Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagent
2.2. Substrates Fabrication
2.3. Electrochemical Measuring Set-Up
3. Results
3.1. Hafnium Dioxide Surface Characterization
3.2. Frequency Optimization
3.3. Mott–Schottky Analyses for pH Sensibility and Selectivity
3.4. Electrochemical Impedance Spectroscopy Measurements for pH Variation
3.4.1. Electrochemical Parameter Optimization
3.4.2. Impedance Analysis of the pH Sensor
3.4.3. The Selectivity of the Electrolyte Insulator Semiconductor Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, Y.; Kwon, H.-J.; Howlader, M.M.R.; Deen, M.J. Microfabricated electrochemical pH and free chlorine sensors for water quality monitoring: Recent advances and research challenges. RSC Adv. 2015, 5, 69086–69109. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Tozer, M.E. Environmental Factors Relating to the Distribution of Terricolous Bryophytes and Lichens in Semi-Arid Eastern Australia. Bryologist 1997, 100, 28–39. [Google Scholar] [CrossRef]
- Yuqing, M.; Jianrong, C.; Keming, F. New technology for the detection of pH. J. Biochem. Biophys. Methods 2005, 63, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ruan, C.; Ong, K.G.; Mungle, C.; Paulose, M.; Nickl, N.J.; Grimes, C.A. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sens. Actuators B Chem. 2003, 96, 61–69. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays—A review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Ang, P.K.; Chen, W.; Wee, A.T.S.; Loh, K.P. Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc. 2008, 130, 14392–14393. [Google Scholar] [CrossRef] [PubMed]
- Lesho, M.J.; Sheppard, N.F. Adhesion of polymer films to oxidized silicon and its effect on performance of a conductometric pH sensor. Sens. Actuators B Chem. 1996, 37, 61–66. [Google Scholar] [CrossRef]
- Snee, P.T.; Somers, R.C.; Nair, G.; Zimmer, J.P.; Bawendi, M.G.; Nocera, D.G. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. J. Am. Chem. Soc. 2006, 128, 13320–13321. [Google Scholar] [CrossRef]
- Kaval, N.; Seitz, W.R. Aminated poly(vinylbenzylchloride-co-2,4,5-trichlorophenyl acrylate) microspheres for optical pH sensing. In Proceedings of the SPIE, Boston, MA, USA, 9 December 1999; Volume 3860, pp. 224–231. [Google Scholar]
- Cai, Q.Y.; Grimes, C.A. A remote query magnetoelastic pH sensor. Sens. Actuators B Chem. 2000, 71, 112–117. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Grimes, C.A. A salt-independent pH sensor. Sens. Actuators B Chem. 2001, 79, 144–149. [Google Scholar] [CrossRef]
- Bergveld, P. Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements. IEEE Trans. Biomed. Eng. 1970, 17, 70–71. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.T.; Chou, J.C.; Chung, W.Y.; Sun, T.P.; Hsiung, S.K. Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications. IEEE Trans. Biomed. Eng. 2001, 48, 340–344. [Google Scholar] [PubMed]
- Jakobson, C.G.; Dinnar, U.; Feinsod, M.; Nemirovsky, Y. Ion-sensitive field-effect transistors in standard CMOS fabricated by post processing. IEEE Sens. J. 2002, 2, 279–287. [Google Scholar] [CrossRef]
- Knopfmacher, O.; Tarasov, A.; Fu, W.; Wipf, M.; Niesen, B.; Calame, M.; Schönenberger, C. Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 2010, 10, 2268–2274. [Google Scholar] [CrossRef]
- Mikolajick, T.; Kühnhold, R.; Ryssel, H. The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition. Sens. Actuators B Chem. 1997, 44, 262–267. [Google Scholar] [CrossRef]
