Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Experimental Section
3.2. Real-Time Concentration Measurement
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meyer, P.L.; Sigrist, M.W. Atmospheric Pollution Monitoring Using CO2-Laser Photoacoustic Spectroscopy and Other Techniques. Rev. Sci. Instrum. 1990, 61, 1779–1807. [Google Scholar] [CrossRef]
- Romanak, K.D.; Bennett, P.C.; Yang, C.; Hovorka, S.D. Process-Based Approach to CO2 Leakage Detection by Vadose Zone Gas Monitoring at Geologic CO2 Storage Sites. Geophys. Res. Lett. 2012, 39, 2–7. [Google Scholar] [CrossRef]
- Chen, S.J.; Hovde, D.C.; Peterson, K.A.; Marshall, A.W. Fire Detection Using Smoke and Gas Sensors. Fire Saf. J. 2007, 42, 507–515. [Google Scholar] [CrossRef]
- Mahyuddin, N.; Awbi, H.B. A Review of CO2 Measurement Procedures in Ventilation Research. Int. J. Vent. 2012, 10, 353–370. [Google Scholar] [CrossRef]
- Löwe, H.; Seufert, G.; Raes, F. Comparison of Methods Used within Member States for Estimating CO2 Emissions and Sinks According to UNFCCC and EU Monitoring Mechanism: Forest and Other Wooded Land. Biotechnol. Agron. Soc. Environ. 2000, 4, 315–319. [Google Scholar]
- Molina, A.; Escobar-Barrios, V.; Oliva, J. A Review on Hybrid and Flexible CO2 Gas Sensors. Synth. Met. 2020, 270, 116602. [Google Scholar] [CrossRef]
- Rebber, M.; Willa, C.; Koziej, D. Organic-Inorganic Hybrids for CO2 Sensing, Separation and Conversion. Nanoscale Horizons 2020, 5, 431–453. [Google Scholar] [CrossRef]
- Lin, Y.; Fan, Z. Compositing Strategies to Enhance the Performance of Chemiresistive CO2 Gas Sensors. Mater. Sci. Semicond. Process. 2020, 107, 104820. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.D.; Elgammal, K.; Fan, X.; Lemme, M.C.; Delin, A.; Råsander, M.; Bergqvist, L.; Schröder, S.; Fischer, A.C.; Niklaus, F.; et al. Graphene-Based CO2 Sensing and Its Cross-Sensitivity with Humidity. RSC Adv. 2017, 7, 22329–22339. [Google Scholar] [CrossRef] [Green Version]
- Barkov, P.V.; Glukhova, O.E. Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study. Chemosensors 2021, 9, 84. [Google Scholar] [CrossRef]
- Dan, Y.; Lu, Y.; Kybert, N.J.; Luo, Z.; Johnson, A.T.C. Intrinsic Response of Graphene Vapor Sensors. Nano Lett. 2009, 9, 1472–1475. [Google Scholar] [CrossRef] [Green Version]
- Ly, T.N.; Park, S. Highly Sensitive Ammonia Sensor for Diagnostic Purpose Using Reduced Graphene Oxide and Conductive Polymer. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Gupta Chatterjee, S.; Chatterjee, S.; Ray, A.K.; Chakraborty, A.K. Graphene-Metal Oxide Nanohybrids for Toxic Gas Sensor: A Review. Sensors Actuators B Chem. 2015, 221, 1170–1181. [Google Scholar] [CrossRef]
- Andrić, S.; Tomašević-Ilić, T.; Bošković, M.V.; Sarajlić, M.; Vasiljević-Radović, D.; Smiljanić, M.M.; Spasenović, M. Ultrafast Humidity Sensor Based on Liquid Phase Exfoliated Graphene. Nanotechnology 2021, 32, 025505. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhu, J.; Liang, S.; Bi, H.; Han, Q.; Liu, X.; Wang, X. Reduced Graphene Oxide Decorated with CuO-ZnO Hetero-Junctions: Towards High Selective Gas-Sensing Property to Acetone. J. Mater. Chem. A 2014, 2, 18635–18643. [Google Scholar] [CrossRef]
