Flexible Potentiometric Sensor System for Non-Invasive Determination of Antioxidant Activity of Human Skin: Application for Evaluating the Effectiveness of Phytocosmetic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Apparatus
2.4. FFEs Manufacturing
2.5. CHPM Implementation
2.5.1. Assembly of the Potentiometric Sensor System
2.5.2. Model Conditions
2.5.3. Determining the AOA of Volunteers’ Skin
2.6. Analysis of Phytocosmetic Products
2.7. Statistical Analysis
3. Results and Discussion
3.1. FFEs Study
3.2. FPSS Testing in Model Conditions
3.3. Measuring AOA of Volunteers’ Skin
3.4. Analysis of Phytocosmetic Products
3.5. Comparison of the Obtained Findings with Earlier Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halliwel, B.; Gutteridge, J.M.C. The skin. In Free Radicals in Biology and Medicine, 5th ed.; Halliwel, B., Gutteridge, J.M.C., Eds.; Oxford University Press: Oxford, UK, 2015; Chapter 7.13; pp. 402–408. [Google Scholar]
- Wölfle, U.; Seelinger, G.; Bauer, G.; Meinke, M.C.; Lademann, J.; Schempp, C.M. Reactive molecule species and antioxidative mechanisms in normal skin and skin aging. Skin Pharmacol. Physiol. 2014, 27, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Moldogazieva, N.T.; Mokhosoev, I.M.; Feldman, N.B.; Lutsenko, S.V. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic. Res. 2018, 52, 507–543. [Google Scholar] [CrossRef] [PubMed]
- Aseervatham, G.S.B.; Sivasudha, T.; Jeyadevi, R.; Ananth, D.A. Environmental factors and unhealthy lifestyle influence oxidative stress in humans—An overview. Environ. Sci. Pollut. Res. 2013, 20, 4356–4369. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.; Lee, M.-G. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2016, 21, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Anunciato, T.P.; da Rocha Filho, P.A. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Lall, N.; Mahomoodally, M.F.; Esposito, D.; Steenkamp, V.; Zengin, G.; Steyn, A.; Oosthuizen, C.B. Editorial: Cosmeceuticals from medicinal plants. Front. Pharmacol. 2020, 11, 1149. [Google Scholar] [CrossRef]
- Brainina, K.; Stozhko, N.; Vidrevich, M. Antioxidants: Terminology, Methods, and Future Considerations. Antioxidants 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Portugal-Cohen, M.; Kohen, R. Non-invasive evaluation of skin cytokines secretion: An innovative complementary method for monitoring skin disorders. Methods 2013, 61, 63–68. [Google Scholar] [CrossRef]
- Shindo, Y.; Witt, E.; Han, D.; Epstein, W.; Packer, L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J. Investig. Dermatol. 1994, 102, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Rhie, G.; Shin, M.H.; Seo, J.Y.; Choi, W.W.; Cho, K.H.; Kim, K.H.; Park, K.C.; Eun, H.C.; Chung, J.H. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J. Investig. Dermatol. 2001, 117, 1212–1217. [Google Scholar] [CrossRef] [Green Version]
- Dabbagh, A.J.; Frei, B. Human suction blister interstitial fluid prevents metal ion-dependent oxidation of low density lipoprotein by macrophages and in cell-free systems. J. Clin. Investig. 1995, 96, 1958–1966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, C.; Aladren, S.; Delgado, J.; Garre, A.; Trullas, C.; Gilaberte, Y. Prospective evaluation of the efficacy of a food supplement in increasing photoprotection and improving selective markers related to skin photo-ageing. Dermatol. Ther. 2020, 10, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, I.V.; Gellermann, W. Dermal carotenoid measurements via pressure mediated reflection spectroscopy. J. Biophotonics 2012, 5, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, I.V.; Gellermann, W. Optical detection methods for carotenoids in human skin. Arch. Biochem. Biophys. 