Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Electrochemical Cell of the Microscale Interface
Cell (1) | |
Cell (2) |
3. Results and Discussion
3.1. Electrochemical Behavior at the Micro-ITIES Array
3.2. Thermodynamic Data of Transfer at the Microinterface
3.3. Differential Pulse Voltammetric (DPV) Analysis at the Micro-ITIES Array
3.4. Determination of Dibucaine in Artificial Serum at the Micro-ITIES Array
3.5. Differential Pulse Voltammetry at the Micro-ITIES Array
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Girault, H.H. Charge Transfer across Liquid—Liquid Interfaces. In Modern Aspects of Electrochemistry; Springer: Boston, MA, USA, 1993; pp. 1–62. [Google Scholar]
- Samec, Z. Electrochemistry at the interface between two immiscible electrolyte solutions (IUPAC Technical Report). Pure Appl. Chem. 2004, 76, 2147–2180. [Google Scholar] [CrossRef]
- Malkia, A.; Liljeroth, P.; Kontturi, K. Membrane activity of ionisable drugs—A task for liquid–liquid electrochemistry? Electro-chem. Commun. 2003, 5, 473–479. [Google Scholar] [CrossRef]
- Arrigan, D.; Herzog, G.; Scanlon, M.D.; Strutwolf, J.; Bard, A.; Zoski, C. Bioanalytical applications of electrochemistry at liquid-liquid microinterfaces. In Electroanalytical Chemistry: A Series of Advances; CRC Press: Boca Raton, FL, USA, 2013; Volume 25, pp. 105–178. [Google Scholar]
- Arrigan, D.W.M. Bioanalytical Detection Based on Electrochemistry at Interfaces between Immiscible Liquids. Anal. Lett. 2008, 41, 3233–3252. [Google Scholar] [CrossRef]
- Foster, A.H.; Carlson, B.M. Myotoxicity of local anesthetics and regeneration of the damaged muscle fibers. Anesth. Analg. 1980, 59, 727–736. [Google Scholar] [CrossRef]
- Dayan, P.S.; Litovitz, T.L.; Crouch, B.I.; Scalzo, A.J.; Klein, B.L. Fatal accidental dibucaine poisoning in children. Ann. Emerg. Med. 1996, 28, 442–445. [Google Scholar] [CrossRef]
- Elsayed, M.M. Rapid determination of cinchocaine in skin by high-performance liquid chromatography. Biomed. Chromatogr. 2007, 21, 491–496. [Google Scholar] [CrossRef]
- Izumoto, S.-I.; Machida, Y.; Nishi, H.; Nakamura, K.; Nakai, H.; Sato, T. Chromatography of crotamiton and its application to the determination of active ingredients in ointments. J. Pharm. Biomed. Anal. 1997, 15, 1457–1466. [Google Scholar] [CrossRef]
- Zoest, A.R.; Wanwimolruk, S.; Hung, C.T. Simple High-Performance Liquid Chromatographic Method for the Analysis of Quinine in Human Plasma without Extraction. J. Liq. Chromatogr. 1990, 13, 3481–3491. [Google Scholar] [CrossRef]
- Šatínský, D.; Chocholouš, P.; Válová, O.; Hanusová, L.; Solich, P. Two-column sequential injection chromatography for fast iso-cratic separation of two analytes of greatly differing chemical properties. Talanta 2013, 114, 311–317. [Google Scholar] [CrossRef]
- Cherkaoui, S.; Veuthey, J.-L. Micellar and microemulsion electrokinetic chromatography of selected anesthetic drugs. J. Sep. Sci. 2002, 25, 1073–1078. [Google Scholar] [CrossRef]
- Culea, M.; Palibroda, N.; Moldovan, Z.; Abraham, A.D.; Frangopol, P.T. Gas chromatographic study of some local anesthetics. Chromatographia 1989, 28, 24–26. [Google Scholar] [CrossRef]
- Ohshima, T.; Takayasu, T. Simultaneous determination of local anesthetics including ester-type anesthetics in human plasma and urine by gas chromatography–mass spectrometry with solid-phase extraction. J. Chromatogr. B Biomed. Sci. Appl. 1999, 726, 185–194. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Zawilla, N.H.; El-Anwar, F.M.; El-Moghazy Aly, S.M. Column and thin-layer chromatographic methods for the simultaneous determination of acediasulfone in the presence of cinchocaine, and cefuroxime in the presence of its hydrolyt-ic degradation products. J. AOAC Int. 2007, 90, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essig, S.; Kovar, K.A. Fluorimetric determination of cinchocaine in a pharmaceutical drug by scanning and video densitome-try. Chromatographia 2001, 53, 321–322. [Google Scholar] [CrossRef]
