Colorimetric Chemosensor Array for Determination of Halides
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Development of Halide Sensor
3.2. Indirect Multicomponent Analysis of Halides
3.3. Test Strips for Halides Determination
Halides Mixture | X− | cI, cBr, cCl/mM | t-Value | |||
---|---|---|---|---|---|---|
Given | Found ± s | |||||
Separate | Simultaneous | Separate | Simultaneous | |||
Cl−:Br− | Cl | 30.20 | 26.5 ± 4.0 | 28.4 ± 1.8 | 1.59 | 1.64 |
Br | 1.51 | 1.38 ± 0.14 | 1.51 a | 1.65 | - | |
Cl−:I− | Cl | 22.91 | 24.8 ± 4.1 | 21.88 | 0.78 | - |
I | 0.15 | 0.17 ± 0.01 | 0.17 ± 0.02 | 3.46 | 1.73 | |
Cl | 19.05 | 24.0 ± 4.2 | 21.88 a | 2.07 | - | |
I | 0.23 | 0.26 ± 0.01 | 0.27 ± 0.02 | 5.20 | 3.46 | |
Br−: I− | Br | 1.32 | 1.25 ± 0.25 | 1.10 a | 0.50 | - |
I | 0.15 | 0.16 ± 0.01 | 0.16 ± 0.02 | 1.73 | 0.86 |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Halide | log β(TlX4−) | log KTlL,X | log KTlL2,X |
---|---|---|---|
Cl− | 18.3 | 4.1 | −8.2 |
Br− | 23.9 | 9.7 | −2.6 |
I− | 35.7 | 21.5 | 9.2 |
Halide | log β(TlX4−) | log KTlL2,X | log β’(TlL2) |
---|---|---|---|
Cl− | 18.3 | −4.6 | 22.9 |
Br− | 23.9 | 1.6 | 22.3 |
Average value | 22.6 |
References
- Nollet, L.M.L. Handbook of Water Analysis; CRC Press Boca Raton: Boca Raton, Fl, USA, 2007. [Google Scholar]
- Qu, F.; Li, N.B.; Luo, H.Q. Polyethyleneimine-Templated Ag Nanoclusters: A New Fluorescent and Colorimetric Platform for Sensitive and Selective Sensing Halide Ions and High Disturbance-Tolerant Recognitions of Iodide and Bromide in Coexistence with Chloride under Condition of High Ionic Strength. Anal. Chem. 2012, 84, 10373–10379. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Li, H.; Feng, L. Using ratiometric indicator-displacement assays in semi-quantitative colorimetric determination of chloride, bromide, and iodide anions. Analyst 2011, 136, 5025–5029. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C. Vogel’s Textbook of Quantitative Chemical Analysis; Longman: Essex, UK, 1989. [Google Scholar]
- Janata, J. Principles of Chemical Sensors; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Banica, F.-G. Chemical Sensors and Biosensors; Wiley: Chichester, UK, 2012. [Google Scholar]
- Boček, P.; Deml, M.; Gebauer, P.; Dolník, V. Analytical Isotachophoresis; VCH Weinheim (FRG): Weinheim, Germany, 1988. [Google Scholar]
- Foret, F.; Křivánková, L.; Boček, P. Capillary Zone Electrophoresis; VCH Weinheim (FRG): Weinheim, Germany, 1993. [Google Scholar]
- Buszewski, B.; Dziubakiewicz, E.; Szumski, M. (Eds.) Electromigration Techniques—Theory and Practice; Springer: Berlin, Germany, 2013. [Google Scholar]
- Wang, B.; Anslyn, E.V. (Eds.) Chemosensors. Principles, Strategies and Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Snowden, T.S.; Anslyn, E.V. Anion recognition: Synthetic receptors for anions and their application in sensors. Current Op. Chem. Biol. 1999, 3, 740–746. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Anslyn, E.V. Indicator-displacement assays. Coord. Chem. Rev. 2006, 250, 3118–3127. [Google Scholar] [CrossRef]
