Copper-Containing Films Obtained by the Simple Citrate Sol–Gel Route for NO2 Detection: Adsorption and Kinetic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization
2.2. Gas Sensor Fabrication
2.3. Gas Sensor Tests
2.4. Modeling
3. Results and Discussion
3.1. SEM and XRD Investigations
3.2. UV–Visible Studies
3.3. Gas Sensitivity
3.4. Activation Energy and Adsorption Kinetics Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sholehah, A.; Faroz, D.F.; Huda, N.; Utari, L.; Septiani, N.L.W.; Yuliarto, B. Synthesis of ZnO Flakes on flexible substrate and its application on ethylene sensing at room temperature. Chemosensors 2020, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Galstyan, V.; Comini, E.; Ponzoni, A.; Sberveglieri, V.; Sberveglieri, G. ZnO Quasi-1D nanostructures: Synthesis, modeling, and properties for applications in conductometric chemical sensors. Chemosensors 2016, 4, 6. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Grigoryev, M.N.; Plugotarenko, N.K.; Mikhailova, T.S. Fabrication of gas-sensor chips based on silicon-carbon films obtained by electrochemical deposition. Chemosensors 2019, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, H.; Yuan, Z.; Sun, Y.; Chang, F.; Deng, H.; Xie, L.; Li, H. A highly sensitive gas sensor based on CuO nanoparticles synthesized via a sol-gel method. RSC Adv. 2016, 6, 79343–79349. [Google Scholar] [CrossRef]
- Zhu, Z.; Zeng, W.; Cao, S.; Chen, L. Gas sensing property of novel flower-like nanostructure CuO. J. Mater. Sci. Mater. Electron. 2015, 26, 9037–9043. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantar-zadeh, K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef] [Green Version]
- Oosthuizen, D.N.; Motaung, D.E.; Swart, H.C. In depth study on the notable room-temperature NO2 gas sensor based on CuO nanoplatelets prepared by sonochemical method: Comparison of various bases. Sens. Actuators B Chem. 2018, 266, 761–772. [Google Scholar] [CrossRef]
- Oosthuizen, D.N.; Motaung, D.E.; Swart, H.C. Selective detection of CO at room temperature with CuO nanoplatelets sensor for indoor air quality monitoring manifested by crystallinity. Appl. Surf. Sci. 2019, 466, 545–553. [Google Scholar] [CrossRef]
- Navale, Y.H.; Navale, S.T.; Galluzzi, M.; Stadler, F.J.; Debnath, A.K.; Ramgir, N.S.; Gadkari, S.C.; Gupta, S.K.; Aswal, D.K.; Patil, V.B. Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2. J. Alloy. Compd. 2017, 708, 456–463. [Google Scholar] [CrossRef]
- Volanti, D.P.; Felix, A.A.; Orlandi, M.O.; Whitfield, G.; Yang, D.-J.; Longo, E.; Tuller, H.L.; Varela, J.A. The role of hierarchical morphologies in the superior gas sensing performance of CuO-based chemiresistors. Adv. Funct. Mater. 2013, 23, 1759–1766. [Google Scholar] [CrossRef]
- Sendi, A.; Besnard, G.; Menini, P.; Talhi, C.; Blanc, F.; Franc, B. Sub-ppm nitrogen dioxide (NO2) sensor based on inkjet printed CuO on microhotplate with a pulsed temperature modulation. In Proceedings of the Third International Conference on Advances in Sensors, Actuators, Metering and Sensing (ALLSENSORS 2018), Italy, Rome, 25–29 March 2018. [Google Scholar]
- Oosthuizen, D.N.; Korditis, I.; Swart, H.C.; Motaung, D.E. Facile control of room temperature nitrogen dioxide gas selectivity induced by copper oxide nanoplatelets. J. Colloid Interface Sci. 2020, 560, 755–768. [Google Scholar] [CrossRef]
- Das, A.; Venkataramana, B.; Partheephan, D.; Prasad, A.K.; Dgara, S.; Tyagi, A.K. Facile synthesis of nanostructured CuO for low temperature NO2 sensing. Phys. E Low Dimens. Syst. Nanostruct. 2013, 54, 40–44. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Yalovega, G.E.; Shmatko, V.A.; Funik, A.O.; Petrov, V.V. SiO2CuOx films for nitrogen dioxide detection: Correlation between technological conditions and properties. Sens. Actuators B Chem. 2016, 230, 167–175. [Google Scholar] [CrossRef]
- Yang, M.; He, J. Tailoring the structure of metal oxide nanostructures towards enhanced sensing properties for environmental applications. J. Colloid Interface Sci. 2012, 368, 41–48. [Google Scholar] [CrossRef]