- Sakai, T. Simultaneous spectrophotometric determination of dibucaine and chlorpheniramine maleate in pharmaceuticals using thermochromism of ion associates. Analyst 1982, 107, 640–646. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; Youssef, A.F.; Awady, M.A. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry. Il Farm. 2005, 60, 419–424. [Google Scholar] [CrossRef]
- Shubietah, R.M.; Zuhri, A.Z.A.; Khalid, B.A. Ion-pair Spectrophotometric Determination of Dibucaine. Sci Pharm 2000, 68, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Marcote, M.S.; Mochón, M.C.; Sánchez, J.J.; Pérez, A.G. Electrochemical reduction at a mercury electrode and differen-tial-pulse polarographic determination of dibucaine in pharmaceutical ointments. Analyst 1996, 121, 681–685. [Google Scholar] [CrossRef]
- Elqudaby, H.M.; Hendawy, H.A.; Souaya, E.R.; Mohamed, G.G.; Eldin, G.M. Sensitive electrochemical behavior of cinchocaine hy-drochloride at activated glassy carbon and graphite pencil electrodes. Int. J. Pharm. Anal. 2015, 40, 1269–1284. [Google Scholar]
- Chiniforoshan, H.; Tabrizi, L.; Pourrahim, N. A new Ag-nanoparticle with 4-nitro phenylcyanamide ligand: Synthesis charac-terization and application to the detection of dibucaine, naphazoline, dopamine, and acetaminophen. J. Appl. Electrochem. 2015, 45, 197–207. [Google Scholar] [CrossRef]
- Komorsky-Lovrić, Š.; Vukašinović, N.; Penovski, R. Voltammetric Determination of Microparticles of Some Local Anesthetics and Antithusics Immobilized on the Graphite Electrode. Electroanalysis 2003, 15, 544–547. [Google Scholar] [CrossRef]
- Arai, K.; Ohsawa, M.; Kusu, F.; Takamura, K. Drug ion transfer across an oil—water interface and pharmacological activity. Bio-Electrochem. Bioenerg. 1993, 31, 65–76. [Google Scholar] [CrossRef]
- Kubota, Y.; Katano, H.; Senda, M. Ion-transfer Voltammetry of Local Anesthetics at an Organic Solvent/Water Interface and Pharmacological Activity vs. Ion Partition Coefficient Relationship. Anal. Sci. 2001, 17, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samec, Z.; Langmaier, J.; Trojánek, A.; Samcová, E.; Malek, J. Transfer of Protonated Anesthetics across the Water|o-Nitrophenyl Octyl Ether Interface: Effect of the Ion Structure on the Transfer Kinetics and Pharmacological Activity. Anal. Sci. 1998, 14, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.A.; Silva, A.F.; Pereira, C.M. Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification. Anal. Chem. 2013, 85, 1582–1590. [Google Scholar] [CrossRef]
- Ortuño, J.A.; Gil, A.; Serna, C.; Molina, A. Voltammetry of some catamphiphilic drugs with solvent polymeric membrane ion sensors. J. Electroanal. Chem. 2007, 605, 157–161. [Google Scholar] [CrossRef]
- Collins, C.J.; Arrigan, D.W.M. Ion-Transfer Voltammetric Determination of the β-Blocker Propranolol in a Physiological Matrix at Silicon Membrane-Based Liquid|Liquid Microinterface Arrays. Anal. Chem. 2009, 81, 2344–2349. [Google Scholar] [CrossRef]
- Sairi, M.; Arrigan, D.W.M. Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta 2015, 132, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Almbrok, E.M.; Yusof, N.A.; Abdullah, J.; Zawawi, R.M. Electrochemical Behavior and Detection of Diclofenac at a Microporous Si3N4 Membrane Modified Water–1,6-dichlorohexane Interface System. Chemosensors 2020, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.J.; Lyons, C.; Strutwolf, J.; Arrigan, D.W.M. Serum-protein effects on the detection of the β-blocker propranolol by ion-transfer voltammetry at a micro-ITIES array. Talanta 2010, 80, 1993–1998. [Google Scholar] [CrossRef]