- Anslyn, E.V. Supramolecular analytical chemistry. J. Org. Chem. 2007, 72, 687–699. [Google Scholar] [CrossRef]
- You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015, 115, 7840–7892. [Google Scholar] [CrossRef]
- Anzenbacher, P., Jr.; Lubal, P.; Buček, P.; Palacios, M.A.; Kozelkova, M.E. A practical approach to optical cross-reactive sensor arrays. Chem. Soc. Rev. 2010, 39, 3954–3979. [Google Scholar] [CrossRef]
- Palacios, M.A.; Nishiyabu, R.; Marquez, M.; Anzenbacher, P., Jr. Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multi-anion Detection in Water. J. Am. Chem. Soc. 2007, 129, 7538–7544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palacios, M.A.; Wang, Z.; Montes, V.A.; Zyryanov, G.V.; Anzenbacher, P., Jr. Rational Design of a Minimal Size Sensor Array for Metal Ion Detection. J. Am. Chem. Soc. 2008, 130, 10307–10314. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Palacios, M.A.; Anzenbacher, P., Jr. The power of the weak: Recognition of ion pairs in water using a simple array sensor. Chem. Comm. 2010, 46, 1860–1862. [Google Scholar] [CrossRef]
- Feng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric sensing of anions in water using ratiometric indicator-displacement assay. Anal. Chim. Acta 2012, 743, 1–8. [Google Scholar] [CrossRef]
- Qian, S.; Lin, H. A facile approach to cross-reactive colorimetric sensor arrays: An application in the recognition of the 20 natural amino acids. RSC Adv. 2014, 4, 29581. [Google Scholar] [CrossRef]
- Li, H.; Jia, M.; Askim, J.R.; Zhang, Y.; Duan, C.; Guana, Y.; Feng, L. An array sensor consisting of a single indicator with multiple concentrations and its application in ion discrimination. Chem. Commun. 2014, 50, 15389–15392. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, D.; Wu, H.; Li, J.; Zhang, Q.; Deng, B.; Zhou, J.; Yang, M.; Hou, C. A visual sensor array based on an indicator displacement assay for the detection of carboxylic acids. Microchim. Acta 2019, 186, 496. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.; Topolnicki, I.L.; Zwicker, V.E.; Jolliffe, K.A.; New, E.J. Fluorescent sensing arrays for cations and anions. Analyst 2017, 142, 3549–3563. [Google Scholar] [CrossRef]
- Fan, J.; Ding, L. Single-system based discriminative optical sensors: Different strategies and versatile applications. Analyst 2018, 143, 3775–3788. [Google Scholar] [CrossRef]
- Kangas, M.J.; Burks, R.M.; Atwater, J.; Lukowicz, R.M.; Williams, P.; Holmes, A.E. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives. Crit. Rev. Anal. Chem. 2017, 47, 138–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yawer, M.A.; Havel, V.; Šindelář, V. A Bambusuril Macrocycle that Binds Anions in Water with High Affinity and Selectivity. Angew. Chem. Int. Ed. 2015, 54, 276–279. [Google Scholar] [CrossRef]
