Gas Sensors Based on Copper Oxide Nanomaterials: A Review
Abstract
:1. Introduction
2. Nanomaterial, Device and Sensor System Design
2.1. Influence of Copper Oxide Phase
2.2. Influence of Nanomaterial and Sensor Morphology
2.3. Impurity Doping and Nanoparticle Decoration
2.4. Advances in Scalable Device Integration: From Microhotplates to Flexible Substrates
3. Mechanisms for Sensing and Transduction
3.1. Surface Reactions and Transduction Mechanisms
3.2. Humidity Interference Effects
4. Highly Sensitive Detection of Gaseous Molecules
4.1. Volatile Organic Compounds (VOCs)
4.2. Hydrogen Sulfide (HS)
4.3. Carbon Monoxide (CO)
4.4. Carbon Dioxide (CO)
4.5. Hydrogen (H)
4.6. Nitrogen Dioxide (NO)
4.7. Other Target Molecules
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nunes, D.; Pimentel, A.; Gonçalves, A.; Pereira, S.; Branquinho, R.; Barquinha, P.; Fortunato, E.; Martins, R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019, 34, 043001. [Google Scholar] [CrossRef] [Green Version]
- Moseley, P.T. Progress in the development of semiconducting metal oxide gas sensors: A review. Meas. Sci. Technol. 2017, 28, 082001. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Rydosz, A. The Use of Copper Oxide Thin Films in Gas-Sensing Applications. Coatings 2018, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantar-zadeh, K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review. Crit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar] [CrossRef]
- Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; et al. Binary copper oxide semiconductors: From materials towards devices. Phys. Status Solidi B 2012, 249, 1487–1509. [Google Scholar] [CrossRef]
- Soon, A.; Todorova, M.; Delley, B.; Stampfl, C. Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation. Phys. Rev. B 2007, 75, 125420. [Google Scholar] [CrossRef] [Green Version]
- Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Zoolfakar, A.S.; Ahmad, M.Z.; Rani, R.A.; Ou, J.Z.; Balendhran, S.; Zhuiykov, S.; Latham, K.; Wlodarski, W.; Kalantar-zadeh, K. Nanostructured copper oxides as ethanol vapour sensors. Sens. Actuators B Chem. 2013, 185, 620–627. [Google Scholar] [CrossRef]
- Lupan, O.; Cretu, V.; Postica, V.; Ababii, N.; Polonskyi, O.; Kaidas, V.; Schütt, F.; Mishra, Y.K.; Monaico, E.; Tiginyanu, I.; et al. Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sens. Actuators B Chem. 2016, 224, 434–448. [Google Scholar] [CrossRef]
- Xu, J.; Yao, X.; Wei, W.; Wang, Z.; Yu, R. Multi-shelled copper oxide hollow spheres and their gas sensing properties. Mater. Res. Bull. 2017, 87, 214–218. [Google Scholar] [CrossRef]
- Volanti, D.P.; Felix, A.A.; Orlandi, M.O.; Whitfield, G.; Yang, D.J.; Longo, E.; Tuller, H.L.; Varela, J.A. The Role of Hierarchical Morphologies in the Superior Gas Sensing Performance of CuO-Based Chemiresistors. Adv. Funct. Mater. 2013, 23, 1759–1766. [Google Scholar] [CrossRef]
- Shao, F.; Hernández-Ramírez, F.; Prades, J.; Fàbrega, C.; Andreu, T.; Morante, J. Copper (II) oxide nanowires for p-type conductometric NH3 sensing. Appl. Surf. Sci. 2014, 311, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D. Low-frequency noise characterization of single CuO nanowire gas sensor devices. Appl. Phys. Lett. 2015, 107, 123112. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.; Köck, A.; Freudenberg, O. Single Suspended CuO Nanowire for Conductometric Gas Sensing. Procedia Eng. 2012, 47, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Siebert, L.; Lupan, O.; Mirabelli, M.; Ababii, N.; Terasa, M.I.; Kaps, S.; Cretu, V.; Vahl, A.; Faupel, F.; Adelung, R. 3D-Printed Chemiresistive Sensor Array on Nanowire CuO/Cu2O/Cu Heterojunction Nets. ACS Appl. Mater. Interfaces 2019, 11, 25508–25515. [Google Scholar] [CrossRef]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.; Köck, A.; Freudenberg, O.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Gas sensing properties of novel CuO nanowire devices. Sens. Actuators B Chem. 2013, 187, 50–57. [Google Scholar] [CrossRef]
- Kim, J.H.; Katoch, A.; Choi, S.W.; Kim, S.S. Growth and sensing properties of networked p-CuO nanowires. Sens. Actuators B Chem. 2015, 212, 190–195. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, X.; Yang, Q.; Liang, S.; Zhang, X.; Yang, Z. Cuprous oxide (Cu2O) crystals with tailored architectures: A comprehensive review on synthesis, fundamental properties, functional modifications and applications. Prog. Mater. Sci. 2018, 96, 111–173. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhang, R.; Zhou, T.; Lou, Z.; Deng, J.; Zhang, T. P-type octahedral Cu2O particles with exposed 111 facets and superior CO sensing properties. Sens. Actuators B Chem. 2017, 239, 211–217. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Zhang, Y.; Yuan, Y.; Liu, J.; Liu, B.; Du, Q.; Ren, Y.; Yang, H. Hydrogenated Cu2O octahededrons with exposed 111 facets: Enhancing sensing performance and sensing mechanism of 1-coordinated Cu atom as a reactive center. Sens. Actuators B Chem. 2020, 310, 127827. [Google Scholar] [CrossRef]
- Xie, Z.; Han, N.; Li, W.; Deng, Y.; Gong, S.; Wang, Y.; Wu, X.; Li, Y.; Chen, Y. Facet-dependent gas sensing properties of Cu2O crystals. Phys. Status Solidi A 2017, 214, 1600904. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, C.; Li, L.; Du, C.; Li, X.; Kang, X.F.; Chen, W. CO gas sensors based on p-type CuO nanotubes and CuO nanocubes: Morphology and surface structure effects on the sensing performance. Talanta 2018, 188, 41–49. [Google Scholar] [CrossRef]
- Degler, D.; Weimar, U.; Barsan, N. Current Understanding of the Fundamental Mechanisms of Doped and Loaded Semiconducting Metal-Oxide-Based Gas Sensing Materials. ACS Sens. 2019, 4, 2228–2249. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, D.H.; Hong, S.H. p-Type aliovalent Li(I) or Fe(III)-doped CuO hollow spheres self-organized by cationic complex ink printing: Structural and gas sensing characteristics. Sens. Actuators B Chem. 2017, 243, 262–270. [Google Scholar] [CrossRef]
- Hemalatha, T.; Akilandeswari, S.; Krishnakumar, T.; Leonardi, S.G.; Neri, G.; Donato, N. Comparison of Electrical and Sensing Properties of Pure, Sn- and Zn-Doped CuO Gas Sensors. IEEE Trans. Instrum. Meas. 2019, 68, 903–912. [Google Scholar] [CrossRef]