- Zhao, P.; Zhu, G.; Zhang, W.; Zhang, L.; Liang, Z.; Zhang, Y. Study of multiple binding constants of dexamethasone with human serum albumin by capillary electrophoresis–frontal analysis and multivariate regression. Anal. Bioanal. Chem. 2008, 393, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Mallik, R.; Yoo, M.J.; Chen, S.; Hage, D.S. Studies of verapamil binding to human serum albumin by high-performance affinity chromatography. J. Chromatogr. B 2008, 876, 69–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Huang, Y.; Zhao, R.; Liu, G.; Chen, Y. Determining binding sites of drugs on human serum albumin using FIA-QCM. Biosens. Bioelectron. 2008, 24, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-J.; Liu, Y.; Sun, T.-Q.; Bai, A.-M.; Lü, J.-Q.; Pi, Z.-B. Binding of anti-inflammatory drug cromolyn sodium to bovine serum albumin. Int. J. Biol. Macromol. 2006, 39, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Su, T.J.; Lu, J.R.; Cui, Z.F.; Thomas, R.K. Fouling of ceramic membranes by albumins under dynamic filtration conditions. J. Membr. Sci. 2000, 173, 167–178. [Google Scholar] [CrossRef]
- Fechner, P.; Bleher, O.; Ewald, M.; Freudenberger, K.; Furin, D.; Hilbig, U.; Kolarov, F.; Krieg, K.; Leidner, L.; Markovic, G.; et al. Size does matter! Label-free detection of small molecule–protein interaction. Anal. Bioanal. Chem. 2014, 406, 4033–4051. [Google Scholar] [CrossRef]
- Carter, D.C.; Chang, B.; Ho, J.X.; Keeling, K.; Krishnasami, Z. Preliminary Crystallographic Studies of Four Crystal forms of Serum Albumin. JBIC J. Biol. Inorg. Chem. 1994, 226, 1049–1052. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Liu, Y.; Pi, Z.-B.; Qu, S.-S. Interaction of cromolyn sodium with human serum albumin: A fluorescence quenching study. Bioorg. Med. Chem. 2005, 13, 6609–6614. [Google Scholar] [CrossRef]
- Vanýsek, P.; Sun, Z. Bovine serum albumin adsorption on a water/nitrobenzene interface. Bioelectrochem. Bioenerg. 1990, 23, 177–194. [Google Scholar] [CrossRef]
- Katano, H.; Senda, M. Voltammetry at 1,6-Dichlorohexane|Water Interface. Anal. Sci. 2001, 17, 1027–1029. [Google Scholar] [CrossRef] [Green Version]
- Cretin, M.; Alerm, L.; Bartroli, J.; Fabry, P. Lithium determination in artificial serum using flow injection systems with a selec-tive solid-state tubular electrode based on NASICON membranes. Anal. Chim. Acta 1997, 350, 7–14. [Google Scholar] [CrossRef]
- Makarychev-Mikhailov, S.; Shvarev, A.; Bakker, E. Calcium Pulstrodes with 10-Fold Enhanced Sensitivity for Measurements in the Physiological Concentration Range. Anal. Chem. 2006, 78, 2744–2751. [Google Scholar] [CrossRef] [PubMed]
- Zazpe, R.; Hibert, C.; O’Brien, J.; Lanyon, Y.H.; Arrigan, D.W. Ion-transfer voltammetry at silicon membrane-based arrays of mi-cro-liquid–liquid interfaces. Lab Chip 2007, 7, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Bond, A.M.; Luscombe, D.; Oldham, K.B.; Zoski, C.G. A comparison of the chronoamperometric response at inlaid and recessed disc microelectrodes. J. Electroanal. Chem. Interfacial Electrochem. 1988, 249, 1–14. [Google Scholar] [CrossRef]
- Strutwolf, J.; Scanlon, M.D.; Arrigan, D.W.M. Electrochemical ion transfer across liquid/liquid interfaces confined within solid-state micropore arrays—Simulations and experiments. Analyst 2009, 134, 148–158. [Google Scholar] [CrossRef]
- Osborne, M.; Shao, Y.; Pereira, C.M.; Girault, H.H. Micro-hole interface for the amperometric determination of ionic species in aqueous solutions. J. Electroanal. Chem. 1994, 364, 155–161. [Google Scholar] [CrossRef]
