Theoretical Investigations of the Interaction of Gaseous Pollutants Molecules with the Polyacrylonitrile Surface
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zemtsov, L.M.; Karpacheva, G.P. Chemical transformations of polyacrylonitrile under the action of incoherent infrared radiation. Polym. Sci. Ser. A 1994, 36, 919–924. [Google Scholar]
- Kozlov, V.V.; Karpacheva, G.P.; Petrov, V.S.; Lazovskaya, E.V. Formation of polyconjugated bonds in polyacrylonitrile by thermal treatment in vacuum. Polym. Sci. Ser. A 2001, 43, 20–26. [Google Scholar]
- Laffont, L.; Monthioux, M.; Serin, V.; Mathur, R.B.; Guimon, C.; Guimon, M.F. An EELS study of the structural and chemical transformation of PAN polymer to solid carbon. Carbon 2004, 42, 2485–2494. [Google Scholar] [CrossRef]
- Yoshida, H.; Sato, N. Deposition of Acrylonitrile Cluster Ions on Solid Substrates: Thin Film Formation by Intracluster Polymerization Products. J. Phys. Chem. B 2006, 110, 4232–4239. [Google Scholar] [CrossRef] [PubMed]
- Kozhitov, L.V.; Krapukhin, V.V.; Karpacheva, G.P.; Pavlov, S.A.; Kozlov, V.V. Nanotechnology based on metal-carbon nanocomposites and carbon nanocrystalline materials is a step into the future of electronics. Mater. Electron. Eng. 2005, 3, 64–67. [Google Scholar]
- Muratov, D.G.; Kozlov, V.V.; Krapukhin, V.V.; Kozhitov, L.V.; Karpacheva, G.P.; Zemtsov, L.M. Investigation of electrical conductivity and semiconductor properties of a new carbon material based on IR-pyrolyzed polyacrylonitrile ((C3H3N)n). Mater. Electron. Eng. 2007, 3, 26–31. [Google Scholar]
- Lu, P.; Yu, G.A.; Semenistaya, T.V.; Vorobyov, E.V.; Korolev, A.N. Obtaining sensitive elements of gas sensors based on polyacrylonitrile and silver-containing polyacrylonitrile films and determining their characteristics. Nano Microsyst. Technol. 2011, 9, 5–12. [Google Scholar]
- Konovalenko, S.P.; Bednaya, T.A.; Semenistaya, T.V.; Petrov, V.V.; Maraeva, E.V. Development of the technology for obtaining non-heated gas sensors based on polyacrylonitrile for hybrid sensor systems. Eng. Bull. Don 2012, 23, 13. [Google Scholar]
- Semenistaya, T.V. Polyacrylonitrile-based materials: Properties, Methods and Applications. Adv. Mater. 2016, 175, 61–77. [Google Scholar]
- Petrov, V.V.; Semenistaya, Т.V. Metal-Containing Polyacrylonitrile: Composition, Structure, Properties; Publishing House SFedU: Taganrog, Russia, 2015; p. 169. [Google Scholar]
- Semenistaya, T.V.; Petrov, V.V.; Bednaya, T.A. Energy-Efficient Gas Sensors Based on Nanocomposite Organic Semiconductors; Publishing House SFedU: Taganrog, Russia, 2013; p. 120. [Google Scholar]
- Luoh, H.; Hahn, T. Electrospun nanocomposite fiber mats as gas sensors. Compos. Sci. Technol. 2006, 66, 2436–2441. [Google Scholar] [CrossRef]
- Falchary, M.M.; Plugotarenko, N.K.; Petrov, V.V. Simulation of the formation process of conductive organic polymeric materials for gas sensor systems. Adv. Mater. Res. 2013, 838–841, 3273–3276. [Google Scholar] [CrossRef]
- Kozlov, V.V.; Kozhitov, L.V.; Krapuhin, D.G.; Zaporotskova, I.V.; Davletova, O.A.; Muratov, D.G. Proton conductivity of carbon nanostructures based on pyrolyzed polyacrylonitrile and its practical application. Mater. Electron. Eng. 2008, 1, 59–65. [Google Scholar]
- Kozhitov, L.V.; Viet, N.H.; Kozlov, V.V.; Emelyanov, S.G. The Structure and Content Peculiarities of Carbon Material Obtained under the Polyacrylonitrile Infra-red Heating. J. Nano Electron. Phys. 2013, 5, 04020. [Google Scholar]
- Anikeev, N.A.; Zaporotskova, I.V. Quantum-chemical calculations of processes of adsorption of simple gas phase molecules on the surface of pyrolysated polyacrylonitrile. Sci. J. Volgogr. State Univ. Technol. Innov. 2013, 1, 22–27. [Google Scholar]
- Zaporotskova, I.V.; Anikeev, N.A.; Boroznina, N.P. Sensory device based on pyrolyzed polyacrylonitrile for carbon dioxide test. Sci. J. Volgogr. State Univ. Technol. Innov. 2016, 4, 30–39. [Google Scholar]
