A Review of Microfluidic Detection Strategies for Heavy Metals in Water
Abstract
:1. Introduction
2. Optical Detection Strategies for Microfluidics
2.1. Absorbance Based Detection
2.2. Fluorescence Detection
2.3. Chemiluminescence Detection
2.4. Surface Plasmon Resonance
3. Electrochemical Detection for Microfluidics
4. Detection Using Quartz Crystal Microbalance
5. Discussion and Outlook
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koop, S.H.A.; van Leeuwen, C.J. The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 2017, 19, 385–418. [Google Scholar] [CrossRef] [Green Version]
- Petrusevski, B.; Sharma, S.; Schippers, J.C.; Shordt, K. Arsenic in drinking water. Delft IRC Int. Water Sanit. Cent. 2007, 17, 36–44. [Google Scholar]
- Fernandez-Luqueno, F.; López-Valdez, F.; Gamero-Melo, P.; Luna-Suárez, S.; Aguilera-González, E.N.; Martínez, A.I.; Pérez-Velázquez, I.R. Heavy metal pollution in drinking water-a global risk for human health: A review. Afr. J. Environ. Sci. Technol. 2013, 7, 567–584. [Google Scholar] [CrossRef]
- Choprapawon, C.; Rodcline, A. Chronic arsenic poisoning in Ronpibool Nakhon Sri Thammarat, the southern province of Thailand. In Arsenic; Springer: Dordrecht, The Netherlands, 1997; pp. 69–77. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Kapaj, S.; Peterson, H.; Liber, K.; Bhattacharya, P. Human health effects from chronic arsenic poisoning—A review. J. Environ. Sci. Health Part A 2006, 41, 2399–2428. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Casp. J. Intern. Med. 2017, 8, 135. [Google Scholar] [CrossRef]
- Achmad, R.T.; Ibrahim, E. Effects of chromium on human body. Annu. Res. Rev. Biol. 2017, 13, ARRB-33462. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S.; Berggren, K.L.; Marks, E.; Fox, J.H. Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: A systematic review. Nutr. Rev. 2017, 75, 456–470. [Google Scholar] [CrossRef] [Green Version]
- Kondakis, X.G.; Makris, N.; Leotsinidis, M.; Prinou, M.; Papapetropoulos, T. Possible health effects of high manganese concentration in drinking water. Arch. Environ. Health An Int. J. 1989, 44, 175–178. [Google Scholar] [CrossRef]
- Satoh, H. Occupational and environmental toxicology of mercury and its compounds. Ind. Health 2000, 38, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Risher, J.F.; Amler, S.N. Mercury exposure: Evaluation and intervention: The inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicology 2005, 26, 691–699. [Google Scholar] [CrossRef] [Green Version]
- Kitaura, H.; Nakao, N.; Yoshida, N.; Yamada, T. Induced sensitization to nickel in guinea pigs immunized with mycobacteria by injection of purified protein derivative with nickel. New Microbiol. 2003, 26, 101–108. [Google Scholar]
- Cavani, A. Breaking tolerance to nickel. Toxicology 2005, 209, 119–121. [Google Scholar] [CrossRef] [PubMed]
- Vinutha, K.; Jahagirdar, A.A.; Veena Devi, B.; Nanda, N. Removal of chromium from industrial wastewater. In Proceedings of the International Conference on Integrated Water Resource Management, Bangalore, India, 5–7 February 2007; p. 287. [Google Scholar]
- Delves, H.T. Dietary Sources of Copper. In Excerpta Medica; Elsevier: New York, NY, USA, 1980. [Google Scholar]
- Fitch, M.W.; Graham, D.W.; Arnold, R.G.; Agarwal, S.K.; Phelps, P.; Speitel, G.E.; Georgiou, G. Phenotypic characterization of copper-resistant mutants of Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 1993, 59, 2771–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, T.A.; Arshad, M.N.; Rahman, M.M.; Asiri, A.M.; Alamry, K.A. Development of highly efficient Co2+ ions sensor based on N, N′-(ethane-1,2-diyl) bis (2,5-dimethoxybenzenesulfonamide)(EBDMBS) fabricated glassy carbon electrode. J. Organomet. Chem. 2016, 822, 53–61. [Google Scholar] [CrossRef]
- Rao, N.S. Iron content in groundwaters of Visakhapatnam environs, Andhra Pradesh, India. Environ. Monit. Assess. 2008, 136, 437–447. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Sirousmehr, A.R. Comparison of three techniques for estimating phytotoxicity in municipal solid waste compost. Ann. Biol. Res. 2012, 3, 1094–1101. [Google Scholar]
- Vilar, M.; Barciela, J.; García-Martín, S.; Pena, R.M.; Herrero, C. Comparison of different permanent chemical modifiers for lead determination in Orujo spirits by electrothermal atomic absorption spectrometry. Talanta 2007, 71, 1629–1636. [Google Scholar] [CrossRef]
- Chakraborty, P.; Babu, P.R.; Sarma, V.V. A new spectrofluorometric method for the determination of total arsenic in sediments and its application to kinetic speciation. Int. J. Environ. Anal. Chem. 2012, 92, 133–147. [Google Scholar] [CrossRef]
- Sarma, H.; Deka, S.; Deka, H.; Saikia, R.R. Accumulation of Heavy Metals in Selected Medicinal Plants. In Reviews of Environmental Contamination and Toxicology; Springer: New York, NY, USA, 2012; Volume 214, pp. 63–86. [Google Scholar] [CrossRef]
- Cleary, J.; Maher, D.; Diamond, D. Development and Deployment of a Microfluidic Platform for Water Quality Monitoring. In Smart Sensors for Real-Time Water Quality Monitoring; Smart Sensors, Measurement and Instrumentation; Mukhopadhyay, S., Mason, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 4, pp. 154–196. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, H.; Afkhami, A.; Saber-Tehrani, M.; Khoshsafar, H. Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta 2012, 97, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, M.R.; Matbouie, Z.; Asgharinezhad, A.A.; Dehghani, A. Solid phase extraction of Cd (II) and Pb (II) using a magnetic metal-organic framework, and their determination by FAAS. Microchim. Acta 2013, 180, 589–597. [Google Scholar] [CrossRef]
