Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review
Abstract
:1. Introduction
2. Serotonin Synthesis and Metabolism. Transmission of the Serotonin-Mediated Signal
2.1. Synthesis In Vivo of Serotonin
2.2. Release and Transport upon Serotonin Binding
2.3. Metabolism of Serotonin
2.4. Signal Mediation by Serotonin upon Receptors
2.5. Roles of Serotonin on Human Body
3. Analytical Methods of Serotonin Detection
3.1. Nonenzymatic Detection of Serotonin
3.1.1. Sensors Based on Carbonaceous Nanomaterials and Their Composites
3.1.2. Sensors Based on Conducting Polymers and Their Composites
4. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shajib, M.S.; Baranov, A.; Khan, W.I. Diverse effects of gut-derived serotonin in intestinal inflammation. ACS Chem. Neurosci. 2017, 8, 920–931. [Google Scholar] [CrossRef] [PubMed]
- Ramage, A.G. The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br. J. Pharmacol. 2006, 147 (Suppl. 2), S120–S131. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chalazonitis, A.; Huang, Y.Y.; Mann, J.J.; Margolis, K.G.; Yang, Q.M.; Kim, D.O.; Cote, F.; Mallet, J.; Gershon, M.D. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J. Neurosci. 2011, 31, 8998–9009. [Google Scholar] [CrossRef] [PubMed]
- Ghia, J.E.; Li, N.; Wang, H.; Collins, M.; Deng, Y.; El-Sharkawy, R.T.; Cote, F.; Mallet, J.; Khan, W.I. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009, 137, 1649–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tecott, L.H. Serotonin and the orchestration of energy balance. Cell Metab. 2007, 6, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neil, P.M.; Smith, S.R.; Weissman, N.J.; Fidler, M.C.; Sanchez, M.; Zhang, J.; Raether, B.; Anderson, C.M.; Shanahan, W.R. Randomized placebo-controlled clinical trial of lorcaserin for weight loss in type 2diabetes mellitus: The BLOOM-DM study. Obesity 2012, 20, 1426–1436. [Google Scholar] [CrossRef]
- Bulbring, E.; Crema, A. 5-Hydroxytryptamine on the peristaltic reflex. Br. J. Pharmacol. Chemother. 1958, 13, 444–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, D.J.; Peter, J.U.; Winter, S.; Höltje, M.; Paulmann, N.; Grohmann, M.; Vowinckel, J.; Alamo-Bethencourt, V.; Wilhelm, C.S.; Ahnert-Hilger, G.; et al. Serotonylation of small GTPases is a signal transduction pathway that triggers plateleta-granule release. Cell 2003, 115, 851–862. [Google Scholar] [CrossRef] [Green Version]
- Paulmann, N.; Grohmann, M.; Voigt, J.P.; Bert, B.; Vowinckel, J.; Bader, M.; Skelin, M.; Jevsek, M.; Fink, H.; Rupnik, M.; et al. Intracellular serotonin modulates insulin secretion from pancreatic beta-cells by protein serotonylation. PLoS Biol. 2009, 7, e1000229. [Google Scholar] [CrossRef] [Green Version]
- Lesurtel, M.; Graf, R.; Aleil, B.; Walther, D.J.; Tian, Y.; Jochum, W.; Gachet, C.; Bader, M.; Clavien, P.A. Platelet-derived serotonin mediates liver regeneration. Science 2006, 312, 104–107. [Google Scholar] [CrossRef]
- Rosmond, R.; Bouchard, C.; Björntorp, P. Increasedabdominal obesity in subjects with a mutation in the 5-HT2A receptor gene promoter. Ann. N. Y. Acad. Sci. 2002, 967, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Halder, I.; Muldoon, M.F.; Ferrell, R.E.; Manuck, S.B. Serotonin receptor 2A (HTR2A) gene polymorphisms are associated with blood pressure, central adiposity, and the metabolic syndrome. Metab. Syndr. Relat. Disord. 2007, 5, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kring, S.I.I.; Werge, T.; Holst, C.; Toubro, S.; Astrup, A.; Hansen, T.; Pedersen, O.; Sørensen, T.I. Polymorphisms of serotonin receptor 2A and 2C genes and COMT in relation to obesity and type 2 diabetes. PLoS ONE 2009, 4, e6696. [Google Scholar] [CrossRef]
- Walther, D.J.; Peter, J.U.; Bashammakh, S.; Hörtnagl, H.; Voits, M.; Fink, H.; Bader, M. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003, 299, 76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Beaulieu, J.M.; Sotnikova, T.D.; Gainetdinov, R.R.; Caron, M.G. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 2004, 305, 217. [Google Scholar] [CrossRef]