- Choi, S.W.; Katoch, A.; Kim, J.H.; Kim, S.S. A novel approach to improving oxidizing-gas sensing ability of p-CuO nanowires using biased radial modulation of a hole-accumulation layer. J. Mater. Chem. C 2014, 2, 8911–8917. [Google Scholar] [CrossRef]
- Choi, S.W.; Katoch, A.; Kim, J.H.; Kim, S.S. Remarkable Improvement of Gas-Sensing Abilities in p-type Oxide Nanowires by Local Modification of the Hole-Accumulation Layer. ACS Appl. Mater. Interfaces 2015, 7, 647–652. [Google Scholar] [CrossRef]
- Lee, J.S.; Katoch, A.; Kim, J.H.; Kim, S.S. Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires. Sens. Actuators B Chem. 2016, 222, 307–314. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.H.; Kim, J.H.; Mirzaei, A.; Woo Kim, H.; Kim, S.S. Realization of H2S sensing by Pd-functionalized networked CuO nanowires in self-heating mode. Sens. Actuators B Chem. 2019, 299, 126965. [Google Scholar] [CrossRef]
- Porkovich, A.; Ziadi, Z.; Kumar, P.; Kioseoglou, J.; Jian, N.; Weng, L.; Steinhauer, S.; Vernieres, J.; Grammatikopoulos, P.; Sowwan, M. In Situ Observation of Metal to Metal Oxide Progression: A Study of Charge Transfer Phenomenon at Ru–CuO Interfaces. ACS Nano 2019, 13, 12425–12437. [Google Scholar] [CrossRef] [Green Version]
- Steinhauer, S.; Zhao, J.; Singh, V.; Pavloudis, T.; Kioseoglou, J.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowires: The Role of the CuO–Pd Interface. Chem. Mater. 2017, 29, 6153–6160. [Google Scholar] [CrossRef]
- Ziadi, Z.; Porkovich, A.J.; Kumar, P.; Datta, A.; Danielson, E.; Singh, V.; Sasaki, T.; Sowwan, M. Electronic Metal–Support Interactions at the Catalytic Interfaces of CuO Nanowires Decorated with Pt Nanoparticles for Methanol Oxidation and CO Sensing. ACS Appl. Nano Mater. 2020, 3, 8257–8267. [Google Scholar] [CrossRef]
- Datta, A.; Deolka, S.; Kumar, P.; Ziadi, Z.; Sasaki, T.; Steinhauer, S.; Singh, V.; Jian, N.; Danielson, E.; Porkovich, A.J. In situ investigation of oxidation across a heterogeneous nanoparticle-support interface during metal support interactions. Phys. Chem. Chem. Phys. 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, L.; Li, K.H.H.; Tan, O.K. Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the CMOS-MEMS Monolithic Approach. Micromachines 2018, 9, 557. [Google Scholar] [CrossRef] [Green Version]
- Presmanes, L.; Thimont, Y.; El Younsi, I.; Chapelle, A.; Blanc, F.; Talhi, C.; Bonningue, C.; Barnabé, A.; Menini, P.; Tailhades, P. Integration of P-CuO Thin Sputtered Layers onto Microsensor Platforms for Gas Sensing. Sensors 2017, 17, 1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierer, B.; Kneer, J.; Wöllenstein, J.; Palzer, S. MEMS based metal oxide sensor for simultaneous measurement of gas induced changes of the heating power and the sensing resistance. Microsyst. Technol. 2016, 22, 1855–1863. [Google Scholar] [CrossRef]
- Steinhauer, S.; Chapelle, A.; Menini, P.; Sowwan, M. Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application. ACS Sens. 2016, 1, 503–507. [Google Scholar] [CrossRef]
- Siegele, M.; Gamauf, C.; Nemecek, A.; Mutinati, G.C.; Steinhauer, S.; Köck, A.; Kraft, J.; Siegert, J.; Schrank, F. Optimized integrated micro-hotplates in CMOS technology. In Proceedings of the IEEE 11th International New Circuits and Systems Conference (NEWCAS), Paris, France, 16–19 June 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Steinhauer, S.; Maier, T.; Mutinati, G.C.; Rohracher, K.; Siegert, J.; Schrank, F.; Köck, A. Local synthesis of CuO nanowires on CMOS microhotplates for gas sensing applications. In Proceedings of the TechConnect World Nanotech, Washington, DC, USA, 15–19 June 2014; CRC Press: Boca Raton, FL, USA, 2014; pp. 53–56. [Google Scholar]
- Hsu, C.L.; Tsai, J.Y.; Hsueh, T.J. Ethanol gas and humidity sensors of CuO/Cu2O composite nanowires based on a Cu through-silicon via approach. Sens. Actuators B Chem. 2016, 224, 95–102. [Google Scholar] [CrossRef]
- Alrammouz, R.; Podlecki, J.; Abboud, P.; Sorli, B.; Habchi, R. A review on flexible gas sensors: From materials to devices. Sens. Actuators A Phys. 2018, 284, 209–231. [Google Scholar] [CrossRef]
- Andrysiewicz, W.; Krzeminski, J.; Skarżynski, K.; Marszalek, K.; Sloma, M.; Rydosz, A. Flexible Gas Sensor Printed on a Polymer Substrate for Sub-ppm Acetone Detection. Electron. Mater. Lett. 2020, 16, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Bârsan, N.; Huebner, M.; Weimar, U. Conduction mechanism in semiconducting metal oxide sensing films: Impact on transduction. In Semiconductor Gas Sensors, 2nd ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2020; pp. 39–69. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef] [PubMed]
- Bejaoui, A.; Guerin, J.; Aguir, K. Modeling of a p-type resistive gas sensor in the presence of a reducing gas. Sens. Actuators B Chem. 2013, 181, 340–347. [Google Scholar] [CrossRef]
- Bejaoui, A.; Guerin, J.; Zapien, J.; Aguir, K. Theoretical and experimental study of the response of CuO gas sensor under ozone. Sens. Actuators B Chem. 2014, 190, 8–15. [Google Scholar] [CrossRef]
- Simion, C.E.; Schipani, F.; Papadogianni, A.; Stanoiu, A.; Budde, M.; Oprea, A.; Weimar, U.; Bierwagen, O.; Barsan, N. Conductance Model for Single-Crystalline/Compact Metal Oxide Gas-Sensing Layers in the Nondegenerate Limit: Example of Epitaxial SnO2(101). ACS Sens. 2019, 4, 2420–2428. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, M.Z.; Köck, A.; Popov, M.; Steinhauer, S.; Spitaler, J.; Romaner, L. Response modeling of single SnO2 nanowire gas sensors. Sens. Actuators B Chem. 2019, 295, 22–29. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Han, Y.; Kong, E.S.W.; Yang, Z.; Zhang, Y. An ultrasensitive NO2 gas sensor based on a hierarchical Cu2O/CuO mesocrystal nanoflower. J. Mater. Chem. A 2018, 6, 17120–17131. [Google Scholar] [CrossRef]
- Lupan, O.; Ababii, N.; Mishra, A.K.; Gronenberg, O.; Vahl, A.; Schürmann, U.; Duppel, V.; Krüger, H.; Chow, L.; Kienle, L.; et al. Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazards. ACS Appl. Mater. Interfaces 2020, 12, 42248–42263. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.; Zhang, R.; Wang, B.; Huang, Z. Insight into the properties of stoichiometric, reduced and sulfurized CuO surfaces: Structure sensitivity for H2S adsorption and dissociation. Mol. Catal. 2017, 438, 130–142. [Google Scholar] [CrossRef]
