.; Li, X.R.; Liu, J.X. Reverse Transcription-Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Hepatitis E Virus. J. Clin. Microbiol. 2009, 47, 2304–2306. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Lou, G.; Yang, J.; Xu, D.; Meng, Z. Development and Evaluation of Real-Time Loop-Mediated Isothermal Amplification for Hepatitis B Virus DNA Quantification: A New Tool for HBV Management. J. Clin. Virol. 2008, 41, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Makler-Disatham, A.; Caputi, M.; Asghar, W. Development of a LAMP-Based Diagnostic for the Detection of Multiple HIV-1 Strains. Biosensors 2024, 14, 157. [Google Scholar] [CrossRef]
- Sharma, S.; Caputi, M.; Asghar, W. Development of a Diagnostic Microfluidic Chip for SARS-CoV-2 Detection in Saliva and Nasopharyngeal Samples. Viruses 2024, 16, 1190. [Google Scholar] [CrossRef]
- Yang, J.; Fang, M.; Li, J.; Lou, G.; Lu, H.; Wu, N. Detection of Hepatitis C Virus by an Improved Loop-Mediated Isothermal Amplification Assay. Arch. Virol. 2011, 156, 1387–1396. [Google Scholar] [CrossRef]
- Nyan, D.-C.; Swinson, K.L. A Novel Multiplex Isothermal Amplification Method for Rapid Detection and Identification of Viruses. Sci. Rep. 2015, 5, 17925. [Google Scholar] [CrossRef]
- Nyan, D.-C.; Swinson, K.L. A Method for Rapid Detection and Genotype Identification of Hepatitis C Virus 1–6 by One-Step Reverse Transcription Loop-Mediated Isothermal Amplification. Int. J. Infect. Dis. 2016, 43, 30–36. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Huang, Z.; Luo, Y.; Tang, L.; Jiang, J.-H. BEAMing LAMP: Single-Molecule Capture and on-Bead Isothermal Amplification for Digital Detection of Hepatitis C Virus in Plasma. Chem. Commun. 2018, 54, 291–294. [Google Scholar] [CrossRef]
- Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface Plasmon Resonance: A Versatile Technique for Biosensor Applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef]
- Sohail, A.; Khan, S.; Ullah, R.; Qureshi, S.A.; Bilal, M.; Khan, A. Analysis of Hepatitis C Infection Using Raman Spectroscopy and Proximity Based Classification in the Transformed Domain. Biomed. Opt. Express 2018, 9, 2041. [Google Scholar] [CrossRef]
- Wang, C.M.; Roy, P.K.; Juluri, B.K.; Chattopadhyay, S. A SERS Tattoo for in Situ, Ex Situ, and Multiplexed Detection of Toxic Food Additives. Sens. Actuators B Chem. 2018, 261, 218–225. [Google Scholar] [CrossRef]
- He, W.; Wang, M.; Cheng, P.; Liu, Y.; You, M. Recent Advances of Upconversion Nanoparticles-Based Lateral Flow Assays for Point-of-Care Testing. TrAC Trends Anal. Chem. 2024, 173, 117641. [Google Scholar] [CrossRef]
- Shi, W.; Li, K.; Zhang, Y. The Advancement of Nanomaterials for the Detection of Hepatitis B Virus and Hepatitis C Virus. Molecules 2023, 28, 7201. [Google Scholar] [CrossRef] [PubMed]
- Kashif, M.; Majeed, M.I.; Hanif, M.A.; Rehman, A.U. Surface Enhanced Raman Spectroscopy of the Serum Samples for the Diagnosis of Hepatitis C and Prediction of the Viral Loads. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 242, 118729. [Google Scholar] [CrossRef]
- Nasir, S.; Majeed, M.I.; Nawaz, H.; Rashid, N.; Ali, S.; Farooq, S.; Kashif, M.; Rafiq, S.; Bano, S.; Ashraf, M.N.; et al. Surface Enhanced Raman Spectroscopy of RNA Samples Extracted from Blood of Hepatitis C Patients for Quantification of Viral Loads. Photodiagnosis Photodyn. Ther. 2021, 33, 102152. [Google Scholar] [CrossRef]