- Cote, F.; Thevenot, E.; Fligny, C.; Fromes, Y.; Darmon, M.; Ripoche, M.A.; Bayard, E.; Hanoun, N.; Saurini, F.; Lechat, P.; et al. Disruption of the non-neuronal tph1 gene demonstrates the importance of peripheral serotonin in cardiac function. Proc. Natl. Acad. Sci. USA 2003, 100, 13525–13530. [Google Scholar] [CrossRef] [Green Version]
- Gal, E.M.; Sherman, A.D. l-Kynurenine: Its synthesis and possible regulatory function in brain. Neurochem. Res. 1980, 5, 223–239. [Google Scholar] [CrossRef] [PubMed]
- Oxenkrug, G.F. Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation oftryptophan-kynurenine metabolism. Ann. N. Y. Acad. Sci. 2010, 1199, 1–14. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K. Serotonin. In Translational Endocrinology of Bone; Elsevier: Amsterdam, The Netherlands, 2013; pp. 51–62. [Google Scholar]
- Grohmann, U.; Fallarino, F.; Puccetti, P. Tolerance, DCs and tryptophan: Much ado about IDO. Trends Immunol. 2003, 24, 242–248. [Google Scholar] [CrossRef]
- Miura, H.; Ozaki, N.; Sawada, M.; Isobe, K.; Ohta, T.; Nagatsu, T. A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 2008, 11, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Gershon, M.D. Nerves, reflexes, and the enteric nervous system: Pathogenesis of the irritable bowel syndrome. J. Clin. Gastroenterol. 2005, 39, S184–S193. [Google Scholar] [CrossRef] [PubMed]
- Mercado, C.P.; Kilic, F. Molecular mechanisms of SERTin platelets: Regulation of plasma serotonin levels. Mol. Interv. 2010, 10, 231–241. [Google Scholar] [CrossRef]
- Sandler, M.; Reveley, M.A.; Glover, V. Human platelet monoamine oxidase activity in health and disease: A review. J. Clin. Pathol. 1981, 34, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vilchez, I.; Diaz-Ricart, M.; White, J.G.; Escolar, G.; Galan, A.M. Serotonin enhances platelet procoagulant properties and their activation inducedduring platelet tissue factor uptake. Cardiovasc. Res. 2009, 84, 309–316. [Google Scholar] [CrossRef]
- Fukui, M.; Tanaka, M.; Toda, H.; Asano, M.; Yamazaki, M.; Hasegawa, G.; Imai, S.; Nakamura, N. High plasma 5-hydroxyindole-3-acetic acid concentrations insubjects with metabolic syndrome. Diabetes Care 2012, 35, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Billett, E.E. Monoamine oxidase (MAO) in human peripheral tissues. Neurotoxicology 2004, 25, 139–148. [Google Scholar] [CrossRef]
- Keszthelyi, D.; Troost, F.J.; Masclee, A.A.M. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neuro-Gastroenterol. Motil. 2009, 21, 1239–1249. [Google Scholar] [CrossRef]
- Ganguly, S.; Coon, S.L.; Klein, D.C. Control of melatonin synthesis in the mammalian pineal gland: The critical role of serotonin acetylation. Cell Tissue Res. 2002, 309, 127–137. [Google Scholar] [CrossRef]
- Hoyer, D.; Clarke, D.E.; Fozard, J.R.; Hartig, P.R.; Martin, G.R.; Mylecharane, E.J.; Saxena, P.R.; Humphrey, P.P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Am. Soc. Pharmacol. Exp. Ther. 1994, 46, 157–203. [Google Scholar]
- Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev. 2008, 108, 1614–1641. [Google Scholar] [CrossRef] [PubMed]
- Huether, G.; Kochen, W.; Simat, T.J.; Steinhart, H. (Eds.) Tryptophan, Serotonin, and Melatonin. Basic Aspects and Applications; Springer: New York, NY, USA, 1999. [Google Scholar]
- Siegel, G.J.; Agranoff, B.W.; Albers, R.W.; Fisher, S.K.; Uhler, M.D. (Eds.) Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Lippincott-Raven: Philadelphia, PA, USA, 1999. [Google Scholar]
- Khoshnevisan, K.; Honarvarfard, E.; Torabi, F.; Maleki, H.; Baharifar, H.; Faridbod, F.; Larijani, B.; Khorramizadeh, M.R. Electrochemical Detection of Serotonin: A New Approach. Clin. Chim. Acta 2020, 501, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A.; Refaat, I.H. Spectrophotometric analysis of selective serotonin reuptake inhibitors based on formation of charge-transfer complexes with tetracyanoquinodimethane and chloranilic acid. J. AOAC Int. 2006, 89, 236–333. [Google Scholar] [CrossRef] [Green Version]
- Bottiglieri, T.; Lim, C.K.; Peters, T.J. Isocratic analysis of 3-methoxy-4-hydroxyphenyl glycol, 5-hydroxyindole-3-acetic acid and 4-hydroxy-3-methoxyphenylacetic acid in cerebrospinal fluid by high-performance liquid chromatography with amperometric detection. J. Chromatogr. 1984, 311, 354–360. [Google Scholar] [CrossRef]