- Chin, Y.-L.; Chou, J.-C.; Sun, T.-P.; Liao, H.-K.; Chung, W.-Y.; Hsiunga, S.-K. A novel SnO2/Al discrete gate ISFET pH sensor with CMOS standard process. Sens. Actuators B Chem. 2001, 75, 36–42. [Google Scholar] [CrossRef]
- Shin, P.-K. The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD. Appl. Surf. Sci. 2003, 214, 214–221. [Google Scholar] [CrossRef]
- Lai, C.-S.; Yang, C.-M.; Lu, T.-F. Thickness Effects on pH Response of HfO2 Sensing Dielectric Improved by Rapid Thermal Annealing. Jpn. J. Appl. Phys. 2006, 45, 3807. [Google Scholar] [CrossRef]
- Lai, C.-S.; Yang, C.-M.; Lu, T.-F. pH Sensitivity Improvement on 8 nm Thick Hafnium Oxide by Post Deposition Annealing. Electrochem. Solid-State Lett. 2006, 9, G90–G92. [Google Scholar] [CrossRef]
- Lai, C.-S.; Lu, T.-F.; Yang, C.-M.; Lin, Y.-C.; Pijanowska, D.-G.; Jaroszewicz, B. Body effect minimization using single layer structure for pH-ISFET applications. Sens. Actuators B Chem. 2010, 143, 494–499. [Google Scholar] [CrossRef]
- Wal, P.D.; Briand, D.; Mondin, G.; Jenny, S.; Jeanneret, S.; Millon, C.; Roussel, H.; Dubourdieu, C.; de Rooij, N.F. High-k dielectrics for use as ISFET gate oxides. IEEE Sens. 2004, 2, 677–680. [Google Scholar]
- Rauwel, E.; Rochat, N. Growth by Liquid-Injection MOCVD and Properties of HfO2 Films for Microelectronic Applications. Chem. Vap. Depos. 2006, 12, 187–192. [Google Scholar]
- Alnuaimi, A.; Almansouri, I.; Saadat, I.; Nayfeh, A. High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol. Energy 2018, 164, 174–179. [Google Scholar] [CrossRef]
- Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition. Adv. Mater. 2007, 19, 3425–3438. [Google Scholar] [CrossRef]
- Rafí, J.M.; Campabadal, F.; Ohyama, H.; Takakura, K.; Tsunoda, I.; Zabala, M.; Beldarrain, O.; González, M.B.; García, H.; Castán, H.; et al. 2 MeV Electron Irradiation Effects on the Electrical Characteristics of Metal–Oxide–Silicon Capacitors with Atomic Layer Deposited Al2O3, HfO2 and Nanolaminated Dielectrics. Solid-State Electron. 2013, 79, 65–74. [Google Scholar] [CrossRef]
- Hausmann, D.-M.; Gordon, R.-G. Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 2003, 249, 251–261. [Google Scholar] [CrossRef]
- Campabadal, F.; Rafí, J.M.; Zabala, M.; Beldarrain, O.; Faigón, A.; Castán, H.; Gómez, A.; García, H.; Dueñas, S. Electrical Characteristics of Metal-Insulator-Semiconductor Structures with Atomic Layer Deposited Al2O3, HfO2, and Nanolaminates on Different Silicon Substrates. J. Vac. Sci. Technol. B 2011, 29, 01AA07. [Google Scholar] [CrossRef]
- Martín, G.; González, M.B.; Campabadal, F.; Peiró, F.; Cornet, A.; Estradé, S. Transmission electron microscopy assessment of conductive-filament formation in Ni–HfO2–Si resistive-switching operational devices. Appl. Phys. Express 2017, 11, 14101. [Google Scholar] [CrossRef]
- García, H.; Castán, H.; Dueñas, S.; Bailón, L.; Campabadal, F.; Beldarrain, O.; Zabala, M.; González, M.B.; Rafí, J.M. Electrical characterization of atomic-layer-deposited hafnium oxide films from hafnium tetrakis(dimethylamide) and water/ozone: Effects of growth temperature, oxygen source, and postdeposition annealing. J. Vac. Sci. Technol. Vac. Surf. Films 2012, 31, 01A127. [Google Scholar] [CrossRef] [Green Version]