- Lisbjerg, M.; Nielsen, B.E.; Milhoj, B.O.; Sauer, S.P.A.; Pittelkow, M. Anion binding by biotin [6]uril in water. Org. Biomol. Chem. 2015, 13, 369–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, F.; Marcus, Y.; Kubik, S. Effects of Solvent Properties on the Anion Binding of Neutral Water-Soluble Bis(cyclopeptides) in Water and Aqueous Solvent Mixtures. ACS Omega 2017, 2, 3669–3680. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Kaur, G.; Fegade, U.A.; Singh, A.; Sahoo, S.K.; Kuwar, A.S.; Singh, A. Anion sensing with chemosensors having multiple -NH recognition Units. Trends Anal. Chem. 2017, 95, 86–109. [Google Scholar] [CrossRef]
- Amendola, V.; Bergamaschi, G.; Boiocchi, M.; Fabbrizzi, L.; Poggi, A.; Zema, M. Halide ion inclusion into a dicopper(II) bistren cryptate containing ‘active’ 2,5-dimethylfuran spacers: The origin of the bright yellow colour. Inorg. Chim. Acta 2008, 361, 4038–4046. [Google Scholar] [CrossRef]
- Alibrandi, G.; Amendola, V.; Bergamaschi, G.; Dollenz, R.; Fabbrizzi, L.; Licchelli, M.; Lo Vecchio, C. An Automatic Molecular Dispenser of Chloride. Chem. Eur. J. 2013, 19, 3729–3734. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Boiocchi, M.; Perrone, M.L.; Poggi, A.; Viviania, I.; Amendola, V. Mixing the spacers in azacryptands: Effects on halide recognition. Dalton Trans. 2014, 43, 11352–11360. [Google Scholar] [CrossRef] [Green Version]
- Invernici, M.; Ciarrocchi, C.; Dondi, D.; Fabbrizzi, L.; Lazzaroni, S.; Licchelli, M.; Boiocchi, M.; Bonizzoni, M. Bimacrocyclic Effect in Anion Recognition by a Copper(II) Bicyclam Complex. ACS OMEGA 2018, 3, 15692–15701. [Google Scholar] [CrossRef]
- Boiocchi, M.; Bonizzoni, M.; Ciarrocchi, C.; Fabbrizzi, L.; Invernici, M.; Licchelli, M. Anion Recognition in Water, Including Sulfate, by a Bicyclam Bimetallic Receptor: A Process Governed by the Enthalpy/Entropy Compensatory Relationship. Chem. Eur. J. 2018, 24, 5659–5666. [Google Scholar] [CrossRef]
- Marshall, S.R.; Singh, A.; Wagner, J.N.; Busschaert, N. Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chem. Comm. 2020, 56, 14455–14458. [Google Scholar] [CrossRef]
- Holzbecher, Z.; Diviš, L.; Král, M.; Šůcha, L.; Vláčil, F. Handbook of Organic Reagents in Inorganic Analysis; Ellis Horwood: Chichester, UK, 1976. [Google Scholar]
- Ueno, K.; Imamura, T.; Cheng, K.I. Handbook of Organic Analytical Reagents; CRC Press Boca: Raton, FL, USA, 1992. [Google Scholar]
- Langová-Hniličková, M.; Sommer, L. The Coordination and Analytical Chemsitry of n-Heterocyclic azo Dyes. Folia Fac. Sci. Natur. Univ. Purkynianae Brunensis 1968, 9, 1–131. [Google Scholar]
- Anderson, R.G.; Nickless, G. Heterocyclic Azo Dyestuffs in Analytical Chemistry. A Review. Analyst 1967, 92, 207–238. [Google Scholar] [CrossRef] [PubMed]
- Lubal, P.; Farková, M. Application of artificial neural networks in speciation analysis. In Utilizing of Bio-Electrochemical and Mathematical Methods in Biological Research; Kizek, R., Adam, V., Eds.; Research Signpost: Kerala, India, 2007. [Google Scholar]