- Brashear, J.; Zeitvogel, C.; Jackson, J.; Flentge, C.; Janulis, L.; Cantrell, L.; Schmidt, B.; Adamczyk, M.; Betebenner, D.; Vaughan, K. Fluorescence polarization immunoassay of urinary 5-hydroxy-3-indoleacetic acid. Clin. Chem. 1989, 35, 355–359. [Google Scholar] [CrossRef]
- He, Q.; Li, M.; Wang, X.; Xia, Z.; Du, Y.; Li, Y.; Wei, L.; Shang, J. A Simple, Efficient and Rapid HPLC–UV Method for the Detection of 5-HT in RIN-14B Cell Extract and Cell Culture Medium. BMC Chem. 2019, 13, 76. [Google Scholar] [CrossRef]
- Ma, L.; Zhao, T.; Zhang, P.; Liu, M.; Shi, H.; Kang, W. Determination of Monoamine Neurotransmitters and Metabolites by High-Performance Liquid Chromatography Based on Ag(III) Complex Chemiluminescence Detection. Anal. Biochem. 2020, 593, 113594. [Google Scholar] [CrossRef]
- Wu, D.; Xie, H.; Lu, H.; Li, W.; Zhang, Q. Sensitive Determination of Norepinephrine, Epinephrine, Dopamine and 5-Hydroxytryptamine by Coupling HPLC with [Ag(HIO6)2]5−-Luminol Chemiluminescence Detection: Sensitive Detection of Monoamine Neurotransmitters by HPLC-CL Method. Biomed. Chromatogr. 2016, 30, 1458–1466. [Google Scholar] [CrossRef]
- Han, S.; Zhang, T.; Li, T.; Kong, L.; Lv, Y.; He, L. A Sensitive HPLC-ECD Method for Detecting Serotonin Released by RBL-2H3 Cells Stimulated by Potential Allergens. Anal. Methods 2015, 7, 8918–8924. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Li, H.; Ge, Q.-M.; Cong, H.; Liu, M.; Tao, Z.; Zhao, J.-L. A Chemo-Sensor Constructed by Nanohybrid of Multifarene[3,3] and RGO for Serotonin Hydrochloride with Dual Response in Both Fluorescence and Voltammetry. Microchem. J. 2020, 158, 105145. [Google Scholar] [CrossRef]
- Sha, Q.; Sun, B.; Yi, C.; Guan, R.; Fei, J.; Hu, Z.; Liu, B.; Liu, X. A Fluorescence Turn-on Biosensor Based on Transferrin Encapsulated Gold Nanoclusters for 5-Hydroxytryptamine Detection. Sens. Actuators B Chem. 2019, 294, 177–184. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, B.; Lu, X. Mn2+ Doped ZnS QDs Modified Fluorescence Sensor Based on Molecularly Imprinted Polymer/Sol-Gel Chemistry for Detection of Serotonin. Talanta 2018, 190, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A.; Francis, K.A.; Patel, J.; Jha, S.K.; Basu, S. A Decoupler-Free Simple Paper Microchip Capillary Electrophoresis Device for Simultaneous Detection of Dopamine, Epinephrine and Serotonin. RSC Adv. 2020, 10, 25487–25495. [Google Scholar] [CrossRef]
- Piešťanský, J.; Maráková, K.; Mikuš, P. Two-Dimensional Capillary Electrophoresis with On-Line Sample Preparation and Cyclodextrin Separation Environment for Direct Determination of Serotonin in Human Urine. Molecules 2017, 22, 1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhao, Y.; Huang, J.; Zhao, S. Simultaneous Quantification of 5-Hydroxyindoleacetic Acid and 5-Hydroxytryptamine by Capillary Electrophoresis with Quantum Dot and Horseradish Peroxidase Enhanced Chemiluminescence Detection. J. Chromatogr. B 2014, 967, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-M.; Ren, J.; Liu, H.-Q.; Wang, Y.-L.; Xu, Z.-Q. Separation and Detection of Neurotransmitter-related Substances in Urine Sample by Capillary Electrophoresis. Chem. J. Chin. Univ. 2013, 34, 2699–2703. [Google Scholar]
- Zinellu, A.; Sotgia, S.; Deiana, L.; Carru, C. Reverse Injection Capillary Electrophoresis UV Detection for Serotonin Quantification in Human Whole Blood. J. Chromatogr. B 2012, 895–896, 182–185. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Application of Voltammetric E-Tongue for the Detection of Ammonia and Putrescine in Beef Products. Sens. Actuators B Chem. 2016, 234, 371–379. [Google Scholar] [CrossRef]
- Ganesana, M.; Lee, S.T.; Wang, Y.; Venton, B.J. Analytical Techniques in Neuroscience: Recent Advances in Imaging, Separation, and Electrochemical Methods. Anal. Chem. 2017, 89, 314–341. [Google Scholar] [CrossRef] [Green Version]
- Muratova, I.S.; Kartsova, L.A.; Mikhelson, K.N. Voltammetric vs. Potentiometric Sensing of Dopamine: Advantages and Disadvantages, Novel Cell Designs, Fundamental Limitations and Promising Options. Sens. Actuators B Chem. 2015, 207, 900–906. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Anal. Lett. 2001, 34, 635–659. [Google Scholar] [CrossRef] [Green Version]