- Gomez, M.R.; Cerutti, S.; Sombra, L.L.; Silva, M.F.; Martínez, L.D. Determination of heavy metals for the quality control in argentinian herbal medicines by ETAAS and ICP-OES. Food Chem. Toxicol. 2007, 45, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Obiajunwa, E.I.; Pelemo, D.A.; Owolabi, S.A.; Fasasi, M.K.; Johnson-Fatokun, F.O. Characterisation of heavy metal pollutants of soils and sediments around a crude-oil production terminal using EDXRF. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2002, 194, 61–64. [Google Scholar] [CrossRef]
- Djedjibegovic, J.; Larssen, T.; Skrbo, A.; Marjanovic, A.; Sober, M. Contents of cadmium, copper, mercury and lead in fish from the Neretva river (Bosnia and Herzegovina) determined by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem. 2012, 131, 469–476. [Google Scholar] [CrossRef]
- Faraji, M.; Yamini, Y.; Saleh, A.; Rezaee, M.; Ghambarian, M.; Hassani, R. A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta 2010, 659, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Crocker, J.; Bartram, J. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries. Int. J. Environ. Res. Public Health 2014, 11, 7333–7346. [Google Scholar] [CrossRef]
- Kabir, F.; Chowdhury, S. Arsenic removal methods for drinking water in the developing countries: Technological developments and research needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic sample preparation for medical diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef]
- Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. [Google Scholar] [CrossRef]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368. [Google Scholar] [CrossRef]
- Gai, H.; Li, Y.; Yeung, E.S. Optical Detection Systems on Microfluidic Chips. Top. Curr. Chem. 2011, 171–201. [Google Scholar] [CrossRef]
- Nge, P.N.; Rogers, C.I.; Woolley, A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Gijs, M.A. Micro-optics for microfluidic analytical applications. Chem. Soc. Rev. 2018, 47, 1391–1458. [Google Scholar] [CrossRef] [PubMed]
- Manz, A.; Graber, N.; Widmer, H.A. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990, 1, 244–248. [Google Scholar] [CrossRef]
- Chiu, D.T.; deMello, A.J.; Di Carlo, D.; Doyle, P.S.; Hansen, C.; Maceiczyk, R.M.; Wootton, R.C. Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2017, 2, 201–223. [Google Scholar] [CrossRef] [Green Version]
- Einav, S.; Gerber, D.; Bryson, P.D.; Sklan, E.H.; Elazar, M.; Maerkl, S.J.; Glenn, J.S.; Quake, S.R. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat. Biotechnol. 2008, 26, 1019. [Google Scholar] [CrossRef] [Green Version]
- Gerber, D.; Maerkl, S.J.; Quake, S.R. An in vitro microfluidic approach to generating protein-interaction networks. Nat. Methods 2009, 6, 71. [Google Scholar] [CrossRef]
- Walsh, C.L.; Babin, B.M.; Kasinskas, R.W.; Foster, J.A.; McGarry, M.J.; Forbes, N.S. A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics. Lab Chip 2009, 9, 545–554. [Google Scholar] [CrossRef]
- Dossi, N.; Susmel, S.; Toniolo, R.; Pizzariello, A.; Bontempelli, G. Application of microchip electrophoresis with electrochemical detection to environmental aldehyde monitoring. Electrophoresis 2009, 30, 3465–3471. [Google Scholar] [CrossRef] [PubMed]
- Llopis, X.; Pumera, M.; Alegret, S.; Merkoçi, A. Lab-on-a-chip for ultrasensitive detection of carbofuran by enzymatic inhibition with replacement of enzyme using magnetic beads. Lab Chip 2009, 9, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Pol, R.; Céspedes, F.; Gabriel, D.; Baeza, M. Microfluidic lab-on-a-chip platforms for environmental monitoring. TrAC Trends Anal. Chem. 2017, 95, 62–68. [Google Scholar] [CrossRef]
- Ullah, N.; Mansha, M.; Khan, I.; Qurashi, A. Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges. TrAC Trends Anal. Chem. 2018, 100, 155–166. [Google Scholar] [CrossRef]
- Liu, X.; Yao, Y.; Ying, Y.; Ping, J. Recent advances in nanomaterial-enabled screen-printed electrochemical sensors for heavy metal detection. TrAC Trends Anal. Chem. 2019. [Google Scholar] [CrossRef]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Yu, H.; Tian, L.; Wang, Z. Portable and smart devices for monitoring heavy metal ions integrated with nanomaterials. TrAC Trends Anal. Chem. 2018, 98, 190–200. [Google Scholar] [CrossRef]
- Herold, K.E.; Rasooly, A. (Eds.) Lab on a Chip Technology: Fabrication and Microfluidics; Caister Academic Press: Norfolk, UK, 2009; Volume 1. [Google Scholar]
- Yogarajah, N.; Tsai, S.S. Detection of trace arsenic in drinking water: Challenges and opportunities for microfluidics. Environ. Sci. Water Res. Technol. 2015, 1, 426–447. [Google Scholar] [CrossRef]
- Becker, H.; Locascio, L.E. Polymer microfluidic devices. Talanta 2002, 56, 267–287. [Google Scholar] [CrossRef]
- Manz, A.; Harrison, D.J.; Verpoorte, E.M.; Fettinger, J.C.; Paulus, A.; Ludi, H.; Widmer, H.M. Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: Capillary electrophoresis on a chip. J. Chromatogr. A 1992, 593, 253–258. [Google Scholar] [CrossRef]
- Liang, W.; Lin, H.; Chen, J.; Chen, C. Utilization of nanoparticles in microfluidic systems for optical detection. Microsyst. Technol. 2016, 22, 2363–2370. [Google Scholar] [CrossRef]
- Baker, C.A.; Duong, C.T.; Grimley, A.; Roper, M.G. Recent advances in microfluidic detection systems. Bioanalysis 2009, 1, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Mohod, C.V.; Dhote, J. Review of heavy metals in drinking water and their effect on human health. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 2992–2996. [Google Scholar]
- Marle, L.; Greenway, G.M. Microfluidic devices for environmental monitoring. TrAC Trends Anal. Chem. 2005, 24, 795–802. [Google Scholar] [CrossRef]