2015, 572, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ermakov, I.V.; Ermakova, M.; Sharifzadeh, M.; Gorusupudi, A.; Farnsworth, K.; Bernstein, P.S.; Stookey, J.; Evans, J.; Arana, T.; Tao-Lew, L.; et al. Optical assessment of skin carotenoid status as a biomarker of vegetable and fruit intake. Arch. Biochem. Biophys. 2018, 646, 46–54. [Google Scholar] [CrossRef]
- Ermakov, I.V.; Ermakova, M.R.; McClane, R.W.; Gellermann, W. Resonance Raman detection of carotenoid antioxidants in living human tissues. Opt. Lett. 2001, 26, 1179–1181. [Google Scholar] [CrossRef]
- Haag, S.F.; Taskoparan, B.; Darvin, M.E.; Groth, N.; Lademann, J.; Sterry, W.; Meinke, M.C. Determination of the antioxidative capacity of the skin in vivo using resonance Raman and electron paramagnetic resonance spectroscopy. Exp. Dermatol. 2011, 20, 483–487. [Google Scholar] [CrossRef]
- Fuchs, J.; Groth, N.; Herrling, T. In vivo measurement of oxidative stress status in human skin. Methods Enzymol. 2002, 352, 333–339. [Google Scholar] [CrossRef]
- Lohan, S.B.; Lauer, A.-C.; Arndt, S.; Friedrich, A.; Tscherch, K.; Haag, S.F.; Darvin, M.E.; Vollert, H.; Kleemann, A.; Gersonde, I.; et al. Determination of the antioxidant status of the skin by in vivo-electron paramagnetic resonance (EPR) spectroscopy. Cosmetics 2015, 2, 286–301. [Google Scholar] [CrossRef] [Green Version]
- Arbault, S.; Pebay, C.; Amatore, C.; Lachmann-Weber, N.; Heusele, C.; Renimel, I. Electrochemical Device and Method for Measuring the Redox State of the Skin. Patent WO2007077360-A1, 12 July 2007. [Google Scholar]
- Ruffien-Ciszak, A.; Gros, P.; Comtat, M.; Schmitt, A.-M.; Questel, E.; Casas, C.; Redoules, D. Exploration of the global antioxidant capacity of the stratum corneum by cyclic voltammetry. J. Pharm. Biomed. Anal. 2006, 40, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guitton, C.; Ruffien-Ciszak, A.; Gros, P.; Comtat, M. Voltammetric sensors for the determination of antioxidant properties in dermatology and cosmetics. In Comprehensive Analytical Chemistry; Alegret, S., Merkoçi, A., Eds.; Elsevier, B.V.: Amsterdam, The Netherlands, 2007; Volume 49, pp. 163–180. [Google Scholar] [CrossRef]
- Kohen, R.; Fanberstein, D.; Zelkowicz, A.; Tirosh, O.; Farfouri, S. Noninvasive in vivo evaluation of skin antioxidant activity and oxidation status. Methods Enzymol. 1999, 300, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Brainina, K.Z.; Galperin, L.G.; Gerasimova, E.L.; Khodos, M.Y. Noninvasive potentiometric method of determination of skin oxidant/antioxidant activity. IEEE Sens. J. 2012, 12, 527–532. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Gerasimova, E.L.; Varzakova, D.P.; Kazakov, Y.E.; Galperin, L.G. Noninvasive method of determining skin antioxidant/oxidant activity: Clinical and cosmetics applications. Anal. Bioanal. Electrochem. 2013, 5, 528–542. [Google Scholar]
- Markina, M.; Lebedeva, E.; Neudachina, L.; Stozhko, N.; Brainina, K. Determination of antioxidants in human skin by capillary zone electrophoresis and potentiometry. Anal. Lett. 2016, 49, 1804–1815. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Markina, M.G.; Stozhko, N.Y. Optimized potentiometric assay for non-invasive investigation of skin antioxidant activity. Electroanalysis 2018, 30, 2405–2412. [Google Scholar] [CrossRef]