- Fahmy Taha, M.H.; Ashraf, H.; Caesarendra, W. A Brief Description of Cyclic Voltammetry Transducer-Based Non-Enzymatic Glucose Biosensor Using Synthesized Graphene Electrodes. ASI 2020, 3, 32. [Google Scholar] [CrossRef]
- Banerjee, S.; McCracken, S.; Hossain, M.F.; Slaughter, G. Electrochemical Detection of Neurotransmitters. Biosensors 2020, 10, 101. [Google Scholar] [CrossRef] [PubMed]
- Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. [Google Scholar] [CrossRef]
- Vilas-Boas, Â.; Valderrama, P.; Fontes, N.; Geraldo, D.; Bento, F. Evaluation of Total Polyphenol Content of Wines by Means of Voltammetric Techniques: Cyclic Voltammetry vs Differential Pulse Voltammetry. Food Chem. 2019, 276, 719–725. [Google Scholar] [CrossRef]
- Mirceski, V.; Skrzypek, S.; Stojanov, L. Square-Wave Voltammetry. ChemTexts 2018, 4, 17. [Google Scholar] [CrossRef]
- Scott, K. Electrochemical Principles and Characterization of Bioelectrochemical Systems. In Microbial Electrochemical and Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2016; pp. 29–66. [Google Scholar]
- Bounegru, A.V.; Apetrei, C. Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020, 10, 680. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. A Review on Electrochemical Sensors and Biosensors Used in Phenylalanine Electroanalysis. Sensors 2020, 20, 2496. [Google Scholar] [CrossRef]
- Bandaru, P.R. Electrical Properties and Applications of Carbon Nanotube Structures. J. Nanosci. Nanotechnol. 2007, 7, 1239–1267. [Google Scholar] [CrossRef]
- Chapin, A.A.; Rajasekaran, P.R.; Quan, D.N.; Hu, L.; Herberholz, J.; Bentley, W.E.; Ghodssi, R. Electrochemical Measurement of Serotonin by Au-CNT Electrodes Fabricated on Microporous Cell Culture Membranes. Microsyst. Nanoeng. 2020, 6, 90. [Google Scholar] [CrossRef]
- Uwaya, G.E.; Fayemi, O.E. Electrochemical Detection of Serotonin in Banana at Green Mediated PPy/Fe3O4NPs Nanocomposites Modified Electrodes. Sens. Bio-Sens. Res. 2020, 28, 100338. [Google Scholar] [CrossRef]
- Ghanbari, K.; Bonyadi, S. An Electrochemical Sensor Based on Pt Nanoparticles Decorated Over-Oxidized Polypyrrole/Reduced Graphene Oxide Nanocomposite for Simultaneous Determination of Two Neurotransmitters Dopamine and 5-Hydroxy Tryptamine in the Presence of Ascorbic Acid. Int. J. Polym. Anal. Charact. 2020, 25, 105–125. [Google Scholar] [CrossRef]
- Mendoza, A.; Asrat, T.; Liu, F.; Wonnenberg, P.; Zestos, A.G. Carbon Nanotube Yarn Microelectrodes Promote High Temporal Measurements of Serotonin Using Fast Scan Cyclic Voltammetry. Sensors 2020, 20, 1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, V.; Raj, M.; Goyal, R.N. Comparison of Different Unmodified and Nano-Material Modified Sensors for the Ultrasensitive Determination of Serotonin. J. Electrochem. Soc. 2020, 167, 027539. [Google Scholar] [CrossRef]
- Ramos, M.M.V.; Carvalho, J.H.S.; de Oliveira, P.R.; Janegitz, B.C. Determination of Serotonin by Using a Thin Film Containing Graphite, Nanodiamonds and Gold Nanoparticles Anchored in Casein. Measurement 2020, 149, 106979. [Google Scholar] [CrossRef]
- Gorduk, O. Differential Pulse Voltammetric Determination of Serotonin Using an Acid-Activated Multiwalled Carbon Nanotube—Over-Oxidized Poly(3,4-Ethylenedioxythiophene) Modified Pencil Graphite Electrode. Anal. Lett. 2020, 53, 1034–1052. [Google Scholar] [CrossRef]
- Atta, N.F.; Ahmed, Y.M.; Galal, A. Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub-nano-sensing of Serotonin in Human Serum. Electroanalysis 2019, 31, 1204–1214. [Google Scholar] [CrossRef]
- Li, Y.; Ji, Y.; Ren, B.; Jia, L.; Ma, G.; Liu, X. Carboxyl-Functionalized Mesoporous Molecular Sieve/Colloidal Gold Modified Nano-Carbon Ionic Liquid Paste Electrode for Electrochemical Determination of Serotonin. Mater. Res. Bull. 2019, 109, 240–245. [Google Scholar] [CrossRef]
- Koluaçık, E.; Karabiberoğlu, Ş.U.; Dursun, Z. Electrochemical Determination of Serotonin Using Pre-treated Multi-walled Carbon Nanotube-polyaniline Composite Electrode. Electroanalysis 2018, 30, 2977–2987. [Google Scholar] [CrossRef]
- Liu, Z.; Jin, M.; Cao, J.; Niu, R.; Li, P.; Zhou, G.; Yu, Y.; van den Berg, A.; Shui, L. Electrochemical Sensor Integrated Microfluidic Device for Sensitive and Simultaneous Quantification of Dopamine and 5-Hydroxytryptamine. Sens. Actuators B Chem. 2018, 273, 873–883. [Google Scholar] [CrossRef]