- Lu, Q.; Copper, C.L.; Collins, G.E. Ultraviolet absorbance detection of colchicine and related alkaloids on a capillary electrophoresis microchip. Anal. Chim. Acta 2006, 572, 205–211. [Google Scholar] [CrossRef]
- Billot, L.; Plecis, A.; Chen, Y. Multi-reflection based on chip label free molecules detection. Microelectron. Eng. 2008, 85, 1269–1271. [Google Scholar] [CrossRef]
- Petersen, N.J.; Mogensen, K.B.; Kutter, J.P. Performance of an in-plane detection cell with integrated waveguides for UV/Vis absorbance measurements on microfluidic separation devices. Electrophoresis 2002, 23, 3528–3536. [Google Scholar] [CrossRef]
- Gustafsson, O.; Mogensen, K.B.; Ohlsson, P.D.; Liu, Y.; Jacobson, S.C.; Kutter, J.P. An electrochromatography chip with integrated waveguides for UV absorbance detection. J. Micromech. Microeng. 2008, 18. [Google Scholar] [CrossRef]
- Llobera, A.; Wilke, R.; Buttgenbach, S. Poly (dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. Lab Chip 2004, 4, 24–27. [Google Scholar] [CrossRef]
- Yeh, P.; Yeh, N.; Lee, C.H.; Ding, T.J. Applications of LEDs in optical sensors and chemical sensing device for detection of biochemicals, heavy metals, and environmental nutrients. Renew. Sustain. Energy Rev. 2017, 75, 461–468. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Arsenic monitoring in water by colorimetry using an optimized leucomalachite green method. Molecules 2019, 24, 339. [Google Scholar] [CrossRef] [Green Version]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Arsenic detection in water using microfluidic detection systems based on the leucomalachite green method. Anal. Methods 2019, 11, 5431–5438. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, M.; Lau, K.T.; Schazmann, B.; Shepherd, R.; Nesterenko, P.N.; Paull, B.; Diamond, D. Novel integrated paired emitter-detector diode (PEDD) as a miniaturized photometric detector in HPLC. Analyst 2006, 131, 938–943. [Google Scholar] [CrossRef] [Green Version]
- O’Toole, M.; Barron, L.; Shepherd, R.; Nesterenko, P.; Paull, B.; Diamond, D. Paired emitter-detector diode detection with dual wavelength monitoring for enhanced sensitivity to transition metals in ion chromatography with post-column reaction. Analyst 2009, 134, 124–130. [Google Scholar]
- Donohoe, A.; McCaul, M.; Lacour, G.; Navarro-Hérnandez, C.; Fanjul-Bolado, P.; Diamond, D. Development of cost-effective sensors for the in-situ monitoring of heavy metals. In Proceedings of the Analytical Research Forum 2017, London, UK, 7 July 2017. [Google Scholar]
- Milani, A.; Statham, P.J.; Mowlem, M.C.; Connelly, D.P. Development and application of a microfluidic in-situ analyzer for dissolved Fe and Mn in natural waters. Talanta 2015, 136, 15–22. [Google Scholar] [CrossRef]
- Du, W.B.; Fang, Q.; He, Q.H.; Fang, Z.L. High-throughput nanoliter sample introduction microfluidic chip-based flow injection analysis system with gravity-driven flows. Anal. Chem. 2005, 77, 1330–1337. [Google Scholar] [CrossRef]
- Nuriman Kuswandi, B.; Verboom, W. Optical fiber chemical sensing of Hg (II) ions in aqueous samples using a microfluidic device containing a selective tripodal chromoionophore-PVC film. Sens. Actuators B Chem. 2011, 157, 438–443. [Google Scholar] [CrossRef]
- Busa, L.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines 2016, 7, 86. [Google Scholar] [CrossRef]
- Satarpai, T.; Shiowatana, J.; Siripinyanond, A. Paper based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta 2016, 154, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.; Upadhyay, L.S.B. An efficient protocol to use iron oxide nanoparticles in microfluidic paper device for arsenic detection. MethodsX 2018, 5, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Fang, Y.; Mo, Y.; Huang, Y.; Xu, C.; Zhang, Z.; Wang, M. Visual quantification of Hg on a microfluidic paper-based analytical device using distance-based detection technique. AIP Adv. 2017, 7, 085214. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, H.; Tashkhourian, J.; Hemmateenejad, B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: Application to determination of Cu(II) in water samples. Anal. Chim. Acta 2020, 1126, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Chowdury, M.; Walji, N.; Mahmud, M.; MacDonald, B. Paper based microfluidic device with a gold nanosensor to detect arsenic contamination of groundwater in Bangladesh. Micromachines 2017, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Devadhasan, J.P.; Kim, J. A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection. Sens. Actuators B Chem. 2018, 273, 18–24. [Google Scholar] [CrossRef]
- Sun, J.; Xianyu, Y.; Jiang, X. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 2014, 43, 6239–6253. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-E.; Lin, C.-H. Microfluidic chip for droplet-based AuNP synthesis with dielectric barrier discharge plasma and on-chip mercury ion detection. RSC Adv. 2018, 8, 16139–16145. [Google Scholar] [CrossRef] [Green Version]
- Kamnoet, P.; Aeungmaitrepirom, W.; Menger, R.F.; Henry, C. Highly selective simultaneous Cu (II), Co (II), Ni (II), Hg (II), Mn (II) determination in water samples on microfluidic paper-based analytical devices. Analyst 2021. [Google Scholar] [CrossRef]
- Grasianto Fukuyama, M.; Mott, D.M.; Koseki, Y.; Kasai, H.; Hibara, A. Organic nanocrystal enrichment in paper microfluidic analysis. Sens. Actuators B Chem. 2021, 2021, 129548. [Google Scholar] [CrossRef]
- Jain, R.; Thakur, A.; Kaur, P.; Kim, K.-H.; Devi, P. Advances in Imaging-Assisted Sensing Techniques for Heavy Metals in Water: Trends, Challenges, and Opportunities. TrAC Trends Anal. Chem. 2019, 123, 115758. [Google Scholar] [CrossRef]