- Tian, Z.; Bai, H.; Li, Y.; Liu, W.; Li, J.; Kong, Q.; Xi, G. Gas-Sensing Activity of Amorphous Copper Oxide Porous Nanosheets. ChemistryOpen 2020, 9, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Cretu, V.; Postica, V.; Mishra, A.K.; Hoppe, M.; Tiginyanu, I.; Mishra, Y.K.; Chow, L.; de Leeuw, N.H.; Adelung, R.; Lupan, O. Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications. J. Mater. Chem. A 2016, 4, 6527–6539. [Google Scholar] [CrossRef] [Green Version]
- Barsan, N.; Koziej, D.; Weimar, U. Metal oxide-based gas sensor research: How to? Sens. Actuators B Chem. 2007, 121, 18–35. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Wilbertz, C.; Steinhauer, S.; Köck, A.; Urban, G.; Yurchenko, O. Work Function Based CO2 Gas Sensing Using Metal Oxide Nanoparticles at Room Temperature. Mater. Today Proc. 2015, 2, 4190–4195. [Google Scholar] [CrossRef]
- Tanvir, N.B.; Yurchenko, O.; Wilbertz, C.; Urban, G. Investigation of CO2 reaction with copper oxide nanoparticles for room temperature gas sensing. J. Mater. Chem. A 2016, 4, 5294–5302. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.; Yurchenko, O.; Laubender, E.; Urban, G. Investigation of low temperature effects on work function based CO2 gas sensing of nanoparticulate CuO films. Sens. Actuators B Chem. 2017, 247, 968–974. [Google Scholar] [CrossRef]
- Müller, G.; Prades, J.; Hackner, A.; Ponzoni, A.; Comini, E.; Sberveglieri, G. Sensitivity-Selectivity Trade-Offs in Surface Ionization Gas Detection. Nanomaterials 2018, 8, 1017. [Google Scholar] [CrossRef] [Green Version]
- Wicker, S.; Guiltat, M.; Weimar, U.; Hémeryck, A.; Barsan, N. Ambient Humidity Influence on CO Detection with SnO2 Gas Sensing Materials. A Combined DRIFTS/DFT Investigation. J. Phys. Chem. C 2017, 121, 25064–25073. [Google Scholar] [CrossRef] [Green Version]
- Degler, D.; Junker, B.; Allmendinger, F.; Weimar, U.; Barsan, N. Investigations on the Temperature-Dependent Interaction of Water Vapor with Tin Dioxide and Its Implications on Gas Sensing. ACS Sens. 2020, 5, 3207–3216. [Google Scholar] [CrossRef]
- Hübner, M.; Simion, C.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens. Actuators B Chem. 2011, 153, 347–353. [Google Scholar] [CrossRef]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.C.; Köck, A. CuO nanowire gas sensors for CO detection in humid atmosphere. In Proceedings of the Transducers & Eurosensors XXVII, Barcelona, Spain, 16–20 June 2013. [Google Scholar] [CrossRef]
- Miao, J.; Chen, C.; Meng, L.; Lin, Y. Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship. ACS Sens. 2019, 4, 1279–1290. [Google Scholar] [CrossRef]
- Miao, J.; Chen, C.; Lin, J.Y. Humidity independent hydrogen sulfide sensing response achieved with monolayer film of CuO nanosheets. Sens. Actuators B Chem. 2020, 309, 127785. [Google Scholar] [CrossRef]
- Li, D.; Tang, Y.; Ao, D.; Xiang, X.; Wang, S.; Zu, X. Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit. Int. J. Hydrogen Energy 2019, 44, 3985–3992. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, A.; Luo, Y.; Tian, Y.; Yang, J.; Qin, Y. CuO Nanosheets for Sensitive and Selective Determination of H2S with High Recovery Ability. J. Phys. Chem. C 2010, 114, 19214–19219. [Google Scholar] [CrossRef]
- Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.; Köck, A. Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere. Sens. Actuators B Chem. 2013, 186, 550–556. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Park, H.J.; Choi, N.J.; Kang, H.; Jung, M.Y.; Park, J.W.; Park, K.H.; Lee, D.S. A ppb-level formaldehyde gas sensor based on CuO nanocubes prepared using a polyol process. Sens. Actuators B Chem. 2014, 203, 282–288. [Google Scholar] [CrossRef]
- Deng, H.; Li, H.; Wang, F.; Yuan, C.; Liu, S.; Wang, P.; Xie, L.; Sun, Y.; Chang, F. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. J. Mater. Sci. Mater. Electron. 2016, 27, 6766–6772. [Google Scholar] [CrossRef]
- Wang, F.; Li, H.; Yuan, Z.; Sun, Y.; Chang, F.; Deng, H.; Xie, L.; Li, H. A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol-gel method. RSC Adv. 2016, 6, 79343–79349. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, D.Y.; Lee, H.K.; Park, H.J.; Ma, A.; Choi, S.Y.; Lee, D.S. Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications. Sens. Actuators B Chem. 2019, 292, 289–296. [Google Scholar] [CrossRef]
- Choi, Y.M.; Cho, S.Y.; Jang, D.; Koh, H.J.; Choi, J.; Kim, C.H.; Jung, H.T. Ultrasensitive Detection of VOCs Using a High-Resolution CuO/Cu2O/Ag Nanopattern Sensor. Adv. Funct. Mater. 2019, 29, 1808319. [Google Scholar] [CrossRef]
- Szkudlarek, A.; Kollbek, K.; Klejna, S.; Rydosz, A. Electronic sensitization of CuO thin films by Cr-doping for enhanced gas sensor response at low detection limit. Mater. Res. Express 2018, 5, 126406. [Google Scholar] [CrossRef]
- Xia, S.; Zhu, H.; Cai, H.; Zhang, J.; Yu, J.; Tang, Z. Hydrothermally synthesized CuO based volatile organic compound gas sensor. RSC Adv. 2014, 4, 57975–57982. [Google Scholar] [CrossRef]
- Dong, C.; Xing, X.; Chen, N.; Liu, X.; Wang, Y. Biomorphic synthesis of hollow CuO fibers for low-ppm-level n-propanol detection via a facile solution combustion method. Sens. Actuators B Chem. 2016, 230, 1–8. [Google Scholar] [CrossRef]
- Wang, T.; Xiao, Q. Solvothermal synthesis and sensing properties of meso-macroporous hierarchical CuO microspheres composed of nanosheets. Mater. Chem. Phys. 2013, 139, 603–608. [Google Scholar] [CrossRef]
- Yang, B.; Liu, J.; Qin, H.; Liu, Q.; Jing, X.; Zhang, H.; Li, R.; Huang, G.; Wang, J. PtO2-nanoparticles functionalized CuO polyhedrons for n-butanol gas sensor application. Ceram. Int. 2018, 44, 10426–10432. [Google Scholar] [CrossRef]
- Tan, J.; Dun, M.; Li, L.; Zhao, J.; Li, X.; Hu, Y.; Huang, G.; Tan, W.; Huang, X. Self-template derived CuO nanowires assembled microspheres and its gas sensing properties. Sens. Actuators B Chem. 2017, 252, 1–8. [Google Scholar] [CrossRef]
- Hien, V.X.; Minh, N.H.; Son, D.T.; Nghi, N.T.; Phuoc, L.H.; Khoa, C.T.; Vuong, D.D.; Chien, N.D.; Heo, Y.W. Acetone sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH. Vacuum 2018, 150, 129–135. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Kang, Y.; Wu, S.; Wang, S. Brochantite tabular microspindles and their conversion to wormlike CuO structures for gas sensing. CrystEngComm 2012, 14, 620–625. [Google Scholar] [CrossRef]