- Salehi-Khojin, A.; Estrada, D.; Lin, K.Y.; Bae, M.-H.; Xiong, F.; Pop, E.; Masel, R.I. Polycrystalline Graphene Ribbons as Chemiresistors. Adv. Mater. 2012, 24, 53–57. [Google Scholar] [CrossRef]
- Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-Based Long-Period Fiber Grating Surface Plasmon Resonance Sensor for High-Sensitivity Gas Sensing. Sensors 2017, 17, 2. [Google Scholar] [CrossRef]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Graphene Based Sensors and Biosensors. TrAC Trends Anal. Chem. 2017, 91, 53–66. [Google Scholar] [CrossRef]
- Yavari, F.; Koratkar, N. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 2012, 3, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.L.; Guo, Z.; Huang, X.J. Graphene-Based Hybrids for Chemiresistive Gas Sensors. TrAC Trends Anal. Chem. 2015, 68, 37–47. [Google Scholar] [CrossRef]
- Varghese, S.S.; Lonkar, S.; Singh, K.K.; Swaminathan, S.; Abdala, A. Recent Advances in Graphene Based Gas Sensors. Sensors Actuators B Chem. 2015, 218, 160–183. [Google Scholar] [CrossRef]
- Gupta, M.; Hawari, H.F.; Kumar, P.; Burhanudin, Z.A.; Tansu, N. Functionalized Reduced Graphene Oxide Thin Films for Ultrahigh CO2 Gas Sensing Performance at Room Temperature. Nanomaterials 2021, 11, 623. [Google Scholar] [CrossRef]
- Seekaew, Y.; Wongchoosuk, C. A Novel Graphene-Based Electroluminescent Gas Sensor for Carbon Dioxide Detection. Appl. Surf. Sci. 2019, 479, 525–531. [Google Scholar] [CrossRef]
- Muhammad Hafiz, S.; Ritikos, R.; Whitcher, T.J.; Razib, N.M.; Bien, D.C.S.; Chanlek, N.; Nakajima, H.; Saisopa, T.; Songsiriritthigul, P.; Huang, N.M.; et al. A Practical Carbon Dioxide Gas Sensor Using Room-Temperature Hydrogen Plasma Reduced Graphene Oxide. Sensors Actuators B Chem. 2014, 193, 692–700. [Google Scholar] [CrossRef]
- Nemade, K.R.; Waghuley, S.A. Role of Defects Concentration on Optical and Carbon Dioxide Gas Sensing Properties of Sb2O3/Graphene Composites. Opt. Mater. (Amst.) 2014, 36, 712–716. [Google Scholar] [CrossRef]
- Nemade, K.R.; Waghuley, S.A. Highly Responsive Carbon Dioxide Sensing by Graphene/Al2O 3 Quantum Dots Composites at Low Operable Temperature. Indian J. Phys. 2014, 88, 577–583. [Google Scholar] [CrossRef]
- Lee, Z.Y.; Hawari, H.F.; Djaswadi, G.W.; Kamarudin, K. A Highly Sensitive Room Temperature CO2 Gas Sensor Based on SnO2-RGO Hybrid Composite. Materials 2021, 14, 522. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Elgammal, K.; Smith, A.D.; Östling, M.; Delin, A.; Lemme, M.C.; Niklaus, F. Humidity and CO2 Gas Sensing Properties of Double-Layer Graphene. Carbon N. Y. 2018, 127, 576–587. [Google Scholar] [CrossRef]
- Chen, G.; Paronyan, T.M.; Harutyunyan, A.R. Sub-Ppt Gas Detection with Pristine Graphene. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef]
- Yoon, H.J.; Jun, D.H.; Yang, J.H.; Zhou, Z.; Yang, S.S.; Cheng, M.M.C. Carbon Dioxide Gas Sensor Using a Graphene Sheet. Sensors Actuators B Chem. 2011, 157, 310–313. [Google Scholar] [CrossRef]