- Reyes, D.R.; Iossifidis, D.; Auroux, P.A.; Manz, A. Micro total analysis systems. 1. Introduction theory, and technology. Anal. Chem. 2002, 74, 2623–2636. [Google Scholar] [CrossRef]
- Hata, K.; Kichise, Y.; Kaneta, T.; Imasaka, T. Hadamard transform microchip electrophoresis combined with diode laser fluorometry. Anal. Chem. 2003, 75, 1765–1768. [Google Scholar] [CrossRef]
- Zukauskas, A.; Shur, M.S.; Gaska, R. Introduction to Solid-State Lighting; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Kovac, J.; Peternai, L.; Lengyel, O. Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 2003, 433, 22–26. [Google Scholar] [CrossRef]
- Miyaki, K.; Guo, Y.; Shimosaka, T.; Nakagama, T.; Nakajima, H.; Uchiyama, K. Fabrication of an integrated PDMS microchip incorporating an LED-induced fluorescence device. Anal. Bioanal. Chem. 2005, 382, 810–816. [Google Scholar] [CrossRef]
- Auroux, P.A.; Iossifidis, D.; Reyes, D.R.; Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 2002, 74, 2637–2652. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yin, X.F.; Fang, Z.L. Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 2004, 4, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.C.; Emery, F.S. Fluorescence quenching of two meso-substituted tetramethyl BODIPY dyes by Fe (III) cation. J. Braz. Chem. Soc. 2015, 26, 1048–1053. [Google Scholar] [CrossRef]
- Bell, J.; Climent, E.; Hecht, M.; Buurman, M.; Rurack, K. Combining a droplet-based microfluidic tubing system with gated indicator releasing nanoparticles for mercury trace detection. ACS Sens. 2016, 1, 334–338. [Google Scholar] [CrossRef]
- Kou, S.; Nam, S.W.; Shumi, W.; Lee, M.H.; Bae, S.W.; Du, J.; Kim, J.S.; Hong, J.I.; Peng, X.; Yoon, J.; et al. Microfluidic detection of multiple heavy metal ions using fluorescent chemosensors. Bull. Korean Chem. Soc. 2009, 30, 1173–1176. [Google Scholar]
- Morakot, N.; Tomapatanaget, B.; Ngeon-Tae, W.; Aeungmaitrepirom, W.; Tuntulani, T. Synthesis and fluorescence sensing properties of calix[4]arenes containing fluorophores. Supramol. Chem. 2005, 17, 655–659. [Google Scholar] [CrossRef]
- Faye, D.; Lefevre, J.P.; Delaire, J.A.; Leray, I. A selective lead sensor based on a fluorescent molecular probe grafted on a PDMS microfluidic chip. J. Photochem. Photobiol. A Chem. 2012, 234, 115–122. [Google Scholar] [CrossRef]
- Zhao, L.; Wu, T.; Lefevre, J.P.; Leray, I.; Delaire, J.A. Fluorimetric lead detection in a microfluidic device. Lab Chip 2009, 9, 2818–2823. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, L.; Faye, D.; Lefevre, J.P.; Delaire, J.; Leray, I. Determination of lead in water by combining precolumn adsorption and fluorimetric detection in a microfluidic device. Anal. Methods 2012, 4, 989–994. [Google Scholar] [CrossRef]
- Saha, S.; Mahato, P.; Baidya, M.; Ghosh, S.K.; Das, A. An interrupted PET coupled TBET process for the design of a specific receptor for Hg 2+ and its intracellular detection in MCF7 cells. Chem. Commun. 2012, 48, 9293–9295. [Google Scholar] [CrossRef]
- Lu, H.; Qi, S.; Mack, J.; Li, Z.; Lei, J.; Kobayashi, N.; Shen, Z. Facile Hg2+ detection in water using fluorescent self-assembled monolayers of a rhodamine-based turn-on chemodosimeter formed via a “click” reaction. J. Mater. Chem. 2011, 21, 10878–10882. [Google Scholar] [CrossRef]
- Xu, L.; Xu, Y.; Zhu, W.; Sun, X.; Xu, Z.; Qian, X. Modulating the selectivity by switching sensing media: A bifunctional chemosensor selectivity for Cd2+ and Pb2+ in different aqueous solutions. RSC Adv. 2012, 2, 6323–6328. [Google Scholar] [CrossRef]
- Xiang, Y.; Tong, A.; Jin, P.; Ju, Y. New fluorescent rhodamine hydrazone chemosensor for Cu (II) with high selectivity and sensitivity. Org. Lett. 2006, 8, 2863–2866. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Rao, B.A.; Jeong, J.; Angupillai, S.; Choi, J.S.; Nam, J.O.; Lee, C.S.; Son, Y.A. A rhodamine scaffold immobilized onto mesoporous silica as a fluorescent probe for the detection of Fe (III) and applications in bio-imaging and microfluidic chips. Sens. Actuators B Chem. 2016, 224, 404–412. [Google Scholar] [CrossRef]
- Zhang, H.; Faye, D.; Lefèvre, J.P.; Delaire, J.A.; Leray, I. Selective fluorimetric detection of cadmium in a microfluidic device. Microchem. J. 2013, 106, 167–173. [Google Scholar] [CrossRef]
- Peng, G.; He, Q.; Lu, Y.; Huang, J.; Lin, J.M. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr (III) and Cr (VI) in water samples after solid phase extraction. Anal. Chim. Acta 2017, 955, 58–66. [Google Scholar] [CrossRef]
- Kang, K.A.; Wang, J.; Jasinski, J.B.; Achilefu, S. Fluorescence manipulation by gold nanoparticles: From complete quenching to extensive enhancement. J. Nanobiotechnol. 2011, 9, 16. [Google Scholar] [CrossRef] [Green Version]
- Lafleur, J.P.; Senkbeil, S.; Jensen, T.G.; Kutter, J.P. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants. Lab Chip 2012, 12, 4651–4656. [Google Scholar] [CrossRef]
- Jebrail, M.J.; Wheeler, A.R. Let’s get digital: Digitizing chemical biology with microfluidics. Curr. Opin. Chem. Biol. 2010, 14, 574–581. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.; Zhang, X.; Jiang, L.; Yin, J.; Zhang, P.; Han, S.; Wang, Y.; Zheng, G. A feedback-controlling digital microfluidic fluorimetric sensor device for simple and rapid detection of mercury (II) in costal seawater. Mar. Pollut. Bull. 2019, 144, 20–27. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Gan, Y.; Liang, T.; Zhou, S.; Sun, J.; Wan, H.; Wang, P. Microfluidic-based fluorescent electronic eye with CdTe/CdS core-shell quantum dots for trace detection of cadmium ions. Anal. Chim. Acta 2020, 1131, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, M.A.; Hauser, P.C. Recent developments in detection methods for microfabricated analytical devices. Lab Chip 2001, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Esch, M.B.; Locascio, L.E.; Tarlov, M.J.; Durst, R.A. Detection of Viable Cryptosporidium P arvum Using DNA-Modified Liposomes in a Microfluidic Chip. Anal. Chem. 2001, 73, 2952–2958. [Google Scholar] [CrossRef] [PubMed]