- Mazhar, M.; Faglia, G.; Comini, E.; Zappa, D.; Baratto, C.; Sberveglieri, G. Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sens. Actuators B Chem. 2016, 222, 1257–1263. [Google Scholar] [CrossRef]
- Mnethu, O.; Nkosi, S.S.; Kortidis, I.; Motaung, D.E.; Kroon, R.; Swart, H.C.; Ntsasa, N.G.; Tshilongo, J.; Moyo, T. Ultra-sensitive and selective p-xylene gas sensor at low operating temperature utilizing Zn doped CuO nanoplatelets: Insignificant vestiges of oxygen vacancies. J. Colloid Interface Sci. 2020, 576, 364–375. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Cretu, V.; Wolff, N.; Duppel, V.; Kienle, L.; Adelung, R. Single and networked CuO nanowires for highly sensitive p-type semiconductor gas sensor applications. Phys. Status Solidi RRL Rapid Res. Lett. 2016, 10, 260–266. [Google Scholar] [CrossRef]
- Gou, X.; Wang, G.; Yang, J.; Park, J.; Wexler, D. Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons. J. Mater. Chem. 2008, 18, 965–969. [Google Scholar] [CrossRef] [Green Version]
- Taubert, A.; Stange, F.; Li, Z.; Junginger, M.; Günter, C.; Neumann, M.; Friedrich, A. CuO Nanoparticles from the Strongly Hydrated Ionic Liquid Precursor (ILP) Tetrabutylammonium Hydroxide: Evaluation of the Ethanol Sensing Activity. ACS Appl. Mater. Interfaces 2012, 4, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, R.; Zhou, T.; Lou, Z.; Deng, J.; Zhang, T. Concave Cu2O octahedral nanoparticles as an advanced sensing material for benzene (C6H6) and nitrogen dioxide (NO2) detection. Sens. Actuators B Chem. 2016, 223, 311–317. [Google Scholar] [CrossRef]
- Wu, Y.P.; Zhou, W.; Dong, W.W.; Zhao, J.; Qiao, X.Q.; Hou, D.F.; Li, D.S.; Zhang, Q.; Feng, P. Temperature-Controlled Synthesis of Porous CuO Particles with Different Morphologies for Highly Sensitive Detection of Triethylamine. Cryst. Growth Des. 2017, 17, 2158–2165. [Google Scholar] [CrossRef]
- Sui, Y.; Zeng, Y.; Zheng, W.; Liu, B.; Zou, B.; Yang, H. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties. Sens. Actuators B Chem. 2012, 171–172, 135–140. [Google Scholar] [CrossRef]
- Sui, Y.; Zeng, Y.; Fu, L.; Zheng, W.; Li, D.; Liu, B.; Zou, B. Low-temperature synthesis of porous hollow structured Cu2O for photocatalytic activity and gas sensor application. RSC Adv. 2013, 3, 18651–18660. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B. One-Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals-Composed Porous Multishell and Their Gas-Sensing Properties. Adv. Funct. Mater. 2007, 17, 2766–2771. [Google Scholar] [CrossRef]
- Oosthuizen, D.; Korditis, I.; Swart, H.; Motaung, D. Facile control of room temperature nitrogen dioxide gas selectivity induced by copper oxide nanoplatelets. J. Colloid Interface Sci. 2020, 560, 755–768. [Google Scholar] [CrossRef]
- Umar, A.; Alshahrani, A.; Algarni, H.; Kumar, R. CuO nanosheets as potential scaffolds for gas sensing applications. Sens. Actuators B Chem. 2017, 250, 24–31. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Cai, L.; Lei, Q.; Wang, J.; Fan, W.; Shi, K.; Han, G. Performances of In-doped CuO-based heterojunction gas sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 910–919. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, M.; Lu, Q.; Hu, J.; Wang, H.; Li, K.; Li, K.; Zhang, J.; Zhu, Z.; Liu, Q. Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Mater. Lett. 2019, 247, 15–18. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, J.; Peng, Q.; Wang, X.; Li, Y. Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006, 18, 867–871. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, F.; Wang, J.; Su, X. 3D flower- and 2D sheet-like CuO nanostructures: Microwave-assisted synthesis and application in gas sensors. Sens. Actuators B Chem. 2015, 207, 177–185. [Google Scholar] [CrossRef]
- Yan, H.; Tian, X.; Sun, J.; Ma, F. Enhanced sensing properties of CuO nanosheets for volatile organic compounds detection. J. Mater. Sci. Mater. Electron. 2015, 26, 280–287. [Google Scholar] [CrossRef]
- Yan, H.; Tian, X.; Ma, F.; Sun, J. CuO nanoparticles fabricated by direct thermo-oxidation of sputtered Cu film for VOCs detection. Sens. Actuators B Chem. 2015, 221, 599–605. [Google Scholar] [CrossRef]
- Hsueh, H.T.; Chang, S.J.; Hung, F.Y.; Weng, W.Y.; Hsu, C.L.; Hsueh, T.J.; Lin, S.S.; Dai, B.T. Ethanol Gas Sensor of Crabwise CuO Nanowires Prepared on Glass Substrate. J. Electrochem. Soc. 2011, 158, J106. [Google Scholar] [CrossRef]
- Li, T.; He, M.; Zeng, W. Polyhedral Cu2O crystal: Morphology evolution from meshed nanocube to solid and gas-sensing performance. J. Alloys Compd. 2017, 712, 50–58. [Google Scholar] [CrossRef]
- Ghosh, A.; Maity, A.; Banerjee, R.; Majumder, S. Volatile organic compound sensing using copper oxide thin films: Addressing the cross sensitivity issue. J. Alloys Compd. 2017, 692, 108–118. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zou, Y.C.; Zhao, J.; Wang, P.P.; Feng, L.L.; Sun, L.W.; Wang, D.J.; Li, G.D. Facile synthesis of highly stable and porous Cu2O/CuO cubes with enhanced gas sensing properties. Sens. Actuators B Chem. 2013, 188, 533–539. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, D.H.; Han, H.S.; Shin, S.; Hong, S.H.; Hong, K.S. Direct Printing Synthesis of Self-Organized Copper Oxide Hollow Spheres on a Substrate Using Copper(II) Complex Ink: Gas Sensing and Photoelectrochemical Properties. Langmuir 2014, 30, 700–709. [Google Scholar] [CrossRef]
- Choi, Y.H.; Kim, D.H.; Hong, S.H.; Hong, K.S. H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route. Sens. Actuators B Chem. 2013, 178, 395–403. [Google Scholar] [CrossRef]
- Mirzaei, A.; Kim, S.S.; Kim, H.W. Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. J. Hazard. Mater. 2018, 357, 314–331. [Google Scholar] [CrossRef]
- Steinhauer, S. Gas Sensing Properties of Metal Oxide Nanowires and Their CMOS Integration. Ph.D. Thesis, TU Wien, Vienna, Austria, 2014. [Google Scholar]
- Henzler, K.; Heilemann, A.; Kneer, J.; Guttmann, P.; Jia, H.; Bartsch, E.; Lu, Y.; Palzer, S. Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging. Sci. Rep. 2015, 5, 17729. [Google Scholar] [CrossRef] [PubMed]
- Kneer, J.; Wöllenstein, J.; Palzer, S. Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing. Appl. Phys. Lett. 2014, 105, 073509. [Google Scholar] [CrossRef]
- Hennemann, J.; Kohl, C.D.; Smarsly, B.M.; Metelmann, H.; Rohnke, M.; Janek, J.; Reppin, D.; Meyer, B.K.; Russ, S.; Wagner, T. Copper oxide based H2S dosimeters—Modeling of percolation and diffusion processes. Sens. Actuators B Chem. 2015, 217, 41–50. [Google Scholar] [CrossRef]
