Thiol-Amine Functionalized Decorated Carbon Nanotubes for Biomarker Gases Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Decoration of Carbon Nanotubes
2.2. Deposition of Self-Assembled Monolayers (SAMs)
2.3. Characterization Techniques
2.4. Gas Sensing Measurements
3. Results
3.1. Material Characterization
3.1.1. Transmission Electron Microscopy (TEM)
3.1.2. Atomic Force Microscopy (AFM)
3.1.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.2. Detection of Volatile Organic Compounds (VOCs)
3.3. Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cikach, S.F., Jr.; Dweikab, A.R. Cardiovascular Biomarkers in Exhaled Breath. Prog. Cardiovasc. Dis. 2012, 55, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, A.; Biju, V.; Yoshida, Y. In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer’s disease, Parkinson’s disease, and diabetes. Free Radic. Res. 2017, 51, 413–427. [Google Scholar] [CrossRef]
- Pauling, L.; Robinson, A.B.; Teranish, R.; Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Nat. Acad. Sci. USA 1971, 68, 2374. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S.M.; Szidon, J.P.; Krotoszynski, B.K.; Gibbons, R.D.; O’Neill, H.J. Volatile organic compounds in exhaled air from patients with lung cancer. Clin. Chem. 1985, 31, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligor, M.; Ligor, T.; Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Denz, H.; Fiegl, M.; Hilbe, W.; Weiss, W.; et al. Determination of volatile organic compounds in exhaled breath of patients with lung cancer using solid phase microextraction and gas chromatography mass spectrometry. Clin. Chem. Lab. Med. 2009, 47, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Bantz, K.C.; Meyer, A.F.; Wittenberg, N.J.; Im, H.; Kurtuluş, Ö.; Lee, S.H.; Lindquist, N.C.; Oh, S.H.; Haynes, C.L. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 2011, 13, 11551–11567. [Google Scholar] [CrossRef]
- Dinish, U.S.; Balasundaram, G.; Chang, Y.T.; Olivo, M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 2014, 7, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Vincentis, A.D.; Pennazza, G.; Santonico, M.; Gentilucci, U.V.; Galati, G.; Gallo, P.; Vernile, C.; Pedone, C.; Incalzi, R.A.; Picardi, A. Breath-print analysis by e-nose for classifying and monitoring chronic liver disease: A proof-of-concept study. Sci. Rep. 2016, 6, 25337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakhleh, M.K.; Amal, H.; Jeries, R. Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules. ACS Nano 2017, 11, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gao, G.; Liu, H.; Fu, H.; Fan, J.; Wang, K.; Chen, Y.; Li, B.; Zhang, C.; Zhi, X.; et al. Identification of Volatile Biomarkers of Gastric Cancer Cells and Ultrasensitive Electrochemical Detection based on Sensing Interface of Au-Ag Alloy coated MWCNTs. Theranostics 2014, 4, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świgło, A.; Chmielewski, J. Electronic nose as a tool for monitoring the authenticity of food. A review. Food Anal. Methods 2017, 10, 1800–1816. [Google Scholar] [CrossRef] [Green Version]
- Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic Noses in Medical Diagnostics. Curr. Med. Chem. 2019, 26, 197–215. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.; Pennazza, G.; Santonico, M.; Martinelli, E.; Roscioni, C.; Galluccio, G.; Paolesse, R.; Natale, C.D. An investigation on electronic nose diagnosis of lung cancer. Lung Cancer 2010, 68, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.E.; Lee, D.S.; Ban, S.W.; Oh, J.; Jung, M.Y.; Kim, S.H.; Park, S.J.; Persaud, K.; Jheon, S. Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system. Sens. Actuators B Chem. 2018, 255, 800–807. [Google Scholar] [CrossRef]