- Avdeef, A. The rise of PAMPA. Expert Opin. Drug Metab. Toxicol. 2005, 1, 325–342. [Google Scholar] [CrossRef]
- Katano, H.; Tatsumi, H.; Senda, M. Ion-transfer voltammetry at 1, 6-dichlorohexane| water and 1, 4-dichlorobutane|water interfaces. Talanta 2004, 63, 185–193. [Google Scholar] [CrossRef]
- Osborne, M.D.; Girault, H.H. Amperometric detection of the ammonium ion by facilitated ion transfer across the interface between two immiscible electrolyte solutions. Electroanalysis 1995, 7, 425–434. [Google Scholar] [CrossRef]
- Lam, H.-T.; Pereira, C.M.; Roussel, C.; Carrupt, P.-A.; Girault, H.H. Immobilized pH Gradient Gel Cell to Study the pH Dependence of Drug Lipophilicity. Anal. Chem. 2006, 78, 1503–1508. [Google Scholar] [CrossRef] [Green Version]
- Ran, Y.; Jain, N.; Yalkowsky, S.H. Prediction of aqueous solubility of organic compounds by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 2001, 41, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Allafchian, A. Potentiometric Sensor for the Determination of Dibucaine in Pharmaceutical Preparations and Electrochemical Study of the Drug with BSA. Bull. Korean Chem. Soc. 2011, 32, 2722–2726. [Google Scholar] [CrossRef] [Green Version]
- Elashery, E.A.S.; Frag, E.Y.; Sleim, A.A.E. Novel and selective potentiometric sensors for Cinchocaine HCl determination in its pure and Co-formulated dosage form: A comparative study of in situ carbon sensors based on dif-ferent ion pairing agents. Measurement 2020, 108549. [Google Scholar] [CrossRef]
- Goh, E.; Lee, H.J. Applications of Electrochemistry at Liquid/Liquid Interfaces for Ionizable Drug Molecule Sensing. Rev. Polarogr. 2016, 62, 77–84. [Google Scholar] [CrossRef] [Green Version]
Parameter | |
---|---|
8.30 ± 0.12 a | |
(V) | −0.077 ± 0.32 |
(kJ mol−1) | −7.4 ± 0.06 |
(ionised) | 1.3 ± 0.02 |
4.4 b | |
/ cm2 s−1 | 3.91 ± 0.2 × 10−6 |
Interface | Detection Method | Linear Range (μM) | LOD (μM) ± SD | Reference |
---|---|---|---|---|
A graphite pencil|Britton–Robinson buffer | DPV SWV | 1.5–18 1–11 | 0.7± 0.05 0.5 ± 0.06 | [21] |
An activated glassy carbon|Britton–Robinson buffer | DPV SWV | 1.3–14 2–28 | 0.4 ± 0.002 0.9 ± 0.003 | [21] |
Silver nanoparticle on glassy carbon electrode | DPV | 18.5–72.2 | 0.002 | [22] |
An ion-selective electrode | Potentiometric | 1–10 | 0.7 | [54] |
In situ carbon paste electrodes | Potentiometric | 10–10,000 | 10 ± 0.14 | [55] |
Water|1,6-DCH | DPV | 4–24 | 0.9 ± 0.06 | This work |
Concentration Added (μM) | Concentration Founded (μM) (n = 5 (± SD)) | Recovery (%) | RSD % (n = 5) |
---|---|---|---|
8 | 7.9 ± 0.23 | 98.8 | 2.94 |
12 | 12.1 ± 0.24 | 100.8 | 2.03 |
16 | 16.01 ± 0.22 | 100.1 | 1.39 |
20 | 18.4 ± 0.4 | 92 | 2.18 |
24 | 24.8 ± 0.4 | 103.3 | 1.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almbrok, E.M.; Yusof, N.A.; Abdullah, J.; Mohd Zawawi, R. Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces. Chemosensors 2021, 9, 15. https://doi.org/10.3390/chemosensors9010015
Almbrok EM, Yusof NA, Abdullah J, Mohd Zawawi R. Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces. Chemosensors. 2021; 9(1):15. https://doi.org/10.3390/chemosensors9010015
Chicago/Turabian StyleAlmbrok, Eissa Mohamed, Nor Azah Yusof, Jaafar Abdullah, and Ruzniza Mohd Zawawi. 2021. "Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces" Chemosensors 9, no. 1: 15. https://doi.org/10.3390/chemosensors9010015
APA StyleAlmbrok, E. M., Yusof, N. A., Abdullah, J., & Mohd Zawawi, R. (2021). Electrochemical Detection of a Local Anesthetic Dibucaine at Arrays of Liquid|Liquid MicroInterfaces. Chemosensors, 9(1), 15. https://doi.org/10.3390/chemosensors9010015