- Cherif, B.; Roget, A.; Villiers, C.L.; Calemczuk, R.; Leroy, V.; Marche, P.N.; Livache, T.; Villiers, M.-B. Clinically Related Protein-Peptide Interactions Monitored in Real Time on Novel Peptide Chips by Surface Plasmon Resonance Imaging. Clin. Chem. 2006, 52, 255–262. [Google Scholar] [CrossRef]
- Narayanamurthy, V.; Jeroish, Z.E.; Bhuvaneshwari, K.S.; Samsuri, F. Hepatitis C Virus (HCV) Diagnosis via Microfluidics. Anal. Methods 2021, 13, 740–763. [Google Scholar] [CrossRef]
- Dey, M.K.; Iftesum, M.; Devireddy, R.; Gartia, M.R. New Technologies and Reagents in Lateral Flow Assay (LFA) Designs for Enhancing Accuracy and Sensitivity. Anal. Methods 2023, 15, 4351–4376. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, Y.; Liu, J.; Fu, S.; Zhang, J.; Mei, Q.; Zhang, Y. Single-Line Flow Assay Platform Based on Orthogonal Emissive Upconversion Nanoparticles. Anal. Chem. 2021, 93, 3010–3017. [Google Scholar] [CrossRef]
- Tang, R.; Yang, H.; Gong, Y.; Liu, Z.; Li, X.; Wen, T.; Qu, Z.; Zhang, S.; Mei, Q.; Xu, F. Improved Analytical Sensitivity of Lateral Flow Assay Using Sponge for HBV Nucleic Acid Detection. Sci. Rep. 2017, 7, 1360. [Google Scholar] [CrossRef]
- Mu, X.; Zhang, L.; Chang, S.; Cui, W.; Zheng, Z. Multiplex Microfluidic Paper-Based Immunoassay for the Diagnosis of Hepatitis C Virus Infection. Anal. Chem. 2014, 86, 5338–5344. [Google Scholar] [CrossRef]
- Chang, H.-C.; Chao, Y.-T.; Yen, J.-Y.; Yu, Y.-L.; Lee, C.-N.; Ho, B.-C.; Liu, K.-C.; Fang, J.; Lin, C.-W.; Lee, J.-H. A Turbidity Test Based Centrifugal Microfluidics Diagnostic System for Simultaneous Detection of HBV, HCV, and CMV. Adv. Mater. Sci. Eng. 2015, 2015, 306708. [Google Scholar] [CrossRef]
- Xing, Y.; Zhao, L.; Cheng, Z.; Lv, C.; Yu, F.; Yu, F. Microfluidics-Based Sensing of Biospecies. ACS Appl. Bio Mater. 2021, 4, 2160–2191. [Google Scholar] [CrossRef]
- Cesewski, E.; Johnson, B.N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Uliana, C.V.; Riccardi, C.S.; Yamanaka, H. Diagnostic Tests for Hepatitis C: Recent Trends in Electrochemical Immunosensor and Genosensor Analysis. World J. Gastroenterol. 2014, 20, 15476–15491. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liang, M.; Wang, L.; Xiang, H.; Jiang, Y.; Li, Y.; Xie, G. MultisHRP-DNA-Coated CMWNTs as Signal Labels for an Ultrasensitive Hepatitis C Virus Core Antigen Electrochemical Immunosensor. Biosens. Bioelectron. 2013, 47, 467–474. [Google Scholar] [CrossRef]
- Zribi, B.; Roy, E.; Pallandre, A.; Chebil, S.; Koubaa, M.; Mejri, N.; Gomez, H.M.; Sola, C.; Korri-Youssoufi, H.; Haghiri-Gosnet, A.-M. A Microfluidic Electrochemical Biosensor Based on Multiwall Carbon Nanotube/Ferrocene for Genomic DNA Detection of Mycobacterium tuberculosis in Clinical Isolates. Biomicrofluidics 2016, 10, 014115. [Google Scholar] [CrossRef]
- Redman, M.; King, A.; Watson, C.; King, D. What Is CRISPR/Cas9? Arch. Dis. Child. Educ. Pract. Ed. 2016, 101, 213–215. [Google Scholar] [CrossRef]
- Price, A.A.; Sampson, T.R.; Ratner, H.K.; Grakoui, A.; Weiss, D.S. Cas9-Mediated Targeting of Viral RNA in Eukaryotic Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 6164–6169. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Smith, B.M.; Jain, P.K. Enhancement of Trans-Cleavage Activity of Cas12a with Engineered CrRNA Enables Amplified Nucleic Acid Detection. Nat. Commun. 2020, 11, 4906. [Google Scholar] [CrossRef] [PubMed]
- Schlücker, S. SERS Microscopy: Nanoparticle Probes and Biomedical Applications. ChemPhysChem 2009, 10, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hong, X.-Z.; Li, Y.-W.; Li, Y.; Wang, J.; Chen, P.; Liu, B.-F. Microfluidics-Based Strategies for Molecular Diagnostics of Infectious Diseases. Mil. Med. Res. 2022, 9, 11. [Google Scholar] [CrossRef]