- Wang, S.; Ang, P.K.; Wang, Z.; Tang, A.L.L.; Thong, J.T.L.; Loh, K.P. High Mobility, Printable, and Solution-Processed Graphene Electronics. Nano Lett. 2010, 10, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Becerril, H.A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J.R.; Cui, X.; Cui, Y.; Bao, Z. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett. 2011, 11, 2905–2911. [Google Scholar] [CrossRef] [PubMed]
- Jaber-Ansari, L.; Hersam, M.C. Solution-Processed Graphene Materials and Composites. MRS Bull. 2012, 37, 1167–1175. [Google Scholar] [CrossRef]
- Singh, N.S.; Mayanglambam, F.; Nemade, H.B.; Giri, P.K. Facile Synthetic Route to Exfoliate High Quality and Super-Large Lateral Size Graphene-Based Sheets and Their Applications in SERS and CO2 Gas Sensing. RSC Adv. 2021, 11, 9488–9504. [Google Scholar] [CrossRef]
- Eslamian, M. Inorganic and Organic Solution-Processed Thin Film Devices. Nano-Micro Lett. 2017, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Tomašević-Ilić, T.; Pešić, J.; Milošević, I.; Vujin, J.; Matković, A.; Spasenović, M.; Gajić, R. Transparent and Conductive Films from Liquid Phase Exfoliated Graphene. Opt. Quantum Electron. 2016, 48, 1–7. [Google Scholar] [CrossRef]
- Hanan Abdali; Bentolhoda Heli; Abdellah Ajji Stable and Sensitive Amino-Functionalized Graphene/Polyaniline Nanofiber Composites for Room-Temperature Carbon Dioxide Sensing. RSC Adv. 2019, 9, 41240–41247. [CrossRef] [Green Version]
- Bhadra, J.; Popelka, A.; Abdulkareem, A.; Ahmad, Z.; Touati, F.; Al-Thani, N. Fabrication of Polyaniline–Graphene/Polystyrene Nanocomposites for Flexible Gas Sensors. RSC Adv. 2019, 9, 12496–12506. [Google Scholar] [CrossRef] [Green Version]
- Abdali, H.; Heli, B.; Ajji, A. Cellulose Nanopaper Cross-Linked Amino Graphene/Polyaniline Sensors to Detect CO2 Gas at Room Temperature. Sensors 2019, 19, 5215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, A.K.; Ramaprabhu, S. Nanostructured Polyaniline Decorated Graphene Sheets for Reversible CO2 Capture. J. Mater. Chem. 2012, 22, 3708–3712. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured Materials for Room-Temperature Gas Sensors. Adv. Mater. 2016, 28, 795–831. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Hayasaka, T.; Liu, Y.; Liu, H.; Oliveira, O.N.; Lin, L. A Review on Chemiresistive Room Temperature Gas Sensors Based on Metal Oxide Nanostructures, Graphene and 2D Transition Metal Dichalcogenides. Microchim. Acta 2018, 185, 1–16. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional Gas Sensing Nanomaterials: A Panoramic View. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Matković, A.; Milošević, I.; Milićević, M.; Tomašević-Ilić, T.; Pešić, J.; Musić, M.; Spasenović, M.; Jovanović, D.; Vasić, B.; Deeks, C.; et al. Enhanced Sheet Conductivity of Langmuir-Blodgett Assembled Graphene Thin Films by Chemical Doping. 2D Mater. 2016, 3, 015002. [Google Scholar] [CrossRef]
- Petty, M.C. Langmuir-Blodgett Films: An Introduction; Cambridge University Press: Cambridge, UK, 1996; ISBN 9780521413961. [Google Scholar]
- Boon, E.P.; Le, L.T.; Lee, W.Y. Inversion of Temperature–Resistance Relationship by Enlarged Structural Defects in Graphene Oxide. Carbon N. Y. 2016, 102, 81–85. [Google Scholar] [CrossRef]