- Fredj, Z.; Ali, M.; Singh, B.; Dempsey, E. Simultaneous Voltammetric Detection of 5-Hydroxyindole-3-Acetic Acid and 5-Hydroxytryptamine Using a Glassy Carbon Electrode Modified with Conducting Polymer and Platinised Carbon Nanofibers. Microchim. Acta 2018, 185, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zeng, Y.; Tang, C.; Zhu, X.; Lu, X.; Liu, L.; Chen, Z.; Li, L. Voltammetric Determination of 5-Hydroxytryptamine Based on the Use of Platinum Nanoparticles Coated with Molecularly Imprinted Silica. Microchim. Acta 2018, 185, 219. [Google Scholar] [CrossRef] [PubMed]
- Bonetto, M.C.; Muñoz, F.F.; Diz, V.E.; Sacco, N.J.; Cortón, E. Fused and Unzipped Carbon Nanotubes, Electrochemically Treated, for Selective Determination of Dopamine and Serotonin. Electrochim. Acta 2018, 283, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Li, H.; Li, M.; Li, C.; Dai, H.; Sun, D.; Yang, B. Electrodeposition Synthesis of a NiO/CNT/PEDOT Composite for Simultaneous Detection of Dopamine, Serotonin, and Tryptophan. Sens. Actuators B: Chem. 2018, 259, 433–442. [Google Scholar] [CrossRef]
- Kumar, N.; Rosy; Goyal, R.N. Palladium Nano Particles Decorated Multi-Walled Carbon Nanotubes Modified Sensor for the Determination of 5-Hydroxytryptophan in Biological Fluids. Sens. Actuators B Chem. 2017, 239, 1060–1068. [Google Scholar] [CrossRef]
- Ran, G.; Chen, X.; Xia, Y. Electrochemical Detection of Serotonin Based on a Poly(Bromocresol Green) Film and Fe3O4 Nanoparticles in a Chitosan Matrix. RSC Adv. 2017, 7, 1847–1851. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.; Fagan-Murphy, A.; MacEachern, S.J.; Covill, D.; Patel, B.A. Electrochemical Fecal Pellet Sensor for Simultaneous Real-Time Ex Vivo Detection of Colonic Serotonin Signalling and Motility. Sci. Rep. 2016, 6, 23442. [Google Scholar] [CrossRef] [Green Version]
- Ran, G.; Chen, C.; Gu, C. Serotonin Sensor Based on a Glassy Carbon Electrode Modified with Multiwalled Carbon Nanotubes, Chitosan and Poly(p-Aminobenzenesulfonate). Microchim. Acta 2015, 182, 1323–1328. [Google Scholar] [CrossRef]
- Liu, P.; Dong, M.; Lu, J.; Guo, H.; Lu, X.; Liu, X. Simultaneous Determination of 5-Hydroxytryptamine and Dopamine Using Ionic Liquid Functionalized Graphene. Ionics 2015, 21, 1111–1119. [Google Scholar] [CrossRef]
- Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A. Development of a simple and rapid solid phase microextraction-gas chromatography–triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal. Chim. Acta 2014, 810, 17–24. [Google Scholar] [CrossRef]
- Satyanarayana, M.; Reddy, K.K.; Gobi, K.V. Nanobiocomposite Based Electrochemical Sensor for Sensitive Determination of Serotonin in Presence of Dopamine, Ascorbic Acid and Uric Acid In Vitro. Electroanalysis 2014, 26, 2365–2372. [Google Scholar] [CrossRef]
- Fagan-Murphy, A.; Patel, B.A. Compressed Multiwall Carbon Nanotube Composite Electrodes Provide Enhanced Electroanalytical Performance for Determination of Serotonin. Electrochim. Acta 2014, 138, 392–399. [Google Scholar] [CrossRef] [Green Version]
- Cesarino, I.; Galesco, H.V.; Machado, S.A.S. Determination of Serotonin on Platinum Electrode Modified with Carbon Nanotubes/Polypyrrole/Silver Nanoparticles Nanohybrid. Mater. Sci. Eng. C 2014, 40, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, A.; Noori, A. A Cyclodextrin Host–Guest Recognition Approach to an Electrochemical Sensor for Simultaneous Quantification of Serotonin and Dopamine. Biosens. Bioelectron. 2011, 26, 4674–4680. [Google Scholar] [CrossRef] [PubMed]
- Swamy, B.E.K.; Venton, B.J. Carbon Nanotube-Modified Microelectrodes for Simultaneous Detection of Dopamine and Serotonin in Vivo. Analyst 2007, 132, 876. [Google Scholar] [CrossRef] [PubMed]
- Njagi, J.; Ball, M.; Best, M.; Kenneth, N. Wallace and Silvana Andreescu, Electrochemical Quantification of Serotonin in the Live Embryonic Zebrafish Intestine. Anal. Chem. 2010, 82, 1822–1830. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Fei, J.; Hou, J.; Zhang, Q. Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim. Acta 2009, 165, 373–379. [Google Scholar] [CrossRef]