- Braik, M.; Dridi, C.; Ben Ali, M.; Ali, M.; Abbas, M.; Zabala, M.; Bausells, J.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A. Development of a capacitive chemical sensor based on Co(II)-phthalocyanine acrylate-polymer/HfO2/SiO2/Si for detection of perchlorate. J. Sens. Sens. Syst. 2015, 4, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Barhoumi, L.; Baraket, A.; Nooredeen, N.M.; Ali, M.B.; Abbas, M.N.; Bausells, J.; Errachid, A. Silicon Nitride Capacitive Chemical Sensor for Phosphate Ion Detection Based on Copper Phthalocyanine—Acrylate-polymer. Electroanalysis 2017, 29, 1586–1595. [Google Scholar] [CrossRef] [Green Version]
- Zafar, S.; D’Emic, C.; Afzali, A.; Fletcher, B.; Zhu, Y.; Ning, T. Optimization of PH Sensing Using Silicon Nanowire Field Effect Transistors with HfO2as the Sensing Surface. Nanotechnology 2011, 22, 405501. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.-S.; Lin, Y.-T.; Huang, C.-H.; Lu, T.-F.; Lue, C.-E.; Yang, P.; Pijanswska, D.G.; Yang, C.-M.; Wang, J.-C.; Yu, J.-S.; et al. Immobilization of enzyme and antibody on ALD-HfO2-EIS structure by NH3 plasma treatment. Nanoscale Res. Lett. 2012, 7, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.; Baraket, A.; Zine, N.; Zabala, M.; Campabadal, F.; Renault, N.-J.; Errachid, A. Impedance Characterization of the Capacitive Field-Effect PH-Sensor Based on a Thin-Layer Hafnium Oxide Formed by Atomic Layer Deposition. Sens. Trans. 2014, 27, 233–238. [Google Scholar]
- Ameur, S.; Maupas, H.; Martelet, C.; Jaffrezic-Renault, N.; Ben Ouada, H.; Cosnier, S.; Labbe, P. Impedimetric measurements on polarized functionalized platinum electrodes: Application to direct immunosensing. Mater. Sci. Eng. C 1997, 5, 111–119. [Google Scholar] [CrossRef]
- Barhoumi, H.; Haddad, R.; Maaref, A.; Bausells, J.; Bessueille, F.; Léonard, D.; Jaffrezic-Renault, N.; Martelet, C.; Zine, N.; Errachid, A. Na+-implanted membrane for a capacitive sodium electrolyte-Insulator-Semiconductor microsensors. Sens. Lett. 2008, 6, 204–208. [Google Scholar] [CrossRef]
Thicknesses (nm) | 15 | 19.5 | 39.9 |
Sensitivity (mV/pH) | 54.5 | 51.1 | 49.2 |
R2 | 0.9966 | 0.9957 | 0.9926 |
Ion | K+ | Li+ | Na+ |
---|---|---|---|
Sensibility (mV/p[X]) | 4.2 | 5.2 | 2.5 |
R2 | 0.974 | 0.992 | 0.952 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fredj, Z.; Baraket, A.; Ben Ali, M.; Zine, N.; Zabala, M.; Bausells, J.; Elaissari, A.; Benson, N.U.; Jaffrezic-Renault, N.; Errachid, A. Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses. Chemosensors 2021, 9, 13. https://doi.org/10.3390/chemosensors9010013
Fredj Z, Baraket A, Ben Ali M, Zine N, Zabala M, Bausells J, Elaissari A, Benson NU, Jaffrezic-Renault N, Errachid A. Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses. Chemosensors. 2021; 9(1):13. https://doi.org/10.3390/chemosensors9010013
Chicago/Turabian StyleFredj, Zina, Abdoullatif Baraket, Mounir Ben Ali, Nadia Zine, Miguel Zabala, Joan Bausells, Abdelhamid Elaissari, Nsikak U. Benson, Nicole Jaffrezic-Renault, and Abdelhamid Errachid. 2021. "Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses" Chemosensors 9, no. 1: 13. https://doi.org/10.3390/chemosensors9010013
APA StyleFredj, Z., Baraket, A., Ben Ali, M., Zine, N., Zabala, M., Bausells, J., Elaissari, A., Benson, N. U., Jaffrezic-Renault, N., & Errachid, A. (2021). Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses. Chemosensors, 9(1), 13. https://doi.org/10.3390/chemosensors9010013