- Dymerski, T.; Gębicki, J.; Wiśniewska, P.; Sliwińska, M.; Wardencki, W.; Namieśnik, J. Application of the electronic nose technique to differentiation between model mixtures with COPD markers. Sensors 2013, 13, 5008–5027. [Google Scholar] [CrossRef] [Green Version]
- Bannier, M.A.G.E.; van de Kant, K.D.G.; Jöbsis, Q.; Dompeling, E. Feasibility and diagnostic accuracy of an electronic nose in children with asthma and cystic fibrosis. J. Breath Res. 2019, 13, 1752–7163. [Google Scholar] [CrossRef]
- Roine, A.; Veskimäe, E.; Tuokko, A.; Kumpulainen, P.; Koskimäki, J.; Keinänen, T.A.; Häkkinen, M.R.; Vepsäläinen, J.; Paavonen, T.; Lekkala, J.; et al. Detection of Prostate Cancer by an Electronic Nose: A Proof of Principle Study. Am. Urol. Assoc. J. 2014, 192, 230–235. [Google Scholar] [CrossRef]
- Covington, J.A.; Westenbrink, E.W.; Ouaret, N.; Harbord, R.; Bailey, C.; O’Connell, N.; Cullis, J.; Williams, N.; Nwokolo, C.U.; Bardhan, K.D.; et al. Application of a novel tool for diagnosing bile acid diarrhea. Sensors 2013, 13, 11899–11912. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Meyyappan, M. Nano Chemical Sensors with Polymer-Coated Carbon Nanotubes. IEEE Sens. J. 2006, 6, 1047–1051. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.; Han, J.; Ng, H.-T.; Binder, C.; Partridge, C.; Meyyappan, M. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem. Phys. Lett. 2004, 391, 344–348. [Google Scholar] [CrossRef]
- Mubeen, S.; Zhang, T.; Yoo, B.; Deshusses, M.A.; Myung, N.V.J. Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor. Phys. Chem. C 2007, 111, 6321–6327. [Google Scholar] [CrossRef]
- Consales, M.; Campopiano, S.; Cutolo, A.; Penza, M.; Aversa, P.; Cassano, G.; Giordano, M.; Cusano, A. Carbon nanotubes thin films fiber optic and acoustic VOCs sensors: Performances analysis. Sens. Actuators B 2006, 118, 232–242. [Google Scholar] [CrossRef]
- Ryota, Y.; Kiyohiko, T.; Toshinari, I.; Tetsuya, O.; Yasushi, A.; Takashi, M. Characterization and field emission properties of multi-walled carbon nanotubes with fine crystallinity prepared by CO2 laser ablation. Appl. Surf. Sci. 2012, 258, 6958–6962. [Google Scholar]
- Kuberský, P.; Sedlák, P.; Hamáček, A.; Nešpůrek, S.; Kuparowitz, T.; Šikula, J.; Majzner, J.; Sedlaková, V.; Grmela, L.; Syrový, T. Quantitative fluctuation-enhanced sensing in amperometric NO2 sensors. Chem. Phys. 2015, 456, 111–117. [Google Scholar] [CrossRef]
- Villalpando-Páez, F.; Romero, A.H.; Muñoz-Sandoval, E.; Martınez, L.M.; Terrones, H.; Terrones, M. Fabrication of vapor and gas sensors using films of aligned CNx nanotubes. Chem. Phys. Lett. 2004, 386, 137–143. [Google Scholar] [CrossRef]
- Bai, L.; Zhou, Z. Computational study of B- or N-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Carbon 2007, 45, 2105–2110. [Google Scholar] [CrossRef]
- Adjizian, J.J.; Leghrib, R.; Koos, A.A.; Suarez-Martinez, I.; Crossley, A.; Wagner, P.; Grobert, N.; Llobet, E.; Ewels, C.P. Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon 2014, 66, 662–673. [Google Scholar] [CrossRef]
- Ionescu, R.; Espinosa, E.H.; Sotter, E.; Llobet, E.; Vilanova, X.; Correig, X.; Felten, A.; Bittencourt, C.; van Lier, G.; Charlier, J.-C.; et al. Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens. Actuators B Chem. 2006, 113, 36–46. [Google Scholar] [CrossRef]
- Saito, T.; Matsushige, K.; Tanaka, K. Chemical treatment and modification of multi-walled carbon nanotubes. Phys. B Condens. Matter 2002, 323, 280–283. [Google Scholar] [CrossRef]
