A Hairpin DNA-Based Piezoelectric E-Nose: Exploring the Performances of Heptamer Loops for the Detection of Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Selection of ssDNA Heptamer Loops
2.2. HpDNA Gas Sensors Array Setup
2.3. Standard VOCs and Beer Samples
2.4. Statistical Analysis
3. Results
3.1. In Silico Selection of ssDNA Heptamers Loops
3.2. Sensor Array Test with Pure Compounds
3.3. Evaluation of the Headspace of Real Samples (Beer)
3.3.1. SPME/GC-MS Analysis
3.3.2. HpDNA Gas Sensors Array Response vs Beer Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boeker, P. On ‘electronic nose’methodology. Sens. Actuators B Chem. 2014, 204, 2–17. [Google Scholar] [CrossRef]
- Barbosa, A.J.; Oliveira, A.R.; Roque, A.C. Protein-and peptide-based biosensors in artificial olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wyszynski, B.; Yatabe, R.; Hayashi, K.; Toko, K. Molecularly imprinted sol-gel-based QCM sensor arrays for the detection and recognition of volatile aldehydes. Sensors 2017, 17, 382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascini, M.; Gaggiotti, S.; Della Pelle, F.; Di Natale, C.; Qakala, S.; Iwuoha, E.; Pittia, P.; Compagnone, D. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs). Front. Chem. 2018, 6, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascini, M.; Pizzoni, D.; Perez, G.; Chiarappa, E.; Di Natale, C.; Pittia, P.; Compagnone, D. Tailoring gas sensor arrays via the design of short peptides sequences as binding elements. Biosens. Bioelectron. 2017, 93, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Yu, X.; Zheng, Y.; Yu, J. DNA based chemical sensor for the detection of nitrogen dioxide enabled by organic field-effect transistor. Sens. Actuators B Chem. 2016, 222, 1003–1011. [Google Scholar] [CrossRef]
- Kybert, N.J.; Lerner, M.B.; Yodh, J.S.; Preti, G.; Johnson, A.C. Differentiation of complex vapor mixtures using versatile DNA–carbon nanotube chemical sensor arrays. ACS Nano 2013, 7, 2800–2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascini, M.; Gaggiotti, S.; Della Pelle, F.; Wang, J.; Pingarrón, J.M.; Compagnone, D. Hairpin DNA-AuNPs as molecular binding elements for the detection of volatile organic compounds. Biosens. Bioelectron. 2019, 123, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Gaggiotti, S.; Hurot, C.; Weerakkody, J.S.; Mathey, R.; Buhot, A.; Mascini, M.; Hou, Y.; Compagnone, D. Development of an optoelectronic nose based on surface plasmon resonance imaging with peptide and hairpin DNA for sensing volatile organic compounds. Sens. Actuators B Chem. 2020, 303, 127188. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Cichelli, A.; Mascini, M.; Compagnone, D. Piezoelectric peptide-hpDNA based electronic nose for the detection of terpenes; Evaluation of the aroma profile in different Cannabis sativa L.(hemp) samples. Sens. Actuators B Chem. 2020, 308, 127697. [Google Scholar] [CrossRef]
- LEXICHEM. OpenEye Scientific Software, Santa Fe, NM, Version 2.1.0. Available online: http://www.eyesopen.com (accessed on 19 May 2021).
- SZYBKI. OpenEye Scientific Software, Santa Fe, NM, Version 1.5.7. Available online: http://www.eyesopen.com (accessed on 19 May 2021).
- OMEGA. OpenEye Scientific Software, Santa Fe, NM, Version 2.4.6. Available online: http://www.eyesopen.com (accessed on 19 May 2021).
- Hawkins, P.C.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inform. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.C.; Nicholls, A. Conformer generation with OMEGA: Learning from the data set and the analysis of failures. J. Chem. Inform. Model. 2012, 52, 2919–2936. [Google Scholar] [CrossRef] [PubMed]
- OEDocking. OpenEye Scientific Software, Santa Fe, NM, Version 3.0.0. Available online: http://www.eyesopen.com (accessed on 19 May 2021).
- Kelley, B.P.; Brown, S.P.; Warren, G.L.; Muchmore, S.W. POSIT: Flexible shape-guided docking for pose prediction. J. Chem. Inform. Model. 2015, 55, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- VIDA. OpenEye Scientific Software, Santa Fe, NM, Version 4.1.1. Available online: http://www.eyesopen.com (accessed on 19 May 2021).