- Hennemann, J.; Kohl, C.D.; Smarsly, B.M.; Sauerwald, T.; Teissier, J.M.; Russ, S.; Wagner, T. CuO thin films for the detection of H2S doses: Investigation and application. Phys. Status Solidi A 2015, 212, 1281–1288. [Google Scholar] [CrossRef]
- Kneer, J.; Knobelspies, S.; Bierer, B.; Wöllenstein, J.; Palzer, S. New method to selectively determine hydrogen sulfide concentrations using CuO layers. Sens. Actuators B Chem. 2016, 222, 625–631. [Google Scholar] [CrossRef]
- Su, Y.; Li, G.; Guo, Z.; Li, Y.Y.; Li, Y.X.; Huang, X.J.; Liu, J.H. Cation-Exchange Synthesis of Cu2Se Nanobelts and Thermal Conversion to Porous CuO Nanobelts with Highly Selective Sensing toward H2S. ACS Appl. Nano Mater. 2018, 1, 245–253. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Lin, Z.; Wang, J.; Liu, W.; Sun, K.; Fu, Y.Q.; Wang, Z. Room-Temperature High-Performance H2S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method. ACS Appl. Mater. Interfaces 2016, 8, 20962–20968. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Y.; Lei, Y.; Gu, Z. Highly sensitive H2S sensor based on template-synthesized CuO nanowires. RSC Adv. 2012, 2, 2302–2307. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, F.; Chen, Y.; Zhou, Y.; Li, J.; Zhu, A.; Luo, Y.; Tian, Y.; Yang, J. Hierarchically Porous CuO Hollow Spheres Fabricated via a One-Pot Template-Free Method for High-Performance Gas Sensors. J. Phys. Chem. C 2012, 116, 11994–12000. [Google Scholar] [CrossRef]
- Meng, F.N.; Di, X.P.; Dong, H.W.; Zhang, Y.; Zhu, C.L.; Li, C.; Chen, Y.J. Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens. Actuators B Chem. 2013, 182, 197–204. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, C. Facile synthesis and ppb-level H2S sensing performance of hierarchical CuO microflowers assembled with nano-spindles. J. Mater. Sci. Mater. Electron. 2020, 31, 7937–7945. [Google Scholar] [CrossRef]
- Park, S.; Cai, Z.; Lee, J.; Yoon, J.; Chang, S.P. Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater. Lett. 2016, 181, 231–235. [Google Scholar] [CrossRef]
- Ramgir, N.; Ganapathi, S.K.; Kaur, M.; Datta, N.; Muthe, K.; Aswal, D.; Gupta, S.; Yakhmi, J. Sub-ppm H2S sensing at room temperature using CuO thin films. Sens. Actuators B Chem. 2010, 151, 90–96. [Google Scholar] [CrossRef]
- Chen, Y.J.; Meng, F.N.; Yu, H.L.; Zhu, C.L.; Wang, T.S.; Gao, P.; Ouyang, Y. Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts. Sens. Actuators B Chem. 2013, 176, 15–21. [Google Scholar] [CrossRef]
- Tang, Q.; Hu, X.B.; He, M.; Xie, L.L.; Zhu, Z.G.; Wu, J.Q. Effect of Platinum Doping on the Morphology and Sensing Performance for CuO-Based Gas Sensor. Appl. Sci. 2018, 8, 1091. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, J.; Wang, N.; Yan, S.; Liu, W.; Fu, Y.Q.; Wang, Z. Hydrothermal synthesis of hierarchically flower-like CuO nanostructures with porous nanosheets for excellent H2S sensing. J. Alloys Compd. 2017, 725, 1136–1143. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, Z.; Chen, C.; Wen, T.; Zhao, X.; Xie, L. Highly sensitive H2S gas sensors based on Pd-doped CuO nanoflowers with low operating temperature. Sens. Actuators B Chem. 2017, 253, 809–817. [Google Scholar] [CrossRef]
- Xu, Z.; Luo, Y.; Duan, G. Self-Assembly of Cu2O Monolayer Colloidal Particle Film Allows the Fabrication of CuO Sensor with Superselectivity for Hydrogen Sulfide. ACS Appl. Mater. Interfaces 2019, 11, 8164–8174. [Google Scholar] [CrossRef]
- Van Tong, P.; Hoa, N.D.; Nha, H.T.; Van Duy, N.; Hung, C.M.; Van Hieu, N. SO2 and H2S Sensing Properties of Hydrothermally Synthesized CuO Nanoplates. J. Electron. Mater. 2018, 47, 7170–7178. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Zheng, Y.; Lee, J.H.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Enhancement of H2S sensing performance of p-CuO nanofibers by loading p-reduced graphene oxide nanosheets. Sens. Actuators B Chem. 2019, 281, 453–461. [Google Scholar] [CrossRef]
- Zhou, J.; Ikram, M.; Rehman, A.U.; Wang, J.; Zhao, Y.; Kan, K.; Zhang, W.; Raziq, F.; Li, L.; Shi, K. Highly selective detection of NH3 and H2S using the pristine CuO and mesoporous In2O3@CuO multijunctions nanofibers at room temperature. Sens. Actuators B Chem. 2018, 255, 1819–1830. [Google Scholar] [CrossRef]
- Ding, J.; Wang, D.; Wang, X.; Wang, X.; Tian, L.; Zhang, Y.; Chai, Z.; Hu, Q. Tailoring responsivity with engineered porous Cu2O hexapods architecture towards high-performance H2S gas-sensing. J. Mater. Sci. Mater. Electron. 2019, 30, 16627–16635. [Google Scholar] [CrossRef]
- Kim, H.; Jin, C.; Park, S.; Kim, S.; Lee, C. H2S gas sensing properties of bare and Pd-functionalized CuO nanorods. Sens. Actuators B Chem. 2012, 161, 594–599. [Google Scholar] [CrossRef]
- Mahajan, S.; Jagtap, S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today 2020, 18, 100483. [Google Scholar] [CrossRef]
- Choi, S.W.; Park, J.Y.; Kim, S.S. Growth behavior and sensing properties of nanograins in CuO nanofibers. Chem. Eng. J. 2011, 172, 550–556. [Google Scholar] [CrossRef]
- Ambardekar, V.; Bandyopadhyay, P.; Majumder, S. Plasma sprayed copper oxide sensor for selective sensing of carbon monoxide. Mater. Chem. Phys. 2021, 258, 123966. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, Z.; Yan, B.; Zheng, Z.; Bao, Q.L.; Wu, T.; Li, C.M.; Shen, Z.X.; Zhang, J.X.; Gong, H.; et al. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology 2009, 20, 085203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosthuizen, D.; Motaung, D.; Swart, H. Selective detection of CO at room temperature with CuO nanoplatelets sensor for indoor air quality monitoring manifested by crystallinity. Appl. Surf. Sci. 2019, 466, 545–553. [Google Scholar] [CrossRef]
- Kim, Y.S.; Hwang, I.S.; Kim, S.J.; Lee, C.Y.; Lee, J.H. CuO nanowire gas sensors for air quality control in automotive cabin. Sens. Actuators B Chem. 2008, 135, 298–303. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, Z.; Zhang, Q.; Guo, L. Gold-catalytic green synthesis of Cu2O/Au/CuO hierarchical nanostructure and application for CO gas sensor. Chin. Sci. Bull. 2014, 59, 7–10. [Google Scholar] [CrossRef]
- Molavi, R.; Sheikhi, M. Facile wet chemical synthesis of Al doped CuO nanoleaves for carbon monoxide gas sensor applications. Mater. Sci. Semicond. Process. 2020, 106, 104767. [Google Scholar] [CrossRef]