- Ma, J.; Li, X.; Lou, C.; Lin, X.; Zhang, Z.; Chen, D.; Yang, S. Utility of CRISPR/Cas Mediated Electrochemical Biosensors. Anal. Methods 2023, 15, 3785–3801. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Mousazadeh, M.; Jahangiri-Manesh, A.; Khashayar, P.; Khashayar, P. CRISPR-Powered Microfluidics in Diagnostics: A Review of Main Applications. Chemosensors 2021, 10, 3. [Google Scholar] [CrossRef]
- Wei, X.; Shen, Y.; Yuan, M.; Zhang, A.; Duan, G.; Chen, S. Visualizing In-Field Detection of HCV Using a One-Pot RT-RAA-CRISPR/Cas12a Platform. Anal. Methods 2024, 16, 7484–7493. [Google Scholar] [CrossRef]
Name | Method | Sample | Target | LOD | Time | Sensitivity | Specificity | Status | Strengths | Limitations | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Vitros Anti-HCV, Ortho Clinical Diagnostics | CLIA | Serum/Plasma | Anti-HCV/Antigen; Core, NS3, NS4, NS5 | 100.00% | 99.85% | FDA approved | High throughput; automated processing; good sensitivity and specificity | Longer processing time compared to other CLIA methods; requires specialized instruments | [104] | ||
ARCHITECT HCV Ag/Ab Combo Assay | CMIA | Serum/Plasma | Anti-HCV/Antigen | 93.40% | 98.80% | Unknown | Combines antigen and antibody detection; reduces diagnostic window period; high throughput | Requires specialized equipment; higher cost compared to antibody-only tests | [61,105] | ||
Alinity s Anti-HCV | CMIA | Serum/Plasma | Anti-HCV | 100.00% | 99.92% | FDA approved | High throughput; suitable for blood donor screening | Not intended for diagnostic confirmation; requires specialized equipment | [106,107] | ||
Alinity s Anti-HCV II assay | CMIA | Serum/Plasma | Anti-HCV | 100.00% | 99.96% | FDA approved | High sensitivity and specificity, automated, high throughput, | Not intended for diagnostic confirmation; requires specialized equipment | [108] | ||
Abbot Architect Anti-HCV | CMIA | Serum/Plasma | Anti-HCV | 93.40% | 98.92% | FDA approved | Can be used as a screening assay because of its high sensitivity, high throughput, and short turnaround time | Prone to false positives | [61,109] | ||
Abbott PRISM HCV | ChLIA | Serum/Plasma | Anti-HCV | 100.00% | 99.89% | FDA approved | Qualitative detection of antibodies to HCV, suitable to donor screening | Not intended for diagnostic confirmation; requires specialized equipment | [110] | ||
Abbott Anti-HCV 3.0 | ELISA | Serum/Plasma | Anti-HCV/ Antigen; Core, NS3, NS4, NS5 | 99.70% | FDA approved | Widely validated, sensitive as RNA detection techniques | Expensive, requires specialized equipment for processing | [50,111] | |||
ORTHO EIA-3.0 | ELISA | Serum/Plasma | Anti-HCV/Antigen; Core, NS3, NS4, NS5 | 99.90% | FDA approved | Established method with high sensitivity; suitable for blood donor screening | Requires specific equipment; requires confirmatory testing | [50,112] | |||
Murex Anti-HCV 4.0 | ELISA | Serum/Plasma | Anti-HCV | 100.00% | 99.80% | WHO prequalified | High sensitivity and specificity; detects all major HCV genotypes; suitable for high-throughput settings | Requires laboratory infrastructure; cannot detect acute infections during the window period | [113,114,115] | ||