- Singh, S.; Yadav, B.C.; Prakash, R.; Bajaj, B.; Lee, J.R. Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. J. Appl. Surf. Sci. 2011, 257, 10763–10770. [Google Scholar] [CrossRef]
- Shmatko, V.A.; Yalovega, G.E.; Myasoedova, T.N.; Brzhezinskaya, M.M.; Shtehkin, I.E.; Petrov, V.V. Influence of the surface morphology and structure on the gas-sorption properties of SiO2CuOx nanocomposite materials: X-ray spectroscopy investigations. Phys. Solid State 2015, 57, 399–406. [Google Scholar] [CrossRef]
- Kuo, C.-H.; Chen, C.-H.; Huang, M.H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780. [Google Scholar] [CrossRef]
- Zhang, Y.; He, X.; Li, J.; Zhang, H.; Gao, X. Gas-sensing properties of hollow and hierarchical copper oxide microspheres. Sens. Actuators B Chem. 2007, 128, 293–298. [Google Scholar] [CrossRef]
- Etefagh, R.; Azhir, E.; Shahtahmasebi, N. Synthesis of CuO nanoparticles and fabrication of nanostructural layer biosensors for detecting Aspergillus niger fungi. Sci. Iran. F 2013, 20, 1055–1058. [Google Scholar]
- Vaseem, M.; Umar, A.; Hahn, Y.B.; Kim, D.H.; Lee, K.S.; Jang, J.S.; Lee, J.S. Flower-shaped CuO nanostructures: Structural, photocatalytic and XANES studies. Catal. Commun. 2008, 10, 11–16. [Google Scholar] [CrossRef]
- Li, L.; Nan, C.; Peng, Q.; Li, Y. Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene. Chem. Eur. J. 2012, 18, 10491–10496. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xu, H.; Xiao, Y.; Liu, Y.; Yuan, A.; Shen, X. Facile fabrication and enhanced sensing properties of hierarchically porous CuO architectures. ACS Appl. Mater. Interfaces 2012, 4, 744–751. [Google Scholar] [CrossRef]
- Li, D.; Tang, Y.; Ao, D.; Xiang, X.; Wang, S.; Zu, H. Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit. Int. J. Hydrog. Energy 2019, 44, 3985–3992. [Google Scholar] [CrossRef]
- Li, D.; Zu, X.; Ao, D.; Tang, Q.; Fu, Y.; Guo, Y.; Bilawal, K.; Faheem, M.B.; Li, L.; Li, S.; et al. High humidity enhanced surface acoustic wave (SAW) H2S sensors based on sol–gel CuO films. Sens. Actuators B Chem. 2019, 294, 55–61. [Google Scholar] [CrossRef]
- Poloju, M.; Jayababu, N.; Reddy, M.V.R. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Mater. Sci. Eng. B 2018, 227, 61–67. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, Z.; Chen, C.; Wen, T.; Zhao, X.; Xie, L. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens. Actuators B Chem. 2017, 253, 809–817. [Google Scholar]
- Deiminiat, B.; Razavipanah, I.; Rounaghi, G.H.; Arbab-Zavar, M.H. A novel electrochemical imprinted sensor for acetylsalicylic acid based on polypyrrole, sol-gel and SiO2@Au core-shell nanoparticles. Sens. Actuators B Chem. 2017, 244, 785–795. [Google Scholar] [CrossRef]
- Mahendraprabhu, K.; Sgarma, A.S.; Elomalai, P. CO sensing performances of YSZ-based sensor attached with sol-gel derived ZnO nanospheres. Sens. Actuators B Chem. 2019, 283, 842–847. [Google Scholar] [CrossRef]
- Ding, H.; Ma, J.; Yue, F.; Gao, P.; Jia, X. Size and morphology dependent gas-sensing selectivity towards acetone vapor based on controlled hematite nano/microstructure (0D to 3D). J. Solid State Chem. 2019, 276, 30–36. [Google Scholar] [CrossRef]
- Choi, J.-M.; Byun, J.-H.; Kim, S.S. Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers. Sens. Actuators B Chem. 2016, 227, 149–156. [Google Scholar] [CrossRef]
- Myasoedova, T.N.; Yalovega, G.E.; Plugotarenko, N.K.; Brzhezinskaya, M.M.; Petrov, V.V.; Moiseeva, T.A.; Shmatko, V.A. CuOX Films for NO2 Detection: Microstructural Characterization. Appl. Mech. Mater. 2013, 481, 133–136. [Google Scholar] [CrossRef]
- Yalovega, G.; Myasoedova, T.; Funik, A.; Plugotarenko, N.; Brzhezinskaya, M.; Bahmatskaya, A. Mechanism of the formation of copper-containing fractal-like crystallites in metal-organic thin films: Shape simulation and XANES analysis. Phys. Status Solidi 2016, 253, 2217–2224. [Google Scholar] [CrossRef]