- Busev, A.I.; Tiptsova, V.G. Research in thallium(III) analytical chemistry. 5. On complexometric indicators for Tl(III) ion analysis. Zh. Anal. Khim. 1960, 15, 573–580. [Google Scholar]
- Musso, S. Untersuchung von Gleichgewichten in wässriger Lösung und Kristallstrukturbestimmung von Komplex des Thallium(III) mit Chelatliganden. Ph.D. Thesis, ETH Zürich, Rämistrasse, Switzerland, 1993. [Google Scholar]
- Gramlich, V.; Lubal, P.; Musso, S.; Anderegg, G. The stability of metal N,N,N ’,N ’-tetrakis(2-aminoethyl)ethane-1,2-diamine (= penten) complexes and the X-ray crystal structure of [Tl(NO3)(penten)](NO3)2. Helv. Chim. Acta 2001, 84, 623–631. [Google Scholar] [CrossRef]
- Chen, B.; Lubal, P.; Musso, S.; Anderegg, G. Equilibria with the thallium(III)triethylenetetraminehexaacetate anion [Tl(ttha)]3− in aqueous solution. Anal. Chim. Acta 2000, 406, 317–323. [Google Scholar] [CrossRef]
- John Peter, A.L.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef]
- Belzile, N.; Chen, Y.-W. Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Appl. Geochem. 2017, 84, 218–243. [Google Scholar] [CrossRef]
- Hniličková, M.; Sommer, L. Spectrophotometric determination of thallium with 4-(2-pyridylazo)resorcinol and 4-(2-thiazolylazo)resorcinol. Talanta 1968, 16, 83–94. [Google Scholar] [CrossRef]
- Sommer, L.; Voznica, P. On the reaction of thallium(III) with heterocyclic azo dyes. Scripta Fac. Sci. Natur. Univ. Purkynianae Brunensis 1980, 10, 81–92. [Google Scholar]
- Biryuk, E.A.; Ravitska, R.V. Interaction of Thallium(III) Ions with Pyridylazonaphthol and Pyridylazoresorcinol. Zh. Anal. Khim. 1971, 26, 1767–1769. [Google Scholar]
- Glaser, J.; Henriksson, U. Thallium-205 Nuclear Magnetic Resonance Study of Thallium(III) Halide Complexes in Aqueous Solutions. J. Am. Chem. Soc. 1981, 103, 6642–6649. [Google Scholar] [CrossRef]
- Johansson, L. The Complex Formation of Thallium(III) with Iodide in Aqueous Solution. Acta Chem. Scand. 1966, 20, 2156–2168. [Google Scholar] [CrossRef]
- Blixt, J.; Györi, B.; Glaser, J. Determination of Stability Constants for Thallium(III) Cyanide Complexes in Aqeous Solution by means of 13C and 205Tl NMR. J. Am. Chem. Soc. 1989, 111, 7784–7791. [Google Scholar] [CrossRef]
- Voznica, P.; Havel, J.; Sommer, L. The reactions of galium, indium and thallium with 2-(2-pyridylazo)-1-naphthol-4-sulfonic acid and their spectrophotometric determination. Collection Czechoslovak Chem. Commun. 1980, 45, 54–79. [Google Scholar] [CrossRef]
- Sommer, L.; Kubáň, V.; Langová, M. Spectrophotometric Investigation of Complexes with Organic Reagents for the Optimization of Spectrophotometric Determinations (UV + VIS) of Inorganic Analytes. Fresenius Z. Anal. Chem. 1982, 310, 51–61. [Google Scholar] [CrossRef]
- Havel, J.; Lubal, P.; Farková, M. Evaluation of chemical equilibria with the use of artificial neural networks. Polyhedron 2002, 21, 1375–1384. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis; W.H. Freeman: New York, NY, USA, 1991. [Google Scholar]