- Charlier, J.C.; Arnaud, L.; Avilov, I.V.; Delgado, M.; Demoisson, F.; Espinosa, E.H.; Ewels, C.P.; Felten, A.; Guillot, J.; Ionescu, R.; et al. Carbon nanotubes randomly decorated with gold clusters: From nano-hybrid atomic structures to gas sensing prototypes. Nanotechnology 2009, 20, 375501. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.-Y.; Hsu, M.-C.; Su, P.-G.; Lin, H.-M.; Wu, R.-J.; Lai, H.-J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B Chem. 2004, 101, 81–89. [Google Scholar] [CrossRef]
- Bittencourt, C.; Felten, A.; Espinosa, E.H.; Ionescu, R.; Llobet, E.; Correig, X.; Pireaux, J.-J. WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies. Sens. Actuators B Chem. 2006, 115, 33–41. [Google Scholar] [CrossRef]
- de Luca, L.; Donato, A.; Santangelo, S.; Faggio, G.; Messina, G.; Donato, N.; Neri, G. Hydrogen sensing characteristics of Pt/TiO2/MWCNTs composites. Int. J. Hydrog. Energ. 2012, 37, 1842–1851. [Google Scholar] [CrossRef]
- Trocino, S.; Donato, A.; Latino, M.; Donato, N.; Leonardi, S.G.; Neri, G. Pt- TiO2/MWCNTs Hybrid composites for monitoring low hydrogen concentrations in air. Sensors 2012, 12, 12361–12373. [Google Scholar] [CrossRef]
- Clément, P.; Hafaiedh, I.; Parra, E.J.; Thamri, A.; Guillot, J.; Abdelghani, A.; Llobet, E. Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon 2014, 78, 510–520. [Google Scholar] [CrossRef]
- Dai, L.M.; Soundarrajan, P.; Kim, T. Sensors and sensor arrays based on conjugated polymers and carbon nanotubes. Pure App. Chem. 2002, 74, 1753–1772. [Google Scholar] [CrossRef] [Green Version]
- Tsubokawa, N. Preparation and properties of polymer-grafted carbon nanotubes and nanofibers. Polym. J. 2005, 37, 637–655. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Lu, J.; Bruzaud, S.; Kumar, B.; Feller, J.-F. Carbon nanotubes/poly(ε-caprolactone) composite vapour sensors. Carbon 2007, 47, 1930–1942. [Google Scholar] [CrossRef]
- Mengning, D.; Yifan, T.; Pingping, G.; Michael, J.R.; Alexander, S. Chemical sensing with polyaniline coated single-walled carbon nanotubes. Adv. Mater. 2011, 23, 536–540. [Google Scholar]
- Gang, P.; Elena, T.; Hossam, H. Detecting simulated patterns of lung cancer biomarkers by random network of single-walled carbon nanotubes coated with nonpolymeric organic materials. Nano Lett. 2008, 8, 3631–3635. [Google Scholar]
- Zilberman, Y.; Tisch, U.; Shuster, G.; Pisula, W.; Feng, X.; Müllen, K.; Haick, H. Carbon nanotube/hexa-peri-hexabenzocoronene bilayers for discrimination between nonpolar volatile organic compounds of cancer and humid atmospheres. Adv. Mat. 2010, 22, 4317–4320. [Google Scholar] [CrossRef] [PubMed]
- Zilberman, Y.; Ionescu, R.; Feng, X.; Müllen, K.; Haick, H. Nanoarray of polycyclic aromatic hydrocarbons and carbon nanotubes for accurate and predictive detection in realworld environmental humidity. ACS Nano 2011, 5, 6743–6753. [Google Scholar] [CrossRef]
- Baccar, H.; Thamri, A.; Clément, P.; Llobet, E.; Abdelghani, A. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature. Beilstein J. Nanotechnol. 2015, 6, 919–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thamri, A.; Baccar, H.; Clément, P.; Llobet, E.; Abdelghani, A. Rhodium-decorated MWCNTs for detecting organic vapours. Int. J. Nanotechnol. 2015, 12, 562–571. [Google Scholar] [CrossRef]
- Thamri, A.; Baccar, H.; Struzzi, C.; Bittencourt, C.; Abdelghani, A.; Llobet, E. MHDA-Functionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs. Sci. Rep. 2016, 6, 35130. [Google Scholar] [CrossRef]
- Leghrib, R.; Felten, A.; Demoisson, F.; Renier, F.; Pireaux, J.J.; Llobet, E. Room-temperature, selective detection of benzene at trace levels using plasma- treated metal-decorated multiwalled carbon nanotubes. Carbon 2010, 48, 3477–3484. [Google Scholar] [CrossRef]