- Petrov, V.V.; Nazarova, T.N.; Korolev, A.N.; Kopilova, N.F. Thin sol–gel SiO2–SnOx–AgOy films for low temperature ammonia gas sensor. Sens. Actuators B Chem. 2008, 133, 291–295. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Rajendran, V.; Nithyavathy, N.; Vetumperumal, R. Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 2015, 6, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar]
- Ghijsen, J.; Tjeng, L.H.; Van Elp, J.; Eskes, H.; Westerink, J.; Sawatzky, G.A.; Czyzyk, M.T. Electronic structure of Cu2O and CuO. Phys. Rev. B 1988, 38, 11322–11330. [Google Scholar] [CrossRef]
- Johan, M.R.; Suan, M.S.M.; Havari, N.L.; Ching, H.A. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci. 2011, 6, 6094–6104. [Google Scholar]
- Myasoedova, T.N.; Mikhailova, T.S.; Yalovega, G.E.; Plugotarenko, N.K. Resistive low-temperature sensor based on the SiO2ZrO2 film for detection of high concentrations of NO2 gas. Chemosensors 2018, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Staerz, A.; Berthold, C.; Russ, T.; Wicker, S.; Weimar, U.; Barsan, N. The oxidizing effect of humidity on WO3 based sensors. Sens. Actuators B Chem. 2016, 237, 54–58. [Google Scholar] [CrossRef]
- Thong, L.V.; Hoa, N.D.; Le, D.T.T.; Viet, D.T.; Tam, P.D.; Le, A.-T.; Hieu, N.V. On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance. Sens. Actuators B Chem. 2010, 146, 361–367. [Google Scholar] [CrossRef]
- Calheiro, D.S.; Bianchi, R.F. Tuning the detection limit in hybrid organic-inorganic materials for improving electrical performance of sensing devices. Sens. Actuators B Phys. 2019, 298, 111480. [Google Scholar] [CrossRef]
- Gerasimov, G.N.; Gromov, V.F.; Ilegbusi, O.J.; Trakhtenberg, T.I. The mechanisms of sensory phenomena in binary metal-oxide nanocomposites. Sens. Actuators B Chem. 2017, 240, 613–624. [Google Scholar] [CrossRef]
- Hanbali, M.; Holail, H.; Hammud, H. Remediation of lead by pretreated red algae: Adsorption isotherm, kinetic, column modeling and simulation studies. Green Chem. Lett. Rev. 2014, 7, 342–358. [Google Scholar] [CrossRef]
- Baik, J.M.; Zielke, M.; Kim, M.H.; Turner, K.L.; Wodtke, A.M.; Moskovits, M. Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 2010, 4, 3117–3122. [Google Scholar] [CrossRef] [Green Version]
- Tongpool, R.; Yoriya, S. Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin Solid Film. 2005, 477, 148–152. [Google Scholar] [CrossRef]
- Das, A.; Bonu, V.; Prasad, A.K.; Panda, D.; Dhara, S.; Tyagi, A.K. The role of SnO2 quantum dots in improved CH4 sensing at low temperature. J. Mater. Chem. C 2014, 2, 164–171. [Google Scholar] [CrossRef]
Sample | NO2 Concentration, ppm | α, Ω | ά |
---|---|---|---|
S_250 | 40 | 0.76·109 | 2.39·10−9 |
53 | 0.67·109 | 1.38·10−9 | |
66 | 0.63·109 | 2.04·10−9 | |
S_350 | 40 | 0.25·1010 | 3.98·10−9 |
53 | 0.23·1010 | 6.02·10−8 | |
66 | 0.25·1010 | 6.04·10−8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myasoedova, T.N.; Plugotarenko, N.K.; Moiseeva, T.A. Copper-Containing Films Obtained by the Simple Citrate Sol–Gel Route for NO2 Detection: Adsorption and Kinetic Study. Chemosensors 2020, 8, 79. https://doi.org/10.3390/chemosensors8030079
Myasoedova TN, Plugotarenko NK, Moiseeva TA. Copper-Containing Films Obtained by the Simple Citrate Sol–Gel Route for NO2 Detection: Adsorption and Kinetic Study. Chemosensors. 2020; 8(3):79. https://doi.org/10.3390/chemosensors8030079
Chicago/Turabian StyleMyasoedova, Tatiana N., Nina K. Plugotarenko, and Tatiana A. Moiseeva. 2020. "Copper-Containing Films Obtained by the Simple Citrate Sol–Gel Route for NO2 Detection: Adsorption and Kinetic Study" Chemosensors 8, no. 3: 79. https://doi.org/10.3390/chemosensors8030079
APA StyleMyasoedova, T. N., Plugotarenko, N. K., & Moiseeva, T. A. (2020). Copper-Containing Films Obtained by the Simple Citrate Sol–Gel Route for NO2 Detection: Adsorption and Kinetic Study. Chemosensors, 8(3), 79. https://doi.org/10.3390/chemosensors8030079