- Brainina, K.; Tarasov, A.; Khamzina, E.; Kazakov, Y.; Stozhko, N. Disposable potentiometric sensory system for skin antioxidant activity evaluation. Sensors 2019, 19, 2586. [Google Scholar] [CrossRef] [Green Version]
- Pisoschi, A.M.; Cimpeanu, C.; Predoi, G. Electrochemical methods for total antioxidant capacity and its main contributors determination: A review. Open Chem. 2015, 13, 824–856. [Google Scholar] [CrossRef] [Green Version]
- Brainina, K.Z.; Tarasov, A.V.; Kazakov, Y.E.; Vidrevich, M.B. Platinum electrode regeneration and quality control method for chronopotentiometric and chronoamperometric determination of antioxidant activity of biological fluids. J. Electroanal. Chem. 2018, 808, 14–20. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piro, B.; Mattana, G.; Noël, V. Recent advances in skin chemical sensors. Sensors 2019, 19, 4376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, R.; Kim, J.-H.; Kim, Y.S.; Lee, H.M.; Yeo, W.-H. Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 2018, 11, 187. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-H.; Chuang, S.-I.; Duh, J.-G. Convertibility of anode electrode with microsized wafer scraps via carbon veil with plasma technique. ACS Sustain. Chem. Eng. 2017, 5, 1784–1793. [Google Scholar] [CrossRef]
- Shin, D.; Shen, C.; Sanghadasa, M.; Lin, L. Breathable 3D supercapacitors based on activated carbon fiber veil. Adv. Mater. Technol. 2018, 3, 1800209. [Google Scholar] [CrossRef]
- Gajda, I.; You, J.; Santoro, C.; Greenman, J.; Ieropoulos, I.A. A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochim. Acta 2020, 353, 136388. [Google Scholar] [CrossRef]
- Honeychurch, K.C.; Hart, J.P. Determination of flunitrazepam and nitrazepam in beverage samples by liquid chromatography with dual electrode detection using a carbon fibre veil electrode. J. Solid State Electrochem. 2008, 12, 1317–1324. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Gu, Y.; Gong, Y.; Liang, J.; Wang, S.; Zhang, Z. Resistance heating forming process based on carbon fiber veil for continuous glass fiber reinforced polypropylene. J. Reinf. Plast. Compos. 2018, 37, 366–380. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Bukharinova, M.A.; Stozhko, N.Y.; Sokolkov, S.V.; Tarasov, A.V.; Vidrevich, M.B. Electrochemical sensor based on a carbon veil modified by phytosynthesized gold nanoparticles for determination of ascorbic acid. Sensors 2020, 20, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stozhko, N.Y.; Bukharinova, M.A.; Khamzina, E.I.; Tarasov, A.V.; Sokolkov, S.V. Film carbon veil-based electrode modified with Triton X-100 for nitrite determination. Chemosensors 2020, 8, 78. [Google Scholar] [CrossRef]
- Gonzalez-Macia, L.; Killard, A.J. Screen printing and other scalable point of care (POC) biosensor processing technologies. In Medical Biosensors for Point of Care (POC) Applications; Narayan, R.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Chapter 4; pp. 69–98. [Google Scholar] [CrossRef]
- Brainina, K.Z.; Tarasov, A.V.; Vidrevich, M.B. Silver chloride/ferricyanide-based quasi-reference electrode for potentiometric sensing applications. Chemosensors 2020, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Proksch, E. pH in nature, humans and skin. J. Dermatol. 2018, 45, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australian Radiation Protection and Nuclear Safety Agency. Fitzpatrick Skin Phototype. PDF. Available online: https://www.arpansa.gov.au/sites/default/files/legacy/pubs/RadiationProtection/FitzpatrickSkinType.pdf?acsf_files_redirect (accessed on 19 January 2021).