- Biryuk, E.A.; Ravitska, R.V. Mixed-Ligand Complexes of Aluminum and Thallium with 4-(2-Pyridylazo)-Resorcinol and Antipyrine. Zh. Anal. Khim. 1973, 28, 1500–1505. [Google Scholar]
- Funada, R.; Imamura, T.; Fujimoto, M. Rate and Mechanism of the Complex Formation of Thallium(III) with 4-(2-Pyridylazo)resorcinol (PAR) in Aqueous Solution. Bull. Chem. Soc. Japan 1979, 52, 1535–1536. [Google Scholar] [CrossRef] [Green Version]
- Kotrlý, S.; Šůcha, L. Handbook of Chemical Equilibria in Analytical Chemistry; Ellis Horwood: Chichester, UK, 1985. [Google Scholar]
Eigenvalue Cl− | CTV % | Eigenvalue Br− | CTV % | Eigenvalue I− | CTV % | |
---|---|---|---|---|---|---|
1 | 4.8387 | 96.7734 | 4.7287 | 94.5742 | 2.6591 | 53.1811 |
2 | 0.1605 | 99.9843 | 0.2689 | 99.9513 | 1.7812 | 88.8056 |
3 | 0.0005 | 99.9936 | 0.0021 | 99.9926 | 0.3424 | 95.6544 |
4 | 0.0003 | 99.9994 | 0.0002 | 99.9972 | 0.1934 | 99.5234 |
5 | 0.0000 | 100.0000 | 0.0001 | 100.000 | 0.0238 | 100.000 |
X− | Detection Limit (mM) | Dynamic Range (mM) | Sensitivity ± s (M−1) |
---|---|---|---|
Cl− | 6.7 b; 8.7 c | 7–200 b, 9–370 c | 6.5(4) b; 3.2(3)c |
Br− | 0.2 bc | 0.2–3.0 b, 0.2–12.4 c | 518(20) b; 230(16)c |
I− | 0.04 b | 0.047–0.073 b, 0.02–0.04 c | 2.92(6) × 104 b; 1.34(2) × 103 ac |
Anion | Concentration (mM) | Tolerance Ratio |
---|---|---|
SO42− | 120 | 1200 |
NO2− | 1.9 | 19 |
NO3− | 240 | 2400 |
CO32− | 24 | 240 |
HPO4− | 61 | 610 |
Acetate− | 240 | 2400 |
Oxalate2− | 30 | 300 |
F− | 120 | 1200 |
Halides Mixture | X− | cBr, cCl/mM, cI/µM | t-Value | |||
---|---|---|---|---|---|---|
Given | Found ± s | |||||
Separate | Simultaneous | Separate | Simultaneous | |||
Cl−:Br− | Cl | 19.20 | 15.6 ± 1.7 | 21.1 ± 1.1 | 3.65 | 3.08 |
Br | 1.15 | 1.05 ± 0.16 | 1.14 ± 0.13 | 1.09 | 0.16 | |
Cl−:I− | Cl | 9.80 | 9.42 ± 0.61 | 10.32± 0.49 | 1.00 | 1.94 |
I | 90.9 | 90.3 ± 17.4 | 96.4 ± 6.7 | 0.09 | 1.34 | |
Cl | 28.30 | 27.0 ± 5.8 | 31.8 ± 4.3 | 0.36 | 1.48 | |
I | 74.1 | 78.4 ± 5.5 | 74.3 ± 5.8 | 1.34 | 0.05 | |
Br−: I− | Br | 0.78 | 1.06 ± 0.52 | 1.04 ± 0.65 | 0.94 | 0.71 |
I | 38.5 | 50.6 ± 21.9 | 38.5 a | 0.93 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šídlo, M.; Lubal, P.; Anzenbacher, P., Jr. Colorimetric Chemosensor Array for Determination of Halides. Chemosensors 2021, 9, 39. https://doi.org/10.3390/chemosensors9020039
Šídlo M, Lubal P, Anzenbacher P Jr. Colorimetric Chemosensor Array for Determination of Halides. Chemosensors. 2021; 9(2):39. https://doi.org/10.3390/chemosensors9020039
Chicago/Turabian StyleŠídlo, Michal, Přemysl Lubal, and Pavel Anzenbacher, Jr. 2021. "Colorimetric Chemosensor Array for Determination of Halides" Chemosensors 9, no. 2: 39. https://doi.org/10.3390/chemosensors9020039
APA StyleŠídlo, M., Lubal, P., & Anzenbacher, P., Jr. (2021). Colorimetric Chemosensor Array for Determination of Halides. Chemosensors, 9(2), 39. https://doi.org/10.3390/chemosensors9020039