- Broyles, B.S.; Jacobson, S.C.; Ramsey, J.M. Sample filtration, concentration, and separation integrated on microfluidic devices. Anal. Chem. 2003, 75, 2761–2767. [Google Scholar] [CrossRef]
- Bromberg, A.; Mathies, R.A. Homogeneous immunoassay for detection of TNT and its analogues on a microfabricated capillary electrophoresis chip. Anal. Chem. 2003, 75, 1188–1195. [Google Scholar] [CrossRef]
- Barnett, N.W.; Francis, P.S. Chemiluminescence: Liquid-Phase. In Encyclopedia of Analytical Science; Worsfold, P.J., Townshend, A., Poole, C.F., Eds.; Elsevier: Oxford, UK, 2005; pp. 511–521. [Google Scholar]
- Nogami, T.; Hashimoto, M.; Tsukagoshi, K. Metal ion analysis using microchip CE with chemiluminescence detection based on 1, 10-phenanthroline–hydrogen peroxide reaction. J. Sep. Sci. 2009, 32, 408–412. [Google Scholar] [CrossRef]
- Sun, H.; Li, W.; Dong, Z.Z.; Hu, C.; Leung, C.H.; Ma, D.L.; Ren, K. A suspending-droplet mode paper-based microfluidic platform for low-cost, rapid, and convenient detection of lead (II) ions in liquid solution. Biosens. Bioelectron. 2018, 99, 361–367. [Google Scholar] [CrossRef]
- Som-Aum, W.; Li, H.; Liu, J.; Lin, J.M. Determination of arsenate by sorption pre-concentration on polystyrene beads packed in a microfluidic device with chemiluminescence detection. Analyst 2008, 133, 1169–1175. [Google Scholar] [CrossRef]
- Khan, P.; Idrees, D.; Moxley, M.A.; Corbett, J.A.; Ahmad, F.; von Figura, G.; Sly, W.S.; Waheed, A.; Hassan, M.I. Luminol-based chemiluminescent signals: Clinical and non-clinical application and future uses. Appl. Biochem. Biotechnol. 2014, 173, 333–355. [Google Scholar] [CrossRef] [Green Version]
- Som-Aum, W.; Threeprom, J.; Li, H.; Lin, J.M. Determination of chromium (III) and total chromium using dual channels on glass chip with chemiluminescence detection. Talanta 2007, 71, 2062–2068. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Z. A microchip with air sampling and chemiluminescence detection for analyzing iron in nature water and in whole blood. Anal. Lett. 2004, 37, 1401–1410. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Z.; Zeng, G.; Tang, L. Fluorescent and colorimetric sensors for environmental mercury detection. Analyst 2015, 140, 5400–5443. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Yu, J.; Ge, S.; Yan, M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 2014, 406, 5613–5630. [Google Scholar] [CrossRef] [PubMed]
- Alahmad, W.; Uraisin, K.; Nacapricha, D.; Kaneta, T. A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III). Anal. Methods 2016, 8, 5414–5420. [Google Scholar] [CrossRef]
- Bhandari, P.; Narahari, T.; Dendukuri, D. ‘Fab-Chips’: A versatile, fabric-based platform for low-cost, rapid and multiplexed diagnostics. Lab Chip 2011, 11, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, N.; Liu, H.; Wang, Y.; Hao, Y.; Ma, X.; Wang, C. A novel label-free fluorescence assay for one-step sensitive detection of Hg 2+ in environmental drinking water samples. Sci. Rep. 2017, 7, 45974. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Zhang, P.; Li, H.; Zhang, C. Lab-on-cloth integrated with gravity/capillary flow chemiluminescence (GCF-CL): Towards simple, inexpensive, portable, flow system for measuring trivalent chromium in water. Sens. Actuators B Chem. 2016, 236, 35–43. [Google Scholar] [CrossRef]
- Wang, W.; Mai, Z.; Chen, Y.; Wang, J.; Li, L.; Su, Q.; Li, X.; Hong, X. A label-free fiber optic SPR biosensor for specific detection of C-reactive protein. Sci. Rep. 2017, 7, 16904. [Google Scholar] [CrossRef]
- Sadrolhosseini, A.R.; Noor, A.S.M.; Maarof Moksin, M. Applications of surface plasmon resonance based on a metal nanoparticle. In Plasmonics-Principles and Applications; Kim, K.Y., Ed.; IntechOpen: London, UK, 2012; pp. 253–282. [Google Scholar]
- Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H.Y. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 2015, 45, 97–105. [Google Scholar] [CrossRef]
- Tabassum, R.; Gupta, B.D. Simultaneous estimation of vitamin K1 and heparin with low limit of detection using cascaded channels fiber optic surface plasmon resonance. Biosens. Bioelectron. 2016, 86, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Motalebizadeh, A.; Bagheri, H.; Asiaei, S.; Fekrat, N.; Afkhami, A. New portable smartphone-based PDMS microfluidic kit for the simultaneous colorimetric detection of arsenic and mercury. RSC Adv. 2018, 8, 27091–27100. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.L.T.; Kim, E.J.; Chang, S.K.; Park, T.J. Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. Biochip J. 2016, 10, 65–73. [Google Scholar] [CrossRef]
- Gómez-de Pedro, S.; Lopes, D.; Miltsov, S.; Izquierdo, D.; Alonso-Chamarro, J.; Puyol, M. Optical microfluidic system based on ionophore modified gold nanoparticles for the continuous monitoring of mercuric ion. Sens. Actuators B Chem. 2014, 194, 19–26. [Google Scholar] [CrossRef]
- Apilux, A.; Siangproh, W.; Praphairaksit, N.; Chailapakul, O. Simple and rapid colorimetric detection of Hg (II) by a paper-based device using silver nanoplates. Talanta 2012, 97, 388–394. [Google Scholar] [CrossRef]
- Johnston, H.J.; Hutchison, G.; Christensen, F.M.; Peters, S.; Hankin, S.; Stone, V. A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Lapresta-Fernández, A.; Fernandez, A.; Blasco, J. Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends Anal. Chem. 2012, 32, 40–59. [Google Scholar] [CrossRef]