- Köck, A.; Chitu, L.; Defregger, S.; Kraker, E.; Maier, G.; Steinhauer, S.; Wimmer-Teubenbacher, R. Metal Oxide Nanowires for Gas Sensor Applications. BHM Berg-und Hüttenmännische Monatshefte 2014, 159, 385–389. [Google Scholar] [CrossRef]
- Steinhauer, S.; Singh, V.; Cassidy, C.; Gspan, C.; Grogger, W.; Sowwan, M.; Köck, A. Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere. Nanotechnology 2015, 26, 175502. [Google Scholar] [CrossRef]
- Zou, C.; Wang, J.; Liang, F.; Xie, W.; Shao, L.; Fu, D. Large-area aligned CuO nanowires arrays: Synthesis, anomalous ferromagnetic and CO gas sensing properties. Curr. Appl. Phys. 2012, 12, 1349–1354. [Google Scholar] [CrossRef]
- Aslani, A.; Oroojpour, V. CO gas sensing of CuO nanostructures, synthesized by an assisted solvothermal wet chemical route. Phys. B Condens. Matter 2011, 406, 144–149. [Google Scholar] [CrossRef]
- Mulmi, S.; Thangadurai, V. Editors’ Choice—Review—Solid-State Electrochemical Carbon Dioxide Sensors: Fundamentals, Materials and Applications. J. Electrochem. Soc. 2020, 167, 037567. [Google Scholar] [CrossRef]
- Joshi, S.; Ippolito, S.J.; Periasamy, S.; Sabri, Y.M.; Sunkara, M.V. Efficient Heterostructures of Ag@CuO/BaTiO3 for Low-Temperature CO2 Gas Detection: Assessing the Role of Nanointerfaces during Sensing by Operando DRIFTS Technique. ACS Appl. Mater. Interfaces 2017, 9, 27014–27026. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, A.; Barnabé, A.; Presmanes, L.; Tailhades, P. Copper and iron based thin film nanocomposites prepared by radio-frequency sputtering. Part II: Elaboration and characterization of oxide/oxide thin film nanocomposites using controlled ex-situ oxidation process. J. Mater. Sci. 2013, 48, 3304–3314. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.; Yurchenko, O.; Laubender, E.; Pohle, R.; Sicard, O.; Urban, G. Zinc peroxide combustion promoter in preparation of CuO layers for conductometric CO2 sensing. Sens. Actuators B Chem. 2018, 257, 1027–1034. [Google Scholar] [CrossRef]
- Wimmer-Teubenbacher, R.; Sosada-Ludwikowska, F.; Zaragoza Travieso, B.; Defregger, S.; Tokmak, O.; Niehaus, J.; Deluca, M.; Köck, A. CuO Thin Films Functionalized with Gold Nanoparticles for Conductometric Carbon Dioxide Gas Sensing. Chemosensors 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L.C.; Morawska, L.; Mazaheri, M.; Kumar, P. Smart homes and the control of indoor air quality. Renew. Sustain. Energy Rev. 2018, 94, 705–718. [Google Scholar] [CrossRef]
- Sohail, M.; Sun, D.W.; Zhu, Z. Recent developments in intelligent packaging for enhancing food quality and safety. Crit. Rev. Food Sci. Nutr. 2018, 58, 2650–2662. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Kim, J.S. Recent advances on H2 sensor technologies based on MOX and FET devices: A review. Sens. Actuators B Chem. 2018, 262, 758–770. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Ababii, N.; Hoppe, M.; Cretu, V.; Tiginyanu, I.; Sontea, V.; Pauporté, T.; Viana, B.; Adelung, R. Influence of CuO nanostructures morphology on hydrogen gas sensing performances. Microelectron. Eng. 2016, 164, 63–70. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N.; Sharma, P.; Calle, F. A review on 2D transition metal di-chalcogenides and metal oxide nanostructures based NO2 gas sensors. Mater. Sci. Semicond. Process. 2020, 107, 104865. [Google Scholar] [CrossRef]
- Kneer, J.; Wöllenstein, J.; Palzer, S. Manipulating the gas–surface interaction between copper(II) oxide and mono-nitrogen oxides using temperature. Sens. Actuators B Chem. 2016, 229, 57–62. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Y.; Zhang, J.; Li, G.; Leng, D.; Gao, Y.; Gao, J.; Lu, H.; Li, X. Metal–organic framework-derived Cu2O–CuO octahedrons for sensitive and selective detection of ppb-level NO2 at room temperature. Sens. Actuators B Chem. 2021, 328, 129045. [Google Scholar] [CrossRef]
- Kim, J.Y.; Cho, S.Y.; Jung, H.T. Selective Functionalization of High-Resolution Cu2O Nanopatterns via Galvanic Replacement for Highly Enhanced Gas Sensing Performance. Sensors 2018, 18, 4438. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Gao, H.; Mei, S.; Kneer, J.; Lin, X.; Ran, Q.; Wang, F.; Palzer, S.; Lu, Y. Cu2O@PNIPAM core–shell microgels as novel inkjet materials for the preparation of CuO hollow porous nanocubes gas sensing layers. J. Mater. Chem. C 2018, 6, 7249–7256. [Google Scholar] [CrossRef] [Green Version]
- Navale, Y.; Navale, S.; Galluzzi, M.; Stadler, F.; Debnath, A.; Ramgir, N.; Gadkari, S.; Gupta, S.; Aswal, D.; Patil, V. Rapid synthesis strategy of CuO nanocubes for sensitive and selective detection of NO2. J. Alloys Compd. 2017, 708, 456–463. [Google Scholar] [CrossRef]
- Rzaij, J.M.; Habubi, N.F. Room temperature gas sensor based on La2O3 doped CuO thin films. Appl. Phys. A 2020, 126, 560. [Google Scholar] [CrossRef]
- Das, A.; Venkataramana, B.; Partheephan, D.; Prasad, A.; Dhara, S.; Tyagi, A. Facile synthesis of nanostructured CuO for low temperature NO2 sensing. Phys. E Low Dimens. Syst. Nanostruct. 2013, 54, 40–44. [Google Scholar] [CrossRef]
- Kim, K.M.; Jeong, H.M.; Kim, H.R.; Choi, K.I.; Kim, H.J.; Lee, J.H. Selective Detection of NO2 Using Cr-Doped CuO Nanorods. Sensors 2012, 12, 8013–8025. [Google Scholar] [CrossRef]
- Zappa, D.; Comini, E.; Zamani, R.; Arbiol, J.; Morante, J.; Sberveglieri, G. Preparation of copper oxide nanowire-based conductometric chemical sensors. Sens. Actuators B Chem. 2013, 182, 7–15. [Google Scholar] [CrossRef]
- Hansen, B.J.; Kouklin, N.; Lu, G.; Lin, I.K.; Chen, J.; Zhang, X. Transport, Analyte Detection, and Opto-Electronic Response of p-Type CuO Nanowires. J. Phys. Chem. C 2010, 114, 2440–2447. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Gopalakrishnan, N. Enhanced ammonia sensing characteristics of Cr doped CuO nanoboats. J. Alloys Compd. 2016, 654, 202–208. [Google Scholar] [CrossRef]
- Mashock, M.; Yu, K.; Cui, S.; Mao, S.; Lu, G.; Chen, J. Modulating Gas Sensing Properties of CuO Nanowires through Creation of Discrete Nanosized p–n Junctions on Their Surfaces. ACS Appl. Mater. Interfaces 2012, 4, 4192–4199. [Google Scholar] [CrossRef] [PubMed]
- Jayatissa, A.H.; Samarasekara, P.; Kun, G. Methane gas sensor application of cuprous oxide synthesized by thermal oxidation. Phys. Status Solidi A 2009, 206, 332–337. [Google Scholar] [CrossRef]