- Star, A.; Joshi, V.; Skarupo, S.; Thomas, D.; Gabriel, J.C.P. Gas sensor array based on metal-decorated carbon nanotubes. Phys. Chem. 2006, 110, 21014–21020. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.M.; Khodafarin, R. Effect of CNT structures on thermal conductivity and stability of nanofluid. Int. J. Heat Mass Transfer 2012, 55, 1529–1535. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Hoa, S.V. Temperature dependent electrical conductivity of CNT–PEEK composites, Compos. Sci. Technol. 2011, 72, 21–27. [Google Scholar]
- Chiu, W.-C.; Tsui, B.-Y. Characteristics of size dependent conductivity of the CNT-interconnects formed by low temperature process. Microelectron. Reliab. 2013, 53, 906–911. [Google Scholar] [CrossRef]
- El-Sayed, I.H.; Huang, X.; El-Sayed, M.A. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett. 2005, 5, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Leech, H.J. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003, 36, 1–19. [Google Scholar] [CrossRef]
- Costello, B.L.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Meinardi, S.; Jin, K.B.; Barletta, B.; Blake, D.R.; Vaziri, N.D. Exhaled breath and fecal volatile organic biomarkers of chronic kidney disease. Biochim. Biophys. Acta (BBA) Gen. Subj. 2013, 3, 2531–2537. [Google Scholar] [CrossRef] [PubMed]
- Korte, J.E.; Hertz-Picciotto, I.; Schulz, M.R.; Ball, L.M.; Duell, E.J. The contribution of benzene to smoking-induced leukemia. Environ. Health Perspect 2000, 108, 333–339. [Google Scholar]
- Cope, K.; Risby, T.; Diehl, A.M. Increased gastrointestinal ethanol production in obese mice: Implications for fatty liver disease pathogenesis. Gastroenterology 2000, 5, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Španěl1, P.; Dryahina, K.; Vicherková, P.; Smith, D. Increase of methanol in exhaled breath quantified by SIFT-MS following aspartame ingestion. J. Breath Res. 2015, 9, 047104. [Google Scholar] [CrossRef] [Green Version]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 9, 431–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koureas, M.; Kirgou, P.; Amoutzias, G.; Hadjichristodoulou, C.; Gourgoulianis, K.; Tsakalof, A. Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. Metabolites 2020, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Schwarz, K.; Ligor, M.; Ligor, T.; Filipiak, W.; Denz, H.; Fiegl, M.; et al. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009, 9, 1471–2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Gashimova, E.; Temerdashev, A.; Porkhanov, V.; Polyakov, I.; Perunov, D.; Azaryan, A.; Dmitrieva, E. Investigation of different approaches for exhaled breath and tumor tissue analyses to identify lung cancer biomarkers. J. Heliyon 2020, 6, 2405–8440. [Google Scholar]
- José-Yacamán, M.; Miki-Yoshida, M.; Rendon, L.; Santiesteban, J.G. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 1993, 62, 202–204. [Google Scholar] [CrossRef]
- Valentini, L.; Cantalini, C.; Armentano, I.; Kenny, J.M.; Lozzi, L.; Santucci, S. Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diam. Relat. Mater. 2004, 13, 1301–1305. [Google Scholar] [CrossRef]
- Hafaiedh, I.; Clément, P.; Baccar, H.; Llobet, E.; Abdelghani, A. Functionalized multi-walled carbon nanotubes for chemical vapour detection. Int. J. Nanotechnol. 2013, 10, 485–495. [Google Scholar] [CrossRef]
- Techane, D.S.; Gamble, L.J.; Castner, D.G. Multi-technique characterization of self-assembled carboxylic acid terminated alkanethiol monolayers on nanoparticle and flat gold surfaces. J. Phys. Chem. C Nanomater. Interfaces 2011, 115, 9432–9441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thamri, A.; Baccar, H.; Annanouch, F.E.; Llobet, E.; Abdelghani, A. Methanol, Ethanol and Acetone Sensing Using AACVD-grown Tungsten Oxide Nanoneedles. J. Nanomed. Nanotechnol. 2016, 7, 2. [Google Scholar]