- Pourreza, N.; Golmohammadi, H.; Rastegarzadeh, S. Highly selective and portable chemosensor for mercury determination in water samples using curcumin nanoparticles in a paper based analytical device. RSC Adv. 2016, 6, 69060–69066. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P.A. Molecularly imprinted polymer in nanoparticles in chemical sensing-synthesis, characterization and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Chen, L.; Xu, S.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Shrivastav, A.M.; Gupta, B.D. Ion-imprinted nanoparticles for the concurrent estimation of Pb (II) and Cu (II) ions over a two channel surface plasmon resonance-based fiber optic platform. J. Biomed. Opt. 2018, 23, 017001. [Google Scholar] [CrossRef]
- Wongkaew, N.; He, P.; Kurth, V.; Surareungchai, W.; Baeumner, A.J. Multi-channel PMMA microfluidic biosensor with integrated IDUAs for electrochemical detection. Anal. Bioanal. Chem. 2013, 405, 5965–5974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Portable electrochemical systems. TrAC Trends Anal. Chem. 2002, 21, 226–232. [Google Scholar] [CrossRef]
- Dong, H.; Li, C.M.; Zhang, Y.F.; Cao, X.D.; Gan, Y. Screen-printed microfluidic device for electrochemical immuneoassay. Lab Chip 2007, 7, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Gencoglu, A.; Minerick, A.R. Electrochemical detection techniques in micro- and nanofluidic devices. Microfluid. Nanofluid. 2014, 17, 781–807. [Google Scholar] [CrossRef]
- Hong, Y.; Wu, M.; Chen, G.; Dai, Z.; Zhang, Y.; Chen, G.; Dong, X. 3D printed microfluidic device with microporous Mn2O3-modified screen printed electrode for real-time determination of heavy metal ions. ACS Appl. Mater. Interfaces 2016, 8, 32940–32947. [Google Scholar] [CrossRef]
- Morozan, A.; Jaouen, F. Metal organic frameworks for electrochemical applications. Energy Environ. Sci. 2012, 5, 9269–9290. [Google Scholar] [CrossRef]
- Yang, G.; Yan, W.; Wang, J.; Yang, H. Fabrication and formation mechanism of Mn2O3 hollow nanofibers by single-spinneret electrospinning. CrystEngComm 2014, 16, 6907–6913. [Google Scholar] [CrossRef]
- Li, Q.; Yin, L.; Li, Z.; Wang, X.; Qi, Y.; Ma, J. Copper doped hollow structured manganese oxide mesocrystals with controlled phase structure and morphology as anode materials for lithium ion battery with improved electrochemical performance. ACS Appl. Mater. Interfaces 2013, 5, 10975–10984. [Google Scholar] [CrossRef]
- Le, T.S.; Da Costa, P.; Huguet, P.; Sistat, P.; Pichot, F.; Silva, F.; Renaud, L.; Cretin, M. Upstream microelectrodialysis for heavy metals detection on boron doped diamond. J. Electroanal. Chem. 2012, 670, 50–55. [Google Scholar] [CrossRef]
- Li, S.; Zhang, C.; Wang, S.; Liu, Q.; Feng, H.; Ma, X.; Guo, J. Electrochemical microfluidics techniques for heavy metal ion detection. Analyst 2018, 143, 4230–4246. [Google Scholar] [CrossRef]
- Nguyen, H.L.; Cao, H.H.; Nguyen, D.T.; Nguyen, V.A. Sodium dodecyl sulfate doped polyaniline for enhancing the electrochemical sensitivity of mercury ions. Electroanalysis 2017, 29, 595–601. [Google Scholar] [CrossRef]
- Adkins, J.; Boehle, K.; Henry, C. Electrochemical paper-based microfluidic devices. Electrophoresis 2015, 36, 1811–1824. [Google Scholar] [CrossRef]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Tang, F.; Xing, H.; Zheng, H.; Lianhua, B.; Wei, W. Electrochemical detection of Pb and Cd in paper-based microfluidic devices. J. Braz. Chem. Soc. 2012, 23, 1124–1130. [Google Scholar] [CrossRef]
- Shen, L.L.; Zhang, G.R.; Li, W.; Biesalski, M.; Etzold, B.J. Modifier-free microfluidic electrochemical sensor for heavy-metal detection. ACS Omega 2017, 2, 4593–4603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutton, E.A.; van Elteren, J.T.; Ogorevc, B.; Smyth, M.R. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta 2004, 63, 849–855. [Google Scholar] [CrossRef]
- Rehacek, V.; Hotovy, I.; Vojs, M. Bismuth-coated diamond-like carbon microelectrodes for heavy metals determination. Sens. Actuators B Chem. 2007, 127, 193–197. [Google Scholar] [CrossRef]
- Zou, Z.; Jang, A.; MacKnight, E.; Wu, P.M.; Do, J.; Bishop, P.L.; Ahn, C.H. Environmentally friendly disposable sensors with microfabricated on-chip planar bismuth electrode for in situ heavy metal ions measurement. Sens. Actuators B Chem. 2008, 134, 18–24. [Google Scholar] [CrossRef]
- Nantaphol, S.; Channon, R.B.; Kondo, T.; Siangproh, W.; Chailapakul, O.; Henry, C.S. Boron doped diamond paste electrodes for microfluidic paper-based analytical devices. Anal. Chem. 2017, 89, 4100–4107. [Google Scholar] [CrossRef] [PubMed]
- Luong, J.H.; Male, K.B.; Glennon, J.D. Boron-doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. Analyst 2009, 134, 1965–1979. [Google Scholar] [CrossRef] [Green Version]
- Compton, R.G.; Foord, J.S.; Marken, F. Electroanalysis at diamond-like and doped-diamond electrodes. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2003, 15, 1349–1363. [Google Scholar] [CrossRef]
- Pungjunun, K.; Chaiyo, S.; Jantrahong, I.; Nantaphol, S.; Siangproh, W.; Chailapakul, O. Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim. Acta 2018, 185, 324. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Lee, S.; Jena, S.; Kanti Jana, S.; Ray, D.; Kim, S.J.; Thalappil, P. Enhancing the sensitivity of point-of-use electrochemical microfluidic sensors by ion concentration polarization—A case study on arsenic. Sens. Actuators B Chem. 2020, 304, 127340. [Google Scholar] [CrossRef]