OraQuick HCV Rapid Antibody Test | Lateral Flow Assay | Fingerstick and Venipuncture Whole Blood/ Serum/Plasma/ Oral Fluid | Anti-HCV | 20 IU/mL | 20–40 min | Serum: 100.00%/Oral Fluid: 97.80% | 100.00% | FDA approved | Rapid results, suitable for point of care for mass screening, clinical performance of the OraQuick HCV Test is comparable to that of laboratory-based tests with both serum and oral fluid, simple, non-instrumented | Higher chance of false-negative results | [54,116,117] |
OraQuick HCV Self-Test | Lateral Flow Assay | Oral Fluid | Anti-HCV | 20 min | 85.10% | 99.80% | FDA approved | Only approved self-test, can be done at-home | high cost makes it difficult to deploy in low-resource areas, additional RNA testing required to validate results | [118] | |
UltraQual Multiplex PCR Assay | PCR | Serum/Plasma | RNA | 93.70% | 100.00% | FDA approved | High sensivitivty and specificity | Requires trained staff | [119] | ||
Xpert HCV Viral Load test by Cepheid | RT-PCR | Plasma | RNA | 10 IU/mL | 2 h | 94.40% | 100.00%, | FDA approved | High specificity, suitable for smaller labs | Requires specialized platform to run tests | [97,98] |
Xpert HCV Viral Load Finger-Stick assay (Xpert HCV VL FS) | RT-PCR | 100 µL Whole Blood | RNA | >40 IU/mL | 1 h | 98.00% | 100.00% | FDA approved | Accurately detect active infection from a finger-stick sample in 1 h allowing single-visit HCV diagnosis | Requires trained staff | [99] |
TrueNAT HCV RNA assay | RT-PCR | Whole Blood/Serum/Plasma | RNA | Blood: 1153.94 IU/mL/Serum: 260.42 IU/mL/Plasma: 204.71 IU/mL | 35 min | 95.00% | 99.00% | FDA approved | Small sample required, reusable chips, rapid results, easy to use | Not suitable for early infection detection | [120,121,122] |
COBAS® AmpliPrep/COBAS® TaqMan® HCV Test, v2.0 | RT-PCR | 650 µL Serum/Plasma | RNA | 15 IU/mL | 100.00% | FDA approved | Fully automated, provides precise viral load measurements for effective treatment monitoring, high specificity | High cost, slow, specialized equipment and lab facilities required | [123,124,125,126] | ||
Abbott Realtime HCV | RT-PCR | 500 µL Serum/Plasma | RNA | 12 IU/mL | 100.00% | 99.74% | FDA approved | High sensitivity and specificity; suitable for monitoring viral load during therapy | Not intended for blood donor screening; requires specialized equipment | [126,127,128] | |
Genedrive HCV ID | RT-PCR | 30 µL Plasma | RNA | 2362 IU/mL | 90 min | 98.60% | 100.00% | CE-IVD | Ideal for low throughput, decentralised laboratories | Specialized equipment is needed, large sample volume required | [65,120,129,130,131] |
MedMira Miriad rapid HBc/HIV/HCV test | Rapid Immunoassay | Blood/Serum | Anti-HCV | Awaiting FDA approval | Rapid detection of multiple infectious markers; no complex infrastructure required | Lower sensitivity in early HCV infection | [132] | ||||
VERSANT HCV RNA TMA | TMA | Serum | RNA | Genotype 1: 5.3-9.6 IU/mL/Genotype 2b: 14.4 IU/mL | 99.60% | FDA approved | No nucleic acid extraction is needed, and the process can be fully automated | Laborious process and bench space requirement when compared to other qualitative assays | [84,89,133,134] | ||
Aptima® HCV Quant Dx Assay | TMA | Serum/Plasma | RNA | 4.3 IU/mL | 2.5 h for first 5 samples then 5 min for every sample | 98.60% | FDA approved | Detects and quantitates HCV RNA genotypes 1-6, is rapid, sensitive, and reproducible and accurately quantifies HCV RNA in serum samples from patients with chronic HCV infection | Requires expensive automation systems and is not approved for use as a screening test for the presence of HCV RNA in blood or blood products | [91,92,135] | |