- Güell, A.G.; Meadows, K.E.; Unwin, P.R.; Macpherson, J.V. Trace Voltammetric Detection of Serotonin at Carbon Electrodes: Comparison of Glassy Carbon, Boron Doped Diamond and Carbon Nanotube Network Electrodes. Phys. Chem. Chem. Phys. 2010, 12, 10108–10114. [Google Scholar] [CrossRef]
- Rodríguez, M.C.; Rubianes, M.D.; Rivas, G.A. Highly Selective Determination of Dopamine in the Presence of Ascorbic Acid and Serotonin at Glassy Carbon Electrodes Modified with Carbon Nanotubes Dispersed in Polyethylenimine. J. Nanosci. Nanotechnol. 2008, 8, 6003–6009. [Google Scholar] [CrossRef]
- Goyal, R.N.; Koyama, M.; Gupta, V.K.; Singh, S.P.; Sharma, R.A. Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sens. Actuators B Chem. 2008, 134, 816–821. [Google Scholar] [CrossRef]
- Li, J.; Lin, X. Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sens. Actuators B 2007, 124, 486–493. [Google Scholar] [CrossRef]
- Wei, J.; He, J.-B.; Cao, S.-Q.; Zhu, Y.-W.; Wang, Y.; Hang, G.-P. Enhanced Sensing of Ascorbic Acid, Dopamine and Serotonin at Solid Carbon Paste Electrode with a Nonionic Polymer Film. Talanta 2010, 83, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Cernat, A.; Ştefan, G.; Tertis, M.; Cristea, C.; Simon, I. An overview of the detection of serotonin and dopamine with graphene-based sensors. Bioelectrochemistry 2020, 136, 107620. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Singh, N.; Tomar, V.; Chandra, R. A review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron. 2018, 107, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Nehru, L.; Chinnathambi, S.; Fazio, E.; Neri, F.; Leonardi, S.G.; Bonavita, A.; Neri, G. Electrochemical Sensing of Serotonin by a Modified MnO2-Graphene Electrode. Biosensors 2020, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullapura Matt, S.; Shivanna, M.; Manjunath, S.; Siddalinganahalli, M.; Siddalingappa, D.M. Electrochemical Detection of Serotonin Using T-ZrO2 Nanoparticles Modified Carbon Paste Electrode. J. Electrochem. Soc. 2020, 167, 155512. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly Sensitive and Selective Electrochemical Paper-Based Device Using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@SiO2 for Serotonin Determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef]
- Mazloum-Ardakani, M.; Khoshroo, A. High Sensitive Sensor Based on Functionalized Carbon Nanotube/Ionic Liquid Nanocomposite for Simultaneous Determination of Norepinephrine and Serotonin. J. Electroanal. Chem. 2014, 717–718, 17–23. [Google Scholar] [CrossRef]
- Babaei, A.; Taheri, A.R. Nafion/Ni(OH)2 Nanoparticles-Carbon Nanotube Composite Modified Glassy Carbon Electrode as a Sensor for Simultaneous Determination of Dopamine and Serotonin in the Presence of Ascorbic Acid. Sens. Actuators B Chem. 2013, 176, 543–551. [Google Scholar] [CrossRef]
- Reddaiah, K.; Rao, K.S.V.K.; Reddy, T.M. Electrochemical detection of serotonin in human serum sample and simultaneous resolution in presence of epinephrine. Anal. Bioanal. Electrochem. 2018, 10, 175–191. [Google Scholar]
- Shan, S.J.; Zhao, Y.; Tang, H.; Cui, F.Y. A Mini-Review of Carbonaceous Nanomaterials for Removal of Contaminants from Wastewater. IOP Conf. Ser. Earth Environ. Sci. 2017, 68, 012003. [Google Scholar] [CrossRef]
- Bounegru, A.; Apetrei, C. Voltammetric Sensors Based on Nanomaterials for Detection of Caffeic Acid in Food Supplements. Chemosensors 2020, 8, 41. [Google Scholar] [CrossRef]
- Khan, Z.H.; Liu, X.; Tang, Y.; Zhu, J.; Hu, W.; Liu, X. A Glassy Carbon Electrode Modified with a Composite Consisting of Gold Nanoparticle, Reduced Graphene Oxide and Poly(L-Arginine) for Simultaneous Voltammetric Determination of Dopamine, Serotonin and L-Tryptophan. Microchim. Acta 2018, 185, 439. [Google Scholar] [CrossRef] [PubMed]
- Sadanandhan, N.K.; Cheriyathuchenaaramvalli, M.; Devaki, S.J.; Menon, A.R. PEDOT-Reduced Graphene Oxide-Silver Hybrid Nanocomposite Modified Transducer for the Detection of Serotonin. J. Electroanal. Chem. 2017, 794, 244–253. [Google Scholar] [CrossRef]