- Burns, D.T.; Danzer, K.; Townshend, A. Use of the term “recovery” and “apparent recovery” in analytical procedures (IUPAC Recommendations 2002). Pure Appl. Chem. 2002, 74, 2201–2205. [Google Scholar] [CrossRef]
- Kahlert, H. Potentiometry. In Electroanalytical Methods, 2nd ed.; Scholz, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; Chapter II.9; pp. 237–256. [Google Scholar] [CrossRef]
- Błauż, A.; Pilaszek, T.; Grzelak, A.; Dragan, A.; Bartosz, G. Interaction between antioxidants in assays of total antioxidant capacity. Food Chem. Toxicol. 2008, 46, 2365–2368. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
FFE | τ 1, s | E 2, mV | Emax—Emin 3, mV |
---|---|---|---|
CV/PET | 250 ± 50 | 1 ± 0 | 2 |
AuNPs/CV/PET | 317 ± 93 | 3 ± 2 | 6 |
SCSF/Ag/PET | 233 ± 58 | 1 ± 1 | 1 |
Model Solution | Expected AOA, μM-eq | Measured AOA, μM-eq | RSD, % | Recovery, % | t 1 |
---|---|---|---|---|---|
L-ascorbic Acid (25 μM) | 50.0 | 49.0 ± 0.7 | 1.5 | 98 ± 1 | 2.51 |
Uric Acid (25 μM) | 50.0 | 48.9 ± 0.8 | 1.5 | 98 ± 1 | 2.76 |
L-glutathione Reduced (50 μM) | 50.0 | 51.0 ± 1.2 | 2.4 | 102 ± 2 | 1.64 |
L-ascorbic Acid (25 μM) + Uric Acid (25 μM) | 100.0 | 91.8 ± 2.9 | 3.2 | 92 ± 3 | 5.63 |
L-ascorbic Acid (25 μM) + L-glutathione Reduced (50 μM) | 100.0 | 101.0 ± 1.6 | 1.6 | 101 ± 2 | 1.21 |
L-ascorbic Acid (25 μM) + Uric Acid (25 μM) + L-glutathione Reduced (50 μM) | 150.0 | 144.8 ± 2.9 | 2.0 | 96 ± 2 | 3.61 |
Volunteer No | AOA of Skin, μM-eq | RSD, % | Added L-Ascorbic Acid, μM-eq | Total AOA, μM-eq | Recovery, % |
---|---|---|---|---|---|
1 | 19.4 ± 1.4 | 7.5 | 50.0 | 70.8 ± 2.4 | 103 ± 2 |
2 | 26.1 ± 1.9 | 7.3 | 50.0 | 75.7 ± 4.1 | 99 ± 4 |
3 | 35.5 ± 2.3 | 6.4 | 50.0 | 85.8 ± 3.2 | 98 ± 2 |
4 | 41.0 ± 2.2 | 5.3 | 50.0 | 89.9 ± 3.5 | 98 ± 2 |
5 | 68.5 ± 3.1 | 4.6 | 50.0 | 118.3 ± 4.5 | 99 ± 3 |
Electrodes | Mediator, mM | Range of AOA, μM-eq | RSD, % | Source | ||
---|---|---|---|---|---|---|
Indicator 1 | Reference 2 | K3[Fe(CN)6] | K4[Fe(CN)6] | |||
Pt/AC | H92SG | 5 | 0 | 20–4000 | ≤13 | [29] |
AuNPs/C/FG | SCSF/Ag/FG | 1 | 0.05 | 30–900 3 | ≤20 | [30] |
CV/PET | SCSF/Ag/PET | 1 | 0.05 | 15–990 3 | ≤7 | [This work] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasov, A.V.; Khamzina, E.I.; Bukharinova, M.A.; Stozhko, N.Y. Flexible Potentiometric Sensor System for Non-Invasive Determination of Antioxidant Activity of Human Skin: Application for Evaluating the Effectiveness of Phytocosmetic Products. Chemosensors 2021, 9, 76. https://doi.org/10.3390/chemosensors9040076
Tarasov AV, Khamzina EI, Bukharinova MA, Stozhko NY. Flexible Potentiometric Sensor System for Non-Invasive Determination of Antioxidant Activity of Human Skin: Application for Evaluating the Effectiveness of Phytocosmetic Products. Chemosensors. 2021; 9(4):76. https://doi.org/10.3390/chemosensors9040076
Chicago/Turabian StyleTarasov, Aleksey V., Ekaterina I. Khamzina, Maria A. Bukharinova, and Natalia Yu. Stozhko. 2021. "Flexible Potentiometric Sensor System for Non-Invasive Determination of Antioxidant Activity of Human Skin: Application for Evaluating the Effectiveness of Phytocosmetic Products" Chemosensors 9, no. 4: 76. https://doi.org/10.3390/chemosensors9040076
APA StyleTarasov, A. V., Khamzina, E. I., Bukharinova, M. A., & Stozhko, N. Y. (2021). Flexible Potentiometric Sensor System for Non-Invasive Determination of Antioxidant Activity of Human Skin: Application for Evaluating the Effectiveness of Phytocosmetic Products. Chemosensors, 9(4), 76. https://doi.org/10.3390/chemosensors9040076