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Giannetti, V.; Mariani, M.B.; Torrelli, P.; Marini, F. Flavour component analysis by HS-SPME/GC–MS and chemometric modeling to characterize Pilsner-style Lager craft beers. Microchem. J. 2019, 149, 103991. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification tools in chemistry. Part 1: Linear models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Ballabio, D. A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure. Chem. Intell. Lab. Syst. 2015, 149, 1–9. [Google Scholar] [CrossRef]
- Pérez, N.F.; Ferré, J.; Boqué, R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chem. Intell. Lab. Syst. 2009, 95, 122–128. [Google Scholar] [CrossRef]
- Compagnone, D.; Fusella, G.; Del Carlo, M.; Pittia, P.; Martinelli, E.; Tortora, L.; Paolesse, R.; Di Natale, C. Gold nanoparticles-peptide based gas sensor arrays for the detection of foodaromas. Biosens. Bioelectron. 2013, 42, 618–625. [Google Scholar] [CrossRef] [PubMed]
A | AATCAGC | CCCTGTC | CCGATTT | GCGAAGG | GTCCCTA | GTCCGTT | ||||||||||||
Binding score (Kcal/mol) | ||||||||||||||||||
Alcohols | −3.46 | ± | 0.63 | −2.79 | ± | 0.42 | −3.32 | ± | 0.52 | −4.94 | ± | 1.09 | −4.18 | ± | 0.72 | −6.59 | ± | 1.63 |
Aldehydes | −2.72 | ± | 0.22 | −1.88 | ± | 0.44 | −3.09 | ± | 0.52 | −3.77 | ± | 1.09 | −4.36 | ± | 0.50 | −5.34 | ± | 1.38 |
Esters | −2.62 | ± | 0.31 | −1.96 | ± | 0.39 | −3.16 | ± | 0.36 | −3.76 | ± | 1.01 | −4.42 | ± | 0.35 | −5.24 | ± | 1.16 |
Hydrocarbons | −2.24 | ± | 0.22 | −2.06 | ± | 0.27 | −3.32 | ± | 0.27 | −4.20 | ± | 0.60 | −3.60 | ± | 0.37 | −5.99 | ± | 0.78 |
Ketones | −2.23 | ± | 0.48 | −1.25 | ± | 0.08 | −2.23 | ± | 0.14 | −2.68 | ± | 0.75 | −3.77 | ± | 0.64 | −4.25 | ± | 1.37 |
B | AATCAGC | CCCTGTC | CCGATTT | GCGAAGG | GTCCCTA | GTCCGTT | ||||||||||||
AATCAGC | 1 | 0.726 | 0.357 | 0.339 | 0.381 | 0.238 | ||||||||||||
CCCTGTC | 0.726 | 1 | 0.720 | 0.767 | 0.168 | 0.687 | ||||||||||||
CCGATTT | 0.357 | 0.720 | 1 | 0.866 | 0.147 | 0.840 | ||||||||||||
GCGAAGG | 0.339 | 0.767 | 0.866 | 1 | −0.071 | 0.976 | ||||||||||||
GTCCCTA | 0.381 | 0.168 | 0.147 | −0.071 | 1 | −0.108 |
Significant | Variables | AAGTA | CCCGA | TAAGT | ATAATC | CATCTG | AATCAGC | CCCTGTC | CCGATTT | GCGAAGG | GTCCCTA | GTCCGTT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Yes | 3-(4-Methyl-3-pentenyl)-furan | 0.66 | −0.28 | −0.29 | −0.38 | −0.65 | −0.42 | −0.52 | 0.69 | 0.10 | −0.09 | −0.05 |
Yes | Isopentyl acetate | 0.26 | 0.44 | 0.41 | 0.26 | −0.09 | 0.08 | 0.21 | 0.48 | 0.48 | 0.52 | 0.40 |
Yes | 1-Pentyl isovalerate | 0.41 | −0.22 | −0.19 | −0.29 | −0.47 | −0.37 | −0.46 | 0.48 | 0.02 | −0.12 | −0.10 |
Yes | 2-Methylpropan-1-ol | 0.70 | −0.54 | −0.61 | −0.61 | −0.50 | −0.58 | −0.62 | 0.57 | −0.31 | −0.31 | −0.43 |