- Selvam, S.P.; Yun, K. A Self-Assembled Silver Chalcogenide Electrochemical Sensor Based on RGO-Ag2Se for Highly Selective Detection of Serotonin. Sens. Actuators B Chem. 2020, 302, 127161. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Tao, L.; Min, Q.; Xiang, J.; Wang, Q.; Xie, J.; Yue, Y.; Wu, S.; Li, X.; et al. A Disposable Electrochemical Sensor for Simultaneous Determination of Norepinephrine and Serotonin in Rat Cerebrospinal Fluid Based on MWNTs-ZnO/Chitosan Composites Modified Screen-Printed Electrode. Biosens. Bioelectron. 2015, 65, 31–38. [Google Scholar] [CrossRef]
- Wu, W.; Liu, C.; Huang, F.; Li, H.; Wang, Y.; Hong, D.; Wang, S.; Zeng, X. A simple and Novel Electroanalytical Method for Determination of Brain Serotonin Based on the MWNTs/Al2O3/chitosan SPE. Int. J. Electrochem. Sci. 2018, 13, 7129–7140. [Google Scholar] [CrossRef]
- Gupta, P.; Goyal, R.N. Polymelamine Modified Edge Plane Pyrolytic Graphite Sensor for the Electrochemical Assay of Serotonin. Talanta 2014, 120, 17–22. [Google Scholar] [CrossRef]
- Thanh, T.D.; Balamurugan, J.; Hien, H.V.; Kim, N.H.; Lee, J.H. A Novel Sensitive Sensor for Serotonin Based on High-Quality of AuAg Nanoalloy Encapsulated Graphene Electrocatalyst. Biosens. Bioelectron. 2017, 96, 186–193. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A.; Aydar, S. Square-wave adsorptive stripping voltammetric determination of serotonin at glassy carbon electrode modified with Safranine O. Int. J. Electrochem. Sci. 2014, 9, 2922–2933. [Google Scholar]
- Gong, J.-M.; Lin, X.-Q. Electrochemical Determination of Serotonin and the Competitive Adsorption with Dopamine at 5,5-Ditetradecyl-2-(2-Trimethylammonioethyl)-1,3-Dioxane Bromide Lipid Film Modified by Glassy Carbon Electrode. Anal. Sci. 2004, 20, 905–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revin, S.B.; John, S.A. Electrochemical Sensor for Neurotransmitters at Physiological PH Using a Heterocyclic Conducting Polymer Modified Electrode. Analyst 2012, 137, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wu, Y.; Lu, K.; Ye, B. A Simple but Highly Sensitive and Selective Calixarene-Based Voltammetric Sensor for Serotonin. Electrochim. Acta 2013, 87, 756–762. [Google Scholar] [CrossRef]
- Selvarajan, S.; Suganthi, A.; Rajarajan, M. A Novel Highly Selective and Sensitive Detection of Serotonin Based on Ag/Polypyrrole/Cu2O Nanocomposite Modified Glassy Carbon Electrode. Ultrason. Sonochem. 2018, 44, 319–330. [Google Scholar] [CrossRef]
- Lavanya, N.; Sekar, C. SnO2-SnS2 Nanocomposite as Electrocatalyst for Simultaneous Determination of Depression Biomarkers Serotonin and Tryptophan. J. Electroanal. Chem. 2019, 840, 1–9. [Google Scholar]
- Samie, H.A.; Arvand, M. RuO2 Nanowires on Electrospun CeO2-Au Nanofibers/Functionalized Carbon Nanotubes/Graphite Oxide Nanocomposite Modified Screen-Printed Carbon Electrode for Simultaneous Determination of Serotonin, Dopamine and Ascorbic Acid. J. Alloys Compd. 2019, 782, 824–836. [Google Scholar] [CrossRef]
- Sarada, B.V.; Rao, T.N.; Tryk, D.A.; Fujishima, A. Electrochemical Oxidation of Histamine and Serotonin at Highly Boron-Doped Diamond Electrodes. Anal. Chem. 2000, 72, 1632–1638. [Google Scholar] [CrossRef]
- Zhou, J.; Sheng, M.; Jiang, X.; Wu, G.; Gao, F. Simultaneous Determination of Dopamine, Serotonin and Ascorbic Acid at a Glassy Carbon Electrode Modified with Carbon-Spheres. Sensors 2013, 13, 14029–14040. [Google Scholar] [CrossRef]
- Atta, N.F.; Galal, A.; Ahmed, R.A. Simultaneous Determination of Catecholamines and Serotonin on Poly(3,4-Ethylene Dioxythiophene) Modified Pt Electrode in Presence of Sodium Dodecyl Sulfate. J. Electrochem. Soc. 2011, 158, F52. [Google Scholar] [CrossRef]
- Liu, M.; Hu, J.; Ma, T.; Wang, S.; Ding, H. Application of a Disposable Screen-Printed Electrode to Depression Diagnosis for Laboratory Rats Based on Blood Serotonin Detection. Anal. Sci. 2011, 27, 839. [Google Scholar] [CrossRef] [Green Version]
No | Modifying Material | Detection Technique | Linear Range | LOD | Sensitivity | Real Sample | Interference Studied | Reference |
---|---|---|---|---|---|---|---|---|
1 | Glassy carbon electrode modified with carbon nanotubes with multiple walls functionalized with benzofuran derivatives and ionic liquid IL-DC-CNT/GC | DPV | 5–900 µM | 2 µM | 0.073 A/M | human blood serum | L-lysine, glucose, lactose, fructose, sucrose, L-asparagine, L-glutamic acid, L-glycine, L-cysteine, D-penicillamin, L-tryptophan, uric acid and ascorbic acid | [102] |