- Sarkar, S.; Amin, K.R.; Modak, R.; Singh, A.; Mukerjee, S.; Bid, A. Role of Different Scattering Mechanisms on the Temperature Dependence of Transport in Graphene. Sci. Rep. 2015, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kaur, A.; Singh, R.C. Temperature Sensor Based on Exfoliated Graphene Sheets Produced by Microwave Assisted Freezing Induced Volumetric Expansion of Carbonated Water. J. Mater. Sci. Mater. Electron. 2019, 30, 5791–5807. [Google Scholar] [CrossRef]
- Tomašević-Ilić, T.; Jovanović, Đ.; Popov, I.; Fandan, R.; Pedrós, J.; Spasenović, M.; Gajić, R. Reducing Sheet Resistance of Self-Assembled Transparent Graphene Films by Defect Patching and Doping with UV/Ozone Treatment. Appl. Surf. Sci. 2018, 458, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Petrucci, R.; Harwood, W.S.; Herring, G.F.; Madura, J.D. General Chemistry: Principles and Modern Applications, 9th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2007; ISBN 9780131493308. [Google Scholar]
- Sarajlić, M.; Đurić, Z.G.; Jović, V.B.; Petrović, S.P.; Đorđević, D.S. An Adsorption-Based Mercury Sensor with Continuous Readout. Microsyst. Technol. 2012, 19, 749–755. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Endres, H.E.; Jander, H.D.; Göttler, W. A Test System for Gas Sensors. Sensors Actuators B Chem. 1995, 23, 163–172. [Google Scholar] [CrossRef]
- Ricciardella, F.; Lee, K.; Stelz, T.; Hartwig, O.; Prechtl, M.; McCrystall, M.; McEvoy, N.; Duesberg, G.S. Calibration of Nonstationary Gas Sensors Based on Two-Dimensional Materials. ACS Omega 2020, 5, 5959–5963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; George, S.M. Thickness Dependence of Sensor Response for CO Gas Sensing by Tin Oxide Films Grown Using Atomic Layer Deposition. Sensors Actuators B Chem. 2008, 135, 152–160. [Google Scholar] [CrossRef]
- Piccinini, E.; Alberti, S.; Longo, G.S.; Berninger, T.; Breu, J.; Dostalek, J.; Azzaroni, O.; Knoll, W. Pushing the Boundaries of Interfacial Sensitivity in Graphene FET Sensors: Polyelectrolyte Multilayers Strongly Increase the Debye Screening Length. J. Phys. Chem. C 2018, 122, 10181–10188. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrić, S.; Sarajlić, M.; Frantlović, M.; Jokić, I.; Vasiljević-Radović, D.; Spasenović, M. Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films. Chemosensors 2021, 9, 342. https://doi.org/10.3390/chemosensors9120342
Andrić S, Sarajlić M, Frantlović M, Jokić I, Vasiljević-Radović D, Spasenović M. Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films. Chemosensors. 2021; 9(12):342. https://doi.org/10.3390/chemosensors9120342
Chicago/Turabian StyleAndrić, Stevan, Milija Sarajlić, Miloš Frantlović, Ivana Jokić, Dana Vasiljević-Radović, and Marko Spasenović. 2021. "Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films" Chemosensors 9, no. 12: 342. https://doi.org/10.3390/chemosensors9120342
APA StyleAndrić, S., Sarajlić, M., Frantlović, M., Jokić, I., Vasiljević-Radović, D., & Spasenović, M. (2021). Carbon Dioxide Sensing with Langmuir–Blodgett Graphene Films. Chemosensors, 9(12), 342. https://doi.org/10.3390/chemosensors9120342