- Feng, S.; Farha, F.; Li, Q.; Wan, Y.; Xu, Y.; Zhang, T.; Ning, H. Review on Smart Gas Sensing Technology. Sensors 2019, 19, 3760. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Dong, B.; He, T.; Sun, Z.; Zhu, J.; Zhang, Z.; Lee, C. Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InfoMat 2020, 2, 1131–1162. [Google Scholar] [CrossRef]
- Steinhauer, S.; Wang, Z.; Zhou, Z.; Krainer, J.; Köck, A.; Nordlund, K.; Djurabekova, F.; Grammatikopoulos, P.; Sowwan, M. Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopy. Appl. Phys. Lett. 2017, 110, 094103. [Google Scholar] [CrossRef]
- Steinhauer, S.; Vernieres, J.; Krainer, J.; Köck, A.; Grammatikopoulos, P.; Sowwan, M. In situ chemoresistive sensing in the environmental TEM: Probing functional devices and their nanoscale morphology. Nanoscale 2017, 9, 7380–7384. [Google Scholar] [CrossRef] [PubMed]
- Volanti, D.P.; Felix, A.A.; Suman, P.H.; Longo, E.; Varela, J.A.; Orlandi, M.O. Monitoring a CuO gas sensor at work: An advanced in situ X-ray absorption spectroscopy study. Phys. Chem. Chem. Phys. 2015, 17, 18761–18767. [Google Scholar] [CrossRef] [PubMed]
- Hozák, P.; Vorokhta, M.; Khalakhan, I.; Jarkovská, K.; Cibulková, J.; Fitl, P.; Vlček, J.; Fara, J.; Tomeček, D.; Novotný, M.; et al. New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS. J. Phys. Chem. C 2019, 123, 29739–29749. [Google Scholar] [CrossRef]
Nanomaterial Morphology | Synthesis Method | Operation Temp. [C] | Target VOC | VOC Gas Conc. [ppm] | Humid Atm. | Lit. Ref. |
---|---|---|---|---|---|---|
CuO nanosheets | thermal decomposition | 100–440 | formaldehyde | 0.01–1000 | √ | [55] |
CuO nanowires (Ru decor.) | thermal oxidation | 200–300 | acetone | 0.025–0.2 | × | [33] |
CuO thin films | magnetron sputtering | 50–350 | acetone | 0.05–1.25 | √ | [45] |
CuO nanocubes | oxidation of Cu2O nanocubes | 250–350 | formaldehyde | 0.05–3 | × | [72] |
CuO nanoflowers | sol-gel method | 160–320 | formaldehyde | 0.05–1 | √ | [73] |
CuO nanoparticles | sol-gel method | 180–290 | acetone | 0.1–10 | √ | [74] |
porous CuO (Pt doped) | template-assisted | 200–275 | formaldehyde | 0.1–1.5 | √ | [75] |
CuO/Cu2O nanopatterns (Ag decor.) | thermal oxidation | 200–350 | acetone | 0.125–1000 | × | [76] |
CuO thin films (Cr doped) | magnetron sputtering | 150–500 | acetone | 0.32–3.2 | √ | [77] |
facet-controlled Cu2O | wet chemical | 100–250 | benzene/acetone | 1–10 | × | [24] |
CuO nanowires | thermal oxidation | 300 | benzene/toluene | 1–10 | × | [20] |
CuO nanowires (NiO decor.) | thermal oxidation | 300 | benzene/toluene | 1–10 | × | [30] |
CuO nanoparticles (Zn doped) | wet chemical | 100–350 | acetone | 1–20 | × | [28] |
CuO nanowires (Au decor.) | thermal oxidation | 350 | benzene/toluene | 1–50 | × | [31] |
CuO particles | hydrothermal | 230 | decane | 1–100 | × | [78] |
hollow CuO nanofibers | template-assisted | 140–260 | n-propanol | 1–100 | × | [79] |
CuO nanosheets | hydrothermal | 100–300 | ethanol | 1–100 | × | [80] |
CuO polyhedrons (PtO2 decor.) | template-assisted | 100–220 | butanol | 1–500 | × | [81] |
CuO nanowires | template-assisted | 130–260 | n-propanol | 1–500 | × | [82] |
CuO thin films | magnetron sputtering | dynamic | acetaldehyde | 2–5 | √ | [38] |
CuO nanowalls | wet chemical oxidation | 200–360 | acetone | 2–500 | × | [83] |
wormlike CuO structures | calcination of precursor | 140–340 | ethanol | 2–800 | √ | [84] |
CuO nanowires | thermal oxidation | 150–400 | butanol | 3–30 | √ | [85] |
CuO nanoplatelets | hydrothermal | 25–150 | xylene | 5–100 | × | [86] |
CuO nanowires | thermal oxidation | 150–400 | ethanol | 5–100 | √ | [87] |
Cu2O octahedrons | wet chemical | 100–260 | ethanol | 5–500 | × | [23] |
CuO nanoribbons (Au and Pt decor.) | hydrothermal | 200 | formaldehyde | 5–500 | × | [88] |
CuO nanoparticles | calcination of precursor | 150–300 | ethanol | 5–1000 | × | [89] |
Cu2O octahedral nanoparticles | wet chemical | 170–290 | benzene | 5–1000 | × | [90] |
porous CuO particles | calcination of precursor | 230 | triethylamine | 5–1000 | × | [91] |
hollow Cu2O polyhedrons | wet chemical | 130–310 | ethanol | 5–4000 | × | [92] |
porous Cu2O spheres | wet chemical | 160–300 | ethanol | 5–5000 | × | [93] |
Cu2O nanocrystals | hydrothermal | dynamic | ethanol | 10–100 | × | [94] |
CuO/Cu2O nanocrystalline films | chemical synthesis/annealing | 25–350 | ethanol | 10–100 | × | [12] |
CuO nanoplatelets | hydrothermal | 25–100 | 2-propanol | 10–100 | × | [95] |
single CuO nanowire | thermal oxidation | room temp. | ethanol | 10–100 | √ | [87] |
CuO nanosheets | hydrothermal | 270–370 | ethanol | 10–200 | × | [96] |
CuO nanoflowers (In doped) | hydrothermal | 95–180 | ethanol | 10–300 | √ | [97] |
dodecahedral Cu2O nanocages | wet chemical | 150–300 | ethanol | 10–300 | × | [98] |
CuO and Cu2O nanospheres | wet chemical | 210 | ethanol | 10–800 | × | [99] |
CuO nanoflowers | microwave-assisted | 150–400 | ethyl-acetate | 10–1000 | √ | [100] |
CuO nanosheets | calcination of precursor | 170–370 | ethanol | 10–2000 | × | [101] |
CuO and Cu2O thin films | magnetron sputtering | 120–320 | ethanol | 12.5–500 | × | [11] |
CuO nanoparticles | thermal oxidation | 200 | ethanol | 20–500 | × | [102] |
CuO nanowires | thermal oxidation | 150–300 | ethanol | 25–1000 | × | [103] |
CuO nanowires | thermal oxidation | 300 | ethanol | 25–1000 | × | [43] |
porous Cu2O cubes | hydrothermal | 250 | ethanol | 50–250 | × | [104] |
CuO thin film | wet chemical | 200–300 | 2-propanol | 50–300 | √ | [105] |
porous CuO/Cu2O cubes | calcination of precursor | 100–220 | acetone | 50–500 | × | [106] |
CuO hollow spheres | calcination of precursor | 200–400 | ethanol | 50–1000 | × | [107] |
CuO/Cu2O hollow spheres | template-assisted | 80–160 | ethanol | 50–1000 | × | [13] |
CuO hollow spheres (Fe doped) | calcination of precursor | 200–400 | ethanol | 50–1000 | × | [27] |
mesoporous CuO films | calcination of precursor | 300–400 | ethanol | 100–1000 | × | [108] |
Nanomaterial Morphology | Synthesis Method | Operation Temp. [C] | H2S Gas Conc. [ppm] | Humid Atm. | Lit. Ref. |
---|---|---|---|---|---|
CuO nanoparticles | hydrothermal | 20–120 | 0.0001–1 | √ | [68] |
CuO nanowires | thermal oxidation | 325 | 0.001–0.5 | × | [110] |
single CuO nanowire | thermal oxidation | 325 | 0.01–0.5 | √ | [70] |