2 | Glassy carbon electrode modified with carbon nanotubes with multiple walls and Nafion/Ni(OH)2 Nafion/Ni(OH)2-MWNTs/GCE | DPV | 0.008–10 µM | 0.003 µM | 4.991 A/M | human blood serum | uric acid, ascorbic acid. 3,4-dihydroxyphenylacetic acid, citric acid, glutamic acid, glucose | [103] |
3 | Glassy carbon electrode modified with poly-alizarin red S and multi-wall carbon nanotubes poly-AzrS/MWCNTs/GCE | CV, DPV, EIS | 0.5–11 µM | 0.18 µM | 0.364 A/M | Human serum | epinephrine | [104] |
4 | Glassy carbon electrode modified with poly(L-arginine), reduced graphene oxide and gold nanoparticles GCE/P-Arg/ErGO/Au NP | DPV | 10–500 nM, 1–10 µM | 30 nM | 5.5758 A/M 1.3436 A/M | urine | glucose, urea, citric acid | [107] |
5 | Glassy carbon electrode modified with PEDOT-reduced graphene oxide and silver nanoparticles PEDOTNTs/rGO/Ag NPs/GCE | CV, DPV, CA | 1 nM–0.5 mM | 0.1 nM | 14.304 µA·mM−1/cm2 | bovine assayed multi-sera | ascorbic acid, uric acid, tyrosine | [108] |
6 | Glassy carbon electrode modified with silver selenide self-assembled on reduced grapheme rGO-Ag2Se/GCE | CV, EIS | 0.1–15 µM | 29.6 nM | 0.5133 A/M | Alzheimer’s patient’s serum | ascorbic acid, glucose | [109] |
7 | Screen-printed electrode modified with a mixture of multi-wall nanotubes, zinc oxide and chitosan MWNTs-ZnO/chitosan/SPE | CV, SWV | 0.05–1 µM | 0.01 µM | 1.892 A/M | rat cerebrospinal fluid | ascorbic acid, norepinephrine | [110] |
8 | Screen-printed electrode modified with a mixture of multi-wall nanotubes, aluminium oxide and chitosan MWNTs-Al2O3/chitosan/SPE | SWV | 0.01–1 µM | 0.005 µM | 3.76987 A/M | rat brain | glucose, citric acid, ascorbic acid, dopamine | [111] |
9 | Screen-printed electrode modified with polypyrrole, green iron oxide nanoparticles SPCE-PPy-Fe3O4NPs | CV, SWV | 0.007–0.1 µM | 0.020 µM | 6.36066 µA/μM | banana | ascorbic acid | [65] |
10 | Polymelamine modified edge plane pyrolitic graphite sensor EPPGS | CV, SWV, EIS | 0.1–100 µM | 30 nM | 0:088 µA/μM | urine | dopamine, serotonin, xanthine, hypoxanthine | [112] |
11 | Graphene encapsulated in an alloy of AuAg AuAg-GR | CV | 2.7 nM–4.82 µM | 1.6 nM | 0.766 A·μM−1 ·cm−2 | human serum | ascorbic acid, uric acid, glucose | [113] |
12 | Nanocomposite material SnO2-SnS2 | CV, SWV, EIS | 0.1–700 µM | 45 nM | 3.179 µA/μM | human blood | tryptophan, ascorbic acid | [119] |
13 | Hybrid structure CeO2 nanofibers and RuO2 nanowires RuO2NWs CeO2NFs | DPV | 0.01–150 µM | 2.4 nM | 4.0642 µA/μM | human cerebrospinal fluid, serum, blood plasma | Glucose, L-tryptophan, methionine, leucine, cysteine, glycine, folic acid, alanine, arginine, tyrosine, caffeine, L-dopa, uric acid | [120] |
14 | 3-amino-5-mercapto-1, 2, 4-triazole modified GCE AMTA/GCE | CV, DPV | 0.001–50 µM | 0.0132 nM | 0.05 µA/μM | blood plasma | urea, glucose, oxalate | [116] |
15 | Boron-doped diamond thin-film electrode | CV, HV | 0.01–50 µM | 10 nM | 25 nA/μM | - | histamine, 5-hydroxyindoleacetic acid | [121] |
16 | Carbon spheres/GCE | DPV | 40–750 µM | 700 nM | 0.09 µA/mM | pharmaceutics | uric acid, oxalate, glucose, L-cysteine, glutathione, folic acid, levodopa | [122] |
17 | PEDOT modified platinum electrode | CV, LSV | 20–100 µM | 71 nM | - | urine | ascorbic acid, glucose | [123] |
18 | Nafion membrane-coated colloidal gold SPE | DPV | 0.05–1.0 µM | 10.0 nM | 0.1495 µA/μM | platelet-rich plasma | dopamine, uric acid, ascorbic acid | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dăscălescu, D.; Apetrei, C. Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review. Chemosensors 2021, 9, 14. https://doi.org/10.3390/chemosensors9010014
Dăscălescu D, Apetrei C. Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review. Chemosensors. 2021; 9(1):14. https://doi.org/10.3390/chemosensors9010014
Chicago/Turabian StyleDăscălescu, Dorin, and Constantin Apetrei. 2021. "Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review" Chemosensors 9, no. 1: 14. https://doi.org/10.3390/chemosensors9010014
APA StyleDăscălescu, D., & Apetrei, C. (2021). Nanomaterials Based Electrochemical Sensors for Serotonin Detection: A Review. Chemosensors, 9(1), 14. https://doi.org/10.3390/chemosensors9010014