Yes | Humulene | 0.49 | −0.57 | −0.52 | −0.52 | −0.30 | −0.50 | −0.56 | 0.30 | −0.24 | −0.51 | −0.24 |
Yes | 2-Phenylethan-1-ol | 0.46 | 0.42 | 0.32 | 0.33 | −0.24 | 0.28 | 0.14 | 0.71 | 0.68 | 0.38 | 0.57 |
Yes | Ethyl octanoate | −0.09 | 0.71 | 0.61 | 0.69 | 0.36 | 0.55 | 0.55 | 0.11 | 0.58 | 0.62 | 0.58 |
Yes | 3-Methylbutyl isobutyrate | −0.32 | −0.22 | −0.22 | 0.02 | 0.40 | 0.10 | −0.07 | −0.49 | −0.30 | −0.39 | −0.18 |
No | Carbon dioxide | 0.30 | 0.11 | 0.18 | 0.02 | 0.14 | −0.17 | 0.01 | 0.40 | 0.23 | 0.23 | 0.11 |
No | Ethyl butanoate | 0.05 | −0.63 | −0.42 | −0.35 | −0.10 | −0.35 | −0.51 | −0.23 | −0.37 | −0.52 | −0.28 |
No | Styrene | −0.12 | 0.09 | 0.12 | 0.10 | −0.02 | 0.24 | 0.14 | −0.18 | 0.26 | −0.10 | 0.25 |
No | Ethyl caproate | −0.05 | 0.36 | 0.42 | 0.28 | 0.28 | 0.20 | 0.35 | 0.08 | 0.11 | 0.28 | 0.13 |
No | 2-Methylbutan-1-ol | 0.29 | −0.58 | −0.53 | −0.43 | −0.43 | −0.36 | −0.61 | −0.02 | −0.39 | −0.41 | −0.42 |
No | 2-Methylbutyl propionate | 0.09 | −0.55 | −0.43 | −0.36 | 0.04 | −0.30 | −0.35 | −0.03 | −0.34 | −0.56 | −0.27 |
No | Ethyl Acetate | 0.41 | −0.02 | −0.14 | −0.08 | −0.29 | 0.10 | 0.06 | 0.64 | 0.20 | 0.07 | 0.10 |
No | Ethyl decanoate | −0.22 | 0.43 | 0.39 | 0.43 | 0.51 | 0.31 | 0.52 | −0.07 | 0.31 | 0.49 | 0.34 |
No | (-)-β-Pinene | −0.48 | −0.02 | −0.01 | 0.33 | 0.26 | 0.30 | 0.06 | −0.41 | 0.16 | 0.14 | 0.27 |
No | 3-Methylbutyl 2-methylbutanoate | 0.29 | −0.35 | −0.28 | −0.23 | −0.03 | −0.09 | −0.27 | 0.17 | −0.10 | −0.50 | −0.12 |
No | 2-Methylbutyl isobutyrate | −0.06 | 0.47 | 0.33 | 0.40 | 0.06 | 0.31 | 0.35 | 0.03 | 0.43 | 0.57 | 0.47 |
No | 3-Methylbutan-1-ol | 0.25 | 0.10 | 0.30 | 0.09 | −0.14 | 0.07 | 0.01 | 0.30 | 0.01 | −0.13 | 0.06 |
No | Isobutyl isobutyrate | −0.29 | −0.12 | −0.29 | −0.12 | 0.21 | −0.18 | −0.15 | −0.58 | −0.22 | −0.02 | −0.14 |
No | Methylhydrazine | 0.19 | −0.26 | −0.13 | −0.33 | 0.06 | −0.41 | −0.24 | 0.05 | −0.22 | −0.34 | −0.18 |
No | Ethanol | 0.35 | 0.27 | 0.08 | 0.12 | −0.28 | 0.36 | 0.33 | 0.59 | 0.30 | −0.04 | 0.31 |
AAGTA | 1.00 | −0.34 | −0.49 | −0.52 | −0.65 | −0.35 | −0.43 | 0.82 | 0.02 | −0.30 | −0.11 | |
CCCGA | −0.34 | 1.00 | 0.86 | 0.86 | 0.48 | 0.70 | 0.84 | −0.11 | 0.62 | 0.80 | 0.70 | |
TAAGT | −0.49 | 0.86 | 1.00 | 0.85 | 0.47 | 0.60 | 0.72 | −0.18 | 0.59 | 0.71 | 0.65 | |
ATAATC | −0.52 | 0.86 | 0.85 | 1.00 | 0.50 | 0.85 | 0.69 | −0.29 | 0.59 | 0.72 | 0.69 | |
CATCTG | −0.65 | 0.48 | 0.47 | 0.50 | 1.00 | 0.29 | 0.63 | −0.59 | 0.06 | 0.39 | 0.16 | |
AATCAGC | −0.35 | 0.70 | 0.60 | 0.85 | 0.29 | 1.00 | 0.69 | −0.13 | 0.39 | 0.43 | 0.48 | |
CCCTGTC | −0.43 | 0.84 | 0.72 | 0.69 | 0.63 | 0.69 | 1.00 | −0.12 | 0.37 | 0.60 | 0.47 | |