Procleix® Ultrio Assay | TMA | 2.5 mL Serum/Plasma | RNA | 99.70% | 100.00% | FDA approved | High sensitivity and specificity; simultaneous detection of multiple viruses (HIV-1, HCV, HBV); suitable for high-throughput screening | Requires specialized equipment and trained personnel; not intended for diagnostic purposes | [136] | ||
VERSANT HCV RNA 3.0 Assay | bDNA | 50 μL Serum | RNA | 615 IU/mL | 98.20% | FDA approved | Low risk of carryover contamination, enhanced branched design leads to more specificity | Requires trained staff and is expensive | [85,137] |
Strengths | Limitations | References | |
---|---|---|---|
LAMP | Isothermal technique does not require expensive bulky thermocyclers, making it suitable for low-resource settings. Tests for viral nucleic acid, which makes it more sensitive than immunoassays. | Is known to have higher false positive rates. Utilizes 4–6 primers, which makes primer designing complex. | [138,144,156] |
Surface Plasmon Resonance | Real-time quantification with high sensitivity. Precise measurement of binding kinetics. High multiplexing capacity. Label-free method. | Requires instruments that are not currently point-of-care friendly. Performance can be affected by non-specific binding. Needs extensive sample preparation for effective analysis. | [159,165,182] |
Microfluidics | Minimizes reagent and sample volumes, reducing costs. Facilitates the combination of multiple analytical steps on a single chip. Enables high-throughput analysis with faster turnaround times. | Developing and manufacturing microfluidic devices can be intricate and expensive. Susceptible to blockages and issues with sample flow control. | [173,183] |
Electrochemical Sensors | Capable of detecting low concentrations of analytes. Potential for compact, point-of-care devices. Generally lower production costs compared to optical systems. Label-free. | Electrochemical signals can be affected by impurities. Electrode surfaces may degrade over time, impacting performance. Requires regular calibration for accurate results. | [177,178,184] |
CRISPR | Utilizes CRISPR-Cas systems for precise target recognition, offering high specificity. Potential to be point-of-care friendly. | Is still under development, with limited widespread clinical validation. Pending comprehensive regulatory endorsements for clinical use. | [185,186] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zilouchian, H.; Faqah, O.; Kabir, M.A.; Gross, D.; Pan, R.; Shaifman, S.; Younas, M.A.; Haseeb, M.A.; Thomas, E.; Asghar, W. Current and Future Diagnostics for Hepatitis C Virus Infection. Chemosensors 2025, 13, 31. https://doi.org/10.3390/chemosensors13020031
Zilouchian H, Faqah O, Kabir MA, Gross D, Pan R, Shaifman S, Younas MA, Haseeb MA, Thomas E, Asghar W. Current and Future Diagnostics for Hepatitis C Virus Infection. Chemosensors. 2025; 13(2):31. https://doi.org/10.3390/chemosensors13020031
Chicago/Turabian StyleZilouchian, Hussein, Omair Faqah, Md Alamgir Kabir, Dennis Gross, Rachel Pan, Shane Shaifman, Muhammad Awais Younas, Muhammad Abdul Haseeb, Emmanuel Thomas, and Waseem Asghar. 2025. "Current and Future Diagnostics for Hepatitis C Virus Infection" Chemosensors 13, no. 2: 31. https://doi.org/10.3390/chemosensors13020031
APA StyleZilouchian, H., Faqah, O., Kabir, M. A., Gross, D., Pan, R., Shaifman, S., Younas, M. A., Haseeb, M. A., Thomas, E., & Asghar, W. (2025). Current and Future Diagnostics for Hepatitis C Virus Infection. Chemosensors, 13(2), 31. https://doi.org/10.3390/chemosensors13020031