- Avilova, M.M.; Petrov, V.V. Molecular modeling and quantum chemical calculations of interaction of gas pollutants with polyacrylonitrile. Russ. J. Phys. Chem. B 2018, 12, 281–284. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 2003, 15, 813–839. [Google Scholar] [CrossRef]
- Avilova, M.M.; Petrov, V.V. Investigation of the interaction of gas molecules with the surface of polyacrylonitrile in the presence of water molecules. Izvestiya SFedU. Eng. Sci. 2018, 2, 47–54. [Google Scholar] [CrossRef]
- Gerasimov, Y.I.; Dreving, V.P.; Eremin, E.N.; Kisilev, A.V.; Lebedev, V.P.; Panchenkov, G.M.; Shlygin, A.I. Course of Physical Chemistry. Chemistry 1964, 1, 624. [Google Scholar]
- Avilova, M.M.; Petrov, V.V. A Study of Gas-Sensitive Properties of Cobalt-Modified Polyacrylonitrile Films by the Methods of Molecular Modeling and Quantum Chemistry. Russ. J. Phys. Chem. B 2017, 11, 618–623. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Thiel, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 1977, 99, 4899–4907. [Google Scholar] [CrossRef]
- Dewar, M.J.S.; Thiel, W. A semiempirical model for the two-center repulsion integrals in the NDDO approximation. Theor. Chem. Acta 1977, 46, 89–104. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, UK, 1989; p. 333. [Google Scholar]
- Kittel, C. Quantum Theory of Solids; Nauka: Moscow, Russia, 1967; p. 493. [Google Scholar]
- Zaporotskova, I.V.; Kojitov, L.V.; Anikeev, N.A.; Kojitov, L.V.; Davletova, O.A.; Popkova, A.V. Theoretical studies of the structure of the metal—Carbon composites on the base of acryle—Nitrile nanopolimer. J. Nano Electron. Phys. 2014, 6, 03035–03036. [Google Scholar]
- Nikolsky, B.P. Handbook of the chemist. Chemistry 1976, 1, 1071. [Google Scholar]
- Petrov, V.V. Investigation of the features of the interaction of gas molecules with the surface of oxide gas sensitive materials. Nano Microsyst. Technol. 2007, 1, 24–27. [Google Scholar]
- Bednaya, T.A.; Konovalenko, S.P.; Semenistaya, T.V.; Petrov, V.V.; Korolev, A.N. Gas-sensitive elements of a nitrogen dioxide and chlorine sensor based on cobalt-containing polyacrylonitrile. Proc. Univ. Electron. 2012, 4, 66–71. [Google Scholar]
No | Gas Molecule | Еmin, (kJ/mol) | ΔE, (kJ/mol) | lmin, Å |
---|---|---|---|---|
1 | NO2 | 8440.25 | 5.15 | 6 |
2 | Cl2 | 2373.43 | 0.79 | 6 |
3 | NH3 | 4729.17 | 15.04 | 3.2 |
4 | CH4 | 3938.77 | 5.03 | 3 |
5 | SO2 | 2371.96 | 56.69 | 3 |
6 | H2S | 2373.72 | 4.52 | 2.5 |
7 | CO | 2376.69 | 2.30 | 3.2 |
8 | О3 | 3235.73 | 5.03 | 3.2 |
9 | СО2 | 2369.78 | 2.80 | 3.2 |
No | Gas Molecule | Еmin, (kJ/mol) | ΔE, (kJ/mol) | lmin, Å | L1, Å (Н2О) | L2, Å (O2) |
---|---|---|---|---|---|---|
1 | NO2 | 8874.96 | 208.75 | 2.5 | 3.6 | 5.2 |
2 | Cl2 | 5131.37 | 3.60 | 6 | 2.6 | 3.9 |
3 | NH3 | 8621.55 | 9.13 | 4 | 2.5 | 4.5 |
4 | CH4 | 7358.27 | 3.69 | 6 | 2.2 | 4.5 |
5 | SO2 | 4994.14 | 12.82 | 3 | 3.2 | 4.3 |
6 | H2S | 4434.61 | 9.18 | 3.7 | 2.4 | 5.5 |
7 | CO | 5093.91 | 0.84 | 4 | 3 | 5.3 |
8 | О3 | 15,118.32 | 0.00 | 10 | 3.9 | 5.3 |
9 | СО2 | 4820.93 | 30.21 | 3.2 | 2.2 | 5.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, V.; Avilova, M. Theoretical Investigations of the Interaction of Gaseous Pollutants Molecules with the Polyacrylonitrile Surface. Chemosensors 2018, 6, 39. https://doi.org/10.3390/chemosensors6030039
Petrov V, Avilova M. Theoretical Investigations of the Interaction of Gaseous Pollutants Molecules with the Polyacrylonitrile Surface. Chemosensors. 2018; 6(3):39. https://doi.org/10.3390/chemosensors6030039
Chicago/Turabian StylePetrov, Victor, and Marta Avilova. 2018. "Theoretical Investigations of the Interaction of Gaseous Pollutants Molecules with the Polyacrylonitrile Surface" Chemosensors 6, no. 3: 39. https://doi.org/10.3390/chemosensors6030039
APA StylePetrov, V., & Avilova, M. (2018). Theoretical Investigations of the Interaction of Gaseous Pollutants Molecules with the Polyacrylonitrile Surface. Chemosensors, 6(3), 39. https://doi.org/10.3390/chemosensors6030039