- Díaz-González, M.; Fernández-Sánchez, C. Decentralized analysis of water contaminants using compact (bio)electroanalytical tools. Curr. Opin. Environ. Sci. Health 2019, 10, 47–56. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartore, L.; Barbaglio, M.; Borgese, L.; Bontempi, E. Polymer-grafted QCM chemical sensor and application to heavy metal ions real time detection. Sens. Actuators B Chem. 2011, 155, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Zhang, X.; Tian, Y.; Meng, Y. Progresses on the theory and application of quartz crystal microbalance. Appl. Phys. Rev. 2016, 3, 031106. [Google Scholar] [CrossRef]
- Ghaedi, M.; Ahmadi, F.; Shokrollahi, A. Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J. Hazard. Mater. 2007, 142, 272–278. [Google Scholar] [CrossRef]
- Grabchev, I.; Staneva, D.; Dumas, S.; Chovelon, J.M. Metal ions and protons sensing properties of new fluorescent 4-N-methylpiperazine-1, 8-naphthalimide terminated poly(propyleneamine) dendrimer. J. Mol. Struct. 2011, 999, 16–21. [Google Scholar] [CrossRef]
- Shen, C.Y.; Yeh, R.; Chung, M.H.; Hwang, R.C. Analytical Performance and Characterization of a Quartz Crystal Microbalance for the Detection of Cu (II) Ions in Water. J. Electr. Electron. Eng. 2016, 4, 103–108. [Google Scholar] [CrossRef]
- Wang, S.H.; Shen, C.Y.; Lin, Y.M.; Du, J.C. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer. Smart Mater. Struct. 2016, 25, 085018. [Google Scholar] [CrossRef]
- Clever, G.H.; Kaul, C.; Carell, T. DNA–metal base pairs. Angew. Chem. Int. Ed. 2007, 46, 6226–6236. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.H.; Han, J.H.; Zhang, J.P.; Zhao, H.; Jiang, L. Method for detection of Hg2+ based on the specific thymine-Hg2+-thymine interaction in the DNA hybridization on the surface of quartz crystal microbalance. Colloids Surf. B Biointerfaces 2011, 87, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.-M.; Zhao, G.C. Quartz Crystal Microbalance Aptasensor for Sensitive Detection of Mercury (II) Based on Signal Amplification with Gold Nanoparticles. Sensors 2012, 12, 7080–7094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mei, S.H.J.; Liu, Z.; Brennan, J.D.; Li, Y. An Efficient RNA-Cleaving DNA Enzyme that Synchronizes Catalysis with Fluorescence Signaling. J. Am. Chem. Soc. 2003, 125, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew. Chem. Int. Ed. 2004, 43, 4300–4302. [Google Scholar] [CrossRef]
- Teh, H.B.; Li, H.; Yau Li, S.F. Highly sensitive and selective detection of Pb2+ions using a novel and simple DNAzyme-based quartz crystal microbalance with dissipation biosensor. Analyst 2014, 139, 5170–5175. [Google Scholar] [CrossRef]
- Can, N.; Omur, B.C.; Altındal, A. Adsorption kinetics of cd2+ ions onto MgPz thin film. Anadolu Üniversitesi Bilim Ve Teknol. Derg. A-Uygul. Bilimler Ve Mühendislik 2016, 17, 622–632. [Google Scholar] [CrossRef] [Green Version]
- Drescher, K.; Shen, Y.; Bassler, B.L.; Stone, H.A. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc. Natl. Acad. Sci. USA 2013, 110, 4345–4350. [Google Scholar] [CrossRef] [Green Version]
- van Hullebusch, E.; Zandvoort, M.; Lens, P. Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev. Environ. Sci. Biotechnol. 2003, 2, 9–33. [Google Scholar] [CrossRef]
- Zeng, W.; Jacobi, I.; Beck, D.J.; Li, S.; Stone, H.A. Characterization of syringe-pump-driven induced pressure fluctuations in elastic microchannels. Lab Chip 2015, 15, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Atencia, J.; Beebe, D.J. Steady flow generation in microcirculatory systems. Lab Chip 2006, 6, 567. [Google Scholar] [CrossRef] [PubMed]
- Niessner, R. Measuring the invisible. Anal. Chem. 2010, 82, 7863. [Google Scholar] [CrossRef] [PubMed]
- Boehle, K.E.; Doan, E.; Henry, S.; Beveridge, J.R.; Pallickara, S.L.; Henry, C.S. Single board computing system for automated colorimetric analysis on low-cost analytical devices. Anal. Methods 2018, 10, 5282–5290. [Google Scholar] [CrossRef]
- Wu, Y.-T.; Yang, C.-; Ko, C.-H.; Wang, Y.-N.; Liu, C.-C.; Fu, L.-M. Microfluidic detection platform with integrated micro-spectrometer system. Chem. Eng. J. 2020, 393, 124700. [Google Scholar] [CrossRef]
- Capitan-Vallvey, L.F.; Palma, A.J. Recent developments in handheld and portable optosensing—A review. Anal. Chim. Acta 2011, 696, 27–46. [Google Scholar] [CrossRef] [PubMed]
Americas | Argentina, Bolivia, Canada, Chile, Dominica, El Salvador, Honduras, Mexico, Nicaragua, Peru, United States of America, |
Africa | Ghana, South Africa, Zimbabwe |
Asia | Bangladesh, China, Cambodia, India, Iran, Japan, Myanmar, Pakistan, Philippines, Nepal, Sri Lanka, Taiwan, Thailand, Vietnam |
Europe | Austria, Bulgaria, Croatia, France, Finland, Germany, Greece, Hungary, Italy, Poland, Romania, Russia, Serbia, United Kingdom, |
Oceania | Australia, New Zealand |
Heavy Metal | Symbol | WHO | EU | US EPA | Oxidation States | Health Effects |
---|---|---|---|---|---|---|
Arsenic | As | 10 | 10 | 10 | III, V | Skin damage, renal system failure, cancer [5,6]. |
Cadmium | Cd | 3 | 5 | 5 | II | Cardiovascular issues, osteoporosis, cancer [7]. |
Chromium | Cr | 50 | 50 | 100 | III, VI | Teeth abnormalities, diarrhoea, kidney failure [8,15]. |
Copper | Cu | 2000 | 2000 | 1300 | I, II | Liver damage, gastrointestinal problems [16,17]. |
Cobalt | Co | - | - | 100 | II, III | Cardiovascular and pulmonary system issues [18]. |
Iron | Fe | - | 200 | 300 | II, III | Haemochromatosis, gastrointestinal issues [9,19]. |
Lead | Pb | 10 | 10 | 15 | II | Nervous system impairment, brain damage, cancer [20,21]. |
Manganese | Mn | 100 | 50 | 50 | II, IV | Neurological defects [10]. |
Mercury | Hg | 1 | 1 | 2 | I, II | Renal failure, neurological disorders, cancer [11,12]. |
Nickel | Ni | 70 | 20 | - | II | Dermatitis, kidney failure, cardiovascular disease [13,14]. |
Detection Principle | Mechanism | Target Analyte | LOD | Linear Range | References |