CCGATTT | 0.82 | −0.11 | −0.18 | −0.29 | −0.59 | −0.13 | −0.12 | 1.00 | 0.24 | −0.11 | 0.08 | |
GCGAAGG | 0.02 | 0.62 | 0.59 | 0.59 | 0.06 | 0.39 | 0.37 | 0.24 | 1.00 | 0.73 | 0.96 | |
GTCCCTA | −0.30 | 0.80 | 0.71 | 0.72 | 0.39 | 0.43 | 0.60 | −0.11 | 0.73 | 1.00 | 0.75 | |
GTCCGTT | −0.11 | 0.70 | 0.65 | 0.69 | 0.16 | 0.48 | 0.47 | 0.08 | 0.96 | 0.75 | 1.00 |
hpDNA Sensors Array with Pentamer-Hexamer Loops | hpDNA Sensors Array with Heptamer Loops | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Precision | Sensitivity | Specificity | Precision | ||||
class | Training | class | Training | ||||||
t0 | 0.87 | 1 | 1 | t0 | 1 | 1 | 1 | ||
t1 | 1 | 1 | 1 | t1 | 1 | 1 | 1 | ||
t2 | 1 | 0.93 | 0.88 | t2 | 1 | 1 | 1 | ||
Cross validation | Cross validation | ||||||||
t0 | 0.87 | 0.97 | 0.93 | t0 | 1 | 1 | 1 | ||
t1 | 1 | 1 | 1 | t1 | 1 | 1 | 1 | ||
t2 | 0.93 | 0.93 | 0.88 | t2 | 1 | 1 | 1 | ||
Class assignment method “max” | |||||||||
real/predicted | t0 | t1 | t2 | real/predicted | t0 | t1 | t2 | ||
t0 | 13 | 0 | 2 | t0 | 15 | 0 | 0 | ||
t1 | 0 | 15 | 0 | t1 | 0 | 15 | 0 | ||
t2 | 1 | 0 | 14 | Total | t2 | 0 | 0 | 15 | Total |
87% | 100% | 93% | 93% | 100% | 100% | 100% | 100% | ||
Class assignment method “bayes” | |||||||||
real/predicted | t0 | t1 | t2 | not assigned | real/predicted | t0 | t1 | t2 | not assigned |
t0 | 11 | 0 | 0 | 4 | t0 | 15 | 0 | 0 | 0 |
t1 | 0 | 12 | 0 | 3 | t1 | 0 | 14 | 0 | 1 |
t2 | 0 | 0 | 13 | 2 | t2 | 0 | 0 | 15 | 0 |
73% | 80% | 87% | Total | 100% | 93% | 100% | Total | ||
80% | 98% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggiotti, S.; Mascini, M.; Cichelli, A.; Del Carlo, M.; Compagnone, D. A Hairpin DNA-Based Piezoelectric E-Nose: Exploring the Performances of Heptamer Loops for the Detection of Volatile Organic Compounds. Chemosensors 2021, 9, 115. https://doi.org/10.3390/chemosensors9050115
Gaggiotti S, Mascini M, Cichelli A, Del Carlo M, Compagnone D. A Hairpin DNA-Based Piezoelectric E-Nose: Exploring the Performances of Heptamer Loops for the Detection of Volatile Organic Compounds. Chemosensors. 2021; 9(5):115. https://doi.org/10.3390/chemosensors9050115
Chicago/Turabian StyleGaggiotti, Sara, Marcello Mascini, Angelo Cichelli, Michele Del Carlo, and Dario Compagnone. 2021. "A Hairpin DNA-Based Piezoelectric E-Nose: Exploring the Performances of Heptamer Loops for the Detection of Volatile Organic Compounds" Chemosensors 9, no. 5: 115. https://doi.org/10.3390/chemosensors9050115
APA StyleGaggiotti, S., Mascini, M., Cichelli, A., Del Carlo, M., & Compagnone, D. (2021). A Hairpin DNA-Based Piezoelectric E-Nose: Exploring the Performances of Heptamer Loops for the Detection of Volatile Organic Compounds. Chemosensors, 9(5), 115. https://doi.org/10.3390/chemosensors9050115