- Thamri, A.; Baccar, H.; Struzzi, C.; Bittencourt, C.; Llobet, E.; Abdelghani, A. VOC Sensing Properties of MHDA-Functionalized Multiwall Carbon Nanotubes. Procedia Eng. 2016, 168, 268–271. [Google Scholar] [CrossRef]
- Wang, F.; Swager, T.M. Diverse Chemiresistors Based upon Covalently Modified Multiwalled Carbon Nanotubes. J. Am. Chem. Soc. 2011, 133, 11181–11193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Li, S.; Yu, H.; Zou, Z.; Hou, X.; Shen, F.; Li, C.; Yao, X. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl. Surf. Sci. 2016, 369, 398–413. [Google Scholar] [CrossRef]
- Afrin, R.; Shah, N.A.; Abbas, M.; Amin, M.; Bhatti, A.S. Design and analysis of functional multiwalled carbon nanotubes for infrared sensors. Sens. Actuators A Phys. 2013, 203, 142–148. [Google Scholar] [CrossRef]
- Hiroki, A.; Thomas, K.; Franco, C.; William, R.S.; Milo, S.P.S.; Alan, H.W.; Richard, H.F. Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121. [Google Scholar]
- Yang, J.; Lee, J.Y.; Too, H.P. Size effect in thiol and amine binding to small Pt nanoparticles. Anal. Chim. Acta 2006, 2, 206–210. [Google Scholar] [CrossRef]
- Cargnello, M.; Wieder, N.L.; Canton, P.; Montini, T.; Giambastiani, G.; Benedetti, A.; Gorte, R.J.; Fornasiero, P. A Versatile Approach to the Synthesis of Functionalized Thiol-Protected Palladium Nanoparticles. Chem. Mater. 2011, 17, 3961–3969. [Google Scholar] [CrossRef]
- Brunet, J.; Genty, E.; Landkocz, Y.; AlZallouha, M.; Billet, S.; Courcot, D.; Siffert, S.; Thomas, D.; De Weireld, G.; Cousin, R. Identification of by-products issued from the catalytic oxidation of toluene by chemical and biological methods. Comptes Rendus Chim. 2015, 18, 1084–1093. [Google Scholar] [CrossRef]
- Casanova-Cháfer, J.; Bittencourt, C.; Llobet, E. Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors. Beilstein J. Nanotechnol. 2019, 10, 565–577. [Google Scholar] [CrossRef]
Material | Power (W) | Time (s) |
---|---|---|
Platinum | 150 | 14 |
Palladium | 30 | 8 |
Values Time (s) | Ethanol | Methanol | Benzene | Toluene |
---|---|---|---|---|
MWCNTs/Pd | 41 ± 4 | 64 ± 5 | 77 ± 5 | 42 ± 4 |
MWCNTs/Pd/Thiol-amine | 29 ± 3 | 64 ± 5 | 67 ± 5 | 36 ± 4 |
MWCNTs/Pt | 22 ± 3 | 64 ± 5 | 52 ± 4 | 42 ± 4 |
MWCNTs/Pt/Thiol-amine | 15 ± 2 | 62 ± 5 | 58 ± 4 | 40 ± 4 |
Values Time (s) | Ethanol | Methanol | Benzene | Toluene |
---|---|---|---|---|
MWCNTs/Pd | 129 ± 10 | 294 ± 12 | 223 ± 11 | 162 ± 10 |
MWCNTs/Pd/Thiol-amine | 122 ± 10 | 281 ± 12 | 123 ± 10 | 127 ± 10 |
MWCNTs/Pt | 118 ± 10 | 269 ± 12 | 129 ± 10 | 183 ± 11 |
MWCNTs/Pt/Thiol-amine | 71 ± 8 | 192 ± 11 | 83 ± 7 | 123 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thamri, A.; Baccar, H.; Casanova-Chafer, J.; Mejri, M.B.; Llobet, E.; Abdelghani, A. Thiol-Amine Functionalized Decorated Carbon Nanotubes for Biomarker Gases Detection. Chemosensors 2021, 9, 87. https://doi.org/10.3390/chemosensors9050087
Thamri A, Baccar H, Casanova-Chafer J, Mejri MB, Llobet E, Abdelghani A. Thiol-Amine Functionalized Decorated Carbon Nanotubes for Biomarker Gases Detection. Chemosensors. 2021; 9(5):87. https://doi.org/10.3390/chemosensors9050087
Chicago/Turabian StyleThamri, Atef, Hamdi Baccar, Juan Casanova-Chafer, Moataz Billeh Mejri, Eduard Llobet, and Adnane Abdelghani. 2021. "Thiol-Amine Functionalized Decorated Carbon Nanotubes for Biomarker Gases Detection" Chemosensors 9, no. 5: 87. https://doi.org/10.3390/chemosensors9050087
APA StyleThamri, A., Baccar, H., Casanova-Chafer, J., Mejri, M. B., Llobet, E., & Abdelghani, A. (2021). Thiol-Amine Functionalized Decorated Carbon Nanotubes for Biomarker Gases Detection. Chemosensors, 9(5), 87. https://doi.org/10.3390/chemosensors9050087