---|---|---|---|---|---|
Absorbance | Cell diffusing mixing technology with PAN and ferrozine | Fe (II) Mn (II) | Mn 28 nM, Fe 27 nM | Fe 27–200 nM, Mn 0.028–6 μM | [71] |
Absorbance | Flow injection analysis using phenantroline | Fe (II) | 1.0 µM | 1.0–100 µM | [72] |
Absorbance | Chromoionophre PVC film | Hg (II) | 0.5 µM | 1.0× 10−6–2.5 × 10−4 M | [73] |
Absorbance | µPADs using sodium rhodizonate | Pb (II) | 10 μg L−1 | 10–100 μg L−1 | [75] |
Absorbance | Iron oxide nanoparticles and µPADs | As (III) | 0.01 mg L−1 | 0.01–0.90 mg L−1 | [76] |
Absorbance | Distance based detection using µPADs | Hg (II) | 0.93 mg L−1 | 1–30 mg L−1 | [77] |
Absorbance | µPADs and gold nanoparticles | As (III) | - | 1–50 μg L−1 | [79] |
Absorbance | Chemically patterned µPADs | Ni (II) Cr (VI) Hg (II) | Ni 0.24 mg L−1, Cr 0.18 mg L−1, Hg 0.19 mg L−1 | - | [80] |
Absorbance | Droplet-based AuNP synthesis with dielectric barrier discharge plasma | Hg (II) | 0.2 mg L−1 | - | [82] |
Absorbance | Leucomalachite green dye | As (III) | 0.19 mg L−1 | 0.07–3 mg L−1 | [65] |
Surface plasmon resonance | Gold nanoparticles | Hg (II), As (III) | - | Hg 0.71–1.28 mg L−1, As 0.01–0.054 mg L−1 | [133] |
Surface plasmon resonance | Gold nanoparticles | Hg (II) | 11 µg L−1 | 11–100 µg L−1 | [135] |
Surface plasmon resonance | Curcumin nanoparticles | Hg (II) | 0.003 mg L−1 | 0.01–0.4 mg L−1 | [139] |
Surface plasmon resonance | µPADs with silver nanoparticles | Hg (II) | 12 mg L−1 | 12–75 mg L−1 | [136] |
Surface plasmon resonance | Molecularly imprinted nanoparticles | Cu (II) Pb (II) | Cu 8.18 × 10−4, Pb 4.06 × 10−6 | 4.06–1000 µg L−1 | [142] |
Fluorescence | Droplet based sensor using nanoparticles | Hg (II) | 0.02 μg L−1 | 0.02–200 μg L−1 | [94] |
Fluorescence | BODIPY and nanoparticles | Cd (II) | 5.62 mg L−1 | 5.62–112.41 mg L−1 | [95] |
Fluorescence | Calix-DANS3-OH | Pb (II) | 42 μg L−1 | - | [97] |
Fluorescence | Calix-DANS3-OH | Pb (II) | 5 μg L−1 | - | [98] |
Fluorescence | Precolumn adsorption and fluorometric detection using Calix- DANS4 | Pb (II) | 2 μg L−1 | 2.07–16.5 μg L−1 | [99] |
Fluorescence | Rhodamine 6G silica particle embedded onto mesoporous silica | Fe (III) | - | 2–8 μg L−1 | [104] |
Fluorescence | Flow injection detection | Cd (II) | 0.45 μg L−1 | 1.12–22.40 μg L−1 | [105] |
Fluorescence | On line fluorescent derivatisation | Hg (II) | 0.006 mg L−1 | 6.21–14.041 mg L−1 | [106] |
Fluorescence | Gold nanoparticles | Hg (II) | 0.6 μg L−1 | 0.6–60 μg L−1 | [108] |
Fluorescence | Digital microfluidics (DMF) | Hg (II) | 0.7 μg L−1 | 0.7–10 μg L−1 | [110] |
Chemiluminescence | 1,10 phenanthroline based | Cu (II) Co (II) Fe (II) | Cu 0.47 mg L−1, Co 35.35 mg L−1, Fe 55.84 mg L−1 | Cu 0.47–6.73 mg L−1 | [117] |
Chemiluminescence | G-quadruplex based luminescence | Pb (II) | - | 2–200 μg L−1 | [118] |
Chemiluminescence | Luminol with heteropoly acid complex | As (V) | 6.6 μg L−1 | 0.075–3.74 mg L−1 | [119] |
Chemiluminescence | Luminol oxidation reaction | Cr (III) Cr (VI) | 0.312 × 10−4 ng L−1 | 0.052 × 10−3– 0.052 × 10−1 ng L−1 | [121] |
Chemiluminescence | Microchip with air sampling | Fe (II) | 0.017 mg L−1 | 0.06–2.79 mg L−1 | [122] |
Chemiluminescence | µPADs | Cr (III) | 0.2 mg L−1 | 0.05–1 mg L−1 | [125] |
Chemiluminescence | Lab on a cloth | Cr (III) | 0.006 mg L−1 | 0.01–100 mg L−1 | [128] |
Chemiluminescence | Luminol oxidation reaction | Co (II) | 2 ng L−1 | 5.89–5.89 × 107 ng L−1 | [123] |
Electrochemical | Microporous SPE modified with Mn2O3 | Cd (II) Pb (II) | Cd 0.5 μg L−1, Pb 0.2 μg L−1 | Cd 0.5 to 8 μg L−1, Pb 10–100 μg L−1 | [147] |
Electrochemical | Microelectrodialyser combined with boron doped diamond electrode | Pb (II) | 4 μg L−1 | 20–100 μg L−1 | [151] |
Electrochemical | SPE coupled with PANi-SDS | Hg (II) | 0.481 μg L−1 | 1.203–7.021 μg L−1 | [153] |
Electrochemical | SPCE combined with paper strips | Cd (II) Pb (II) | Pb 2 μg L−1, Cd 2.3 μg L−1 | 2–100 μg L−1 | [156] |
Electrochemical | µPADs with carbon based sensor | Cd (II) Pb (II) | Cd 1.2 μg L−1, Pb 1.8 μg L−1 | 20–100 μg L−1 | [157] |
Electrochemical | µPADs with boron doped diamond paste electrodes (BDDPEs) | Cd (II) Pb (II) | Pb 1 μg L−1, Cd 25 μg L−1 | Cd 25–200 μg L−1, Pb 1–200 μg L−1 | [161] |
Electrochemical | SPE based on bismuth electrode detection | Cd (II) Pb (II) | Cd 9.3 μg L−1, Pb 8 μg L−1 | 25–400 μg L−1 | [160] |
Electrochemical | µPADs with gold nanoparticles | As (III) As (V) | 0.02 mg L−1 | 0.1–1.5 mg L−1 | [164] |
Quartz crystal microbalance | Phosphate modified dendrimers | Cu (II) | - | 0.006–6.355 μg L−1 | [172] |
Quartz crystal microbalance | Aptasensor with gold nanoparticles | Hg (II) | 0.048 mg L−1 | - | [177] |
Quartz crystal microbalance | DNAzymes and gold nanoparticles | Pb (II) | 0.013 mg L−1 | 0.013–0.062 mg L−1 | [180] |
Quartz crystal microbalance | Phosphate modified dendrimers | Cu (II) | 0.006 μg L−1 | 0.006–60 μg L−1 | [173] |
Quartz crystal microbalance | Magnesium porphyrazine | Cd (II) | 10 mg L−1 | - | [181] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lace, A.; Cleary, J. A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors 2021, 9, 60. https://doi.org/10.3390/chemosensors9040060
Lace A, Cleary J. A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors. 2021; 9(4):60. https://doi.org/10.3390/chemosensors9040060
Chicago/Turabian StyleLace, Annija, and John Cleary. 2021. "A Review of Microfluidic Detection Strategies for Heavy Metals in Water" Chemosensors 9, no. 4: 60. https://doi.org/10.3390/chemosensors9040060
APA StyleLace, A., & Cleary, J. (2021). A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors, 9(4), 60. https://doi.org/10.3390/chemosensors9040060