CuO nanowires | thermal oxidation | 325 | 0.01–0.5 | √ | [70] |
porous CuO nanobelts | calcination of precursor | 125–225 | 0.01–5 | × | [116] |
CuO nanosheets | hydrothermal | room temp. | 0.01–60 | × | [117] |
CuO nanowires | template-assisted | 25–420 | 0.01–1 | × | [118] |
CuO nanosheets | hydrothermal | 90–300 | 0.03–1.2 | √ | [69] |
porous CuO spheres | hydrothermal | 90–300 | 0.03–1.2 | × | [119] |
CuO/Cu2O nanoparticles | hydrothermal | 80–180 | 0.05–1 | √ | [120] |
CuO nanospindles | hydrothermal/annealing | dynamic | 0.1–1 | × | [121] |
CuO nanowires (Fe2O3 decor.) | thermal oxidation | 50–250 | 0.1–5 | × | [122] |
CuO thin films | thermal oxidation | room temp. | 0.1–10 | × | [123] |
CuO nanobelts | sonochemical | 100–220 | 0.1–10 | √ | [124] |
CuO nanoflowers (Pt doping) | hydrothermal | dynamic | 0.1–10 | × | [125] |
CuO nanoflowers | hydrothermal | room temp. | 0.1–20 | × | [126] |
CuO nanoflowers (Pd doped) | hydrothermal | 70–340 | 0.1–50 | × | [127] |
CuO colloidal particles | oxidation of Cu2O particles | dynamic | 0.1–100 | √ | [128] |
CuO nanosheets | hydrothermal | 250–325 | 0.2–5 | √ | [67] |
CuO nanosheets | hydrothermal | 150–300 | 0.2–10 | √ | [66] |
single CuO nanowire | thermal oxidation | 200–300 | 0.5–10 | × | [15] |
CuO nanoparticles | inkjet printing | dynamic | 0.5–10 | √ | [115] |
CuO nanoplates | hydrothermal | 250–350 | 1–10 | × | [129] |
CuO nanofibers (RGO loaded) | calcination of precursor | 150–400 | 1–10 | × | [130] |
CuO hollow spheres | calcination of precursor | 200–400 | 1–20 | × | [107] |
CuO nanofibers | calcination of precursor | room temp. | 1–100 | √ | [131] |
CuO nanoparticles | inkjet printing | 350–450 | 3–15 | × | [39] |
porous Cu2O hexapods | hydrothermal | 80–260 | 5–5000 | × | [132] |
CuO nanorods (Pd decor.) | thermal oxidation | 300 | 20–100 | × | [133] |
Nanomaterial Morphology | Synthesis Method | Operation Temp. [C] | CO Gas Conc. [ppm] | Humid Atm. | Lit. Ref. |
---|---|---|---|---|---|
CuO nanowires | thermal oxidation | 300 | 1–10 | × | [20] |
CuO nanowires (NiO decor.) | thermal oxidation | 300 | 1–10 | × | [30] |
CuO nanowires | thermal oxidation | 325 | 1–30 | × | [40] |
CuO nanowires (Au decor.) | thermal oxidation | 200–400 | 1–50 | × | [31] |
octahedral Cu2O particles | wet chemical | 50–120 | 1–800 | × | [22] |
CuO nanofibers | calcination of precursor | 300 | 3–150 | × | [135] |
CuO powder | plasma spraying | 100–350 | 5–500 | × | [136] |
CuO nanowires | thermal oxidation | 25–350 | 5–1200 | × | [137] |
CuO nanoplatelets | hydrothermal | room temp. | 10–100 | √ | [138] |
CuO nanoparticles | wet chemical | 150 | 10–100 | √ | [64] |
CuO nanowires | thermal oxidation | 300 | 10–100 | × | [19] |
CuO nanowires | thermal oxidation | 300–370 | 10–100 | × | [139] |
single CuO nanowire | thermal oxidation | 350 | 10–100 | × | [17] |
Cu2O/Au/CuO nanostructures | wet chemical | 200 | 10–500 | × | [140] |
CuO nanowires (Pt decor.) | thermal oxidation | 200–250 | 15–45 | × | [35] |
CuO nanowires | thermal oxidation | 300–350 | 25–150 | √ | [65] |
CuO nanoleaves (Al doped) | wet chemical | 70–230 | 35–12,500 | √ | [141] |
single CuO nanowire | thermal oxidation | 350 | 50–150 | √ | [142] |
CuO nanocubes | oxidation of Cu2O nanocubes | 100–300 | 50–1000 | × | [25] |
CuO nanotubes | oxidation of Cu nanowires | 100–300 | 50–1000 | √ | [25] |
single CuO nanowire (Pd decor.) | thermal oxidation | 350 | 100–300 | √ | [143] |
CuO nanowires | thermal oxidation | 30–400 | 100–1000 | × | [144] |
CuO nanoparticles | hydrothermal | 150–400 | 200–1000 | × | [145] |
Nanomaterial Morphology | Synthesis Method | Operation Temp. [C] | H2 Gas Conc. [ppm] | Humid Atm. | Lit. Ref. |
---|---|---|---|---|---|
CuO nanowires | thermal oxidation | 300 | 1–10 | × | [20] |
CuO nanowires (NiO decor.) | thermal oxidation | 300 | 1–10 | × | [30] |
CuO/Cu2O nanocrystals (Zn doped) | wet chemical/annealing | 100–450 | 10–100 | √ | [56] |
urchin-like CuO particles | microwave-assisted | 150–400 | 10–500 | × | [14] |
CuO nanoparticles | inkjet printing | 400 | 40–3000 | × | [39] |
CuO hollow spheres | calcination of precursor | 200–400 | 50–1000 | × | [107] |
CuO nanowires | thermal oxidation | 275–400 | 100 | × | [154] |
mesoporous CuO films | calcination of precursor | 200–400 | 100–1000 | × | [108] |
Nanomaterial Morphology | Synthesis Method | Operation Temp. [C] | NO2 Gas Conc. [ppm] | Humid Atm. | Lit. Ref. |
---|---|---|---|---|---|
Cu2O/CuO nanoflowers | wet chemical | room temp. | 0.001–50 | √ | [52] |
Cu2O/CuO octahedrons | calcination of precursor | room temp. | 0.01–1 | √ | [157] |
facet-controlled Cu2O | wet chemical | 50–250 | 0.1–5 | × | [24] |
CuO nanoparticles | inkjet printing | 120–500 | 0.2–5 | √ | [156] |
CuO nanowires | thermal oxidation | 325 | 0.5–1.5 | × | [40] |
Cu2O nanopatterns (Pt decor.) | thermal oxidation | 300 | 1–5 | × | [158] |
CuO nanowires | thermal oxidation | 300 | 1–10 | × | [20] |
CuO nanowires (TiO2 decor.) | thermal oxidation | 300 | 1–10 | × | [29] |
CuO nanowires (Co3O4 decor.) | thermal oxidation | 300 | 1–10 | × | [30] |
porous CuO nanocubes | calcination of precursor | 250–350 | 1–10 | × | [159] |
CuO nanofibers | calcination of precursor | 300 | 1–20 | × | [135] |
CuO nanowires (Au decor.) | thermal oxidation | 200–400 | 1–50 | × | [31] |
CuO nanowires | thermal oxidation | 200–400 | 1–100 | × | [139] |
CuO nanocubes | thermal oxidation | 100–250 | 1–100 | × | [160] |
CuO thin films (La2O3 doped) | spray pyrolysis | room temp. | 1.5 | √ | [161] |
Cu2O octahedral nanoparticles | wet chemical | 50 | 5–50 | × | [90] |
CuO nanoparticles | hydrothermal | 50–150 | 5–50 | × | [162] |
CuO nanostructures (Cr doped) | wet chemical | 250–400 | 5–100 | × | [163] |
CuO nanoplatelets | hydrothermal | 25–100 | 10–100 | √ | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. https://doi.org/10.3390/chemosensors9030051
Steinhauer S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors. 2021; 9(3):51. https://doi.org/10.3390/chemosensors9030051
Chicago/Turabian StyleSteinhauer, Stephan. 2021. "Gas Sensors Based on Copper Oxide Nanomaterials: A Review" Chemosensors 9, no. 3: 51. https://doi.org/10.3390/chemosensors9030051
APA StyleSteinhauer, S. (2021). Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors, 9(3), 51. https://doi.org/10.3390/chemosensors9030051