Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones
Abstract
:1. Introduction
2. Global Concentration Levels of Hormones
3. Molecularly Imprinted Polymer Synthesis Methods
3.1. Precipitation Polymerization
3.2. Bulk Imprinting
3.3. Surface Imprinting
4. Sorbent-Based MIP Applications
4.1. Water Samples
4.2. Food Samples
4.3. Biological and Other Complex Samples
5. MIP Challenges
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Aufartová, J.; Mahugo-santana, C.; Sosa-ferrera, Z.; Santana-rodríguez, J.J.; Nováková, L.; Solich, P. Determination of steroid hormones in biological and environmental samples using green microextraction techniques: An overview. Anal. Chim. Acta 2011, 704, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Casals-Casas, C.; Desvergne, B. Endocrine disruptors: From endocrine to metabolic disruption. Annu. Rev. Physiol. 2011, 73, 135–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrouzo, M.; Borrull, F.; Pocurull, E.; Marcé, R.M. Presence of pharmaceuticals and hormones in waters from sewage treatment plants. Water Air Soil Pollut. 2011, 217, 267–281. [Google Scholar] [CrossRef]
- Avar, P.; Maász, G.; Takács, P.; Lovas, S.; Zrínyi, Z.; Svigruha, R.; Takátsy, A.; Tóth, L.G.; Pirger, Z. HPLC-MS/MS analysis of steroid hormones in environmental water samples. Drug Test. Anal. 2016, 8, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Nezami, A.; Nosrati, R.; Golichenari, B.; Rezaee, R. Nanomaterial-based aptasensors and bioaf fi nity sensors for quantitative detection of 17 b -estradiol. Trends Anal. Chem. 2017, 94, 95–105. [Google Scholar] [CrossRef]
- Di Donna, L.; Benabdelkamel, H.; Taverna, D.; Indelicato, S.; Aiello, D.; Napoli, A.; Sindona, G.; Mazzotti, F. Determination of ketosteroid hormones in meat by liquid chromatography tandem mass spectrometry and derivatization chemistry. Anal. Bioanal. Chem. 2015, 407, 5835–5842. [Google Scholar] [CrossRef]
- Puckowski, A.; Mioduszewska, K.; Łukaszewicz, P.; Borecka, M.; Caban, M.; Maszkowska, J.; Stepnowski, P. Bioaccumulation and analytics of pharmaceutical residues in the environment: A review. J. Pharm. Biomed. Anal. 2016, 127, 232–255. [Google Scholar] [CrossRef]
- Fang, T.Y.; Praveena, S.M.; deBurbure, C.; Aris, A.Z.; Ismail, S.N.S.; Rasdi, I. Analytical techniques for steroid estrogens in water samples-A review. Chemosphere 2016, 165, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Manickum, T.; John, W. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Anal. Bioanal. Chem. 2015, 407, 4949–4970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Feng, Y.; Gao, P.; Wang, C.; Ren, N. Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP. J. Environ. Monit. 2011, 13, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Guo, X.; Cui, X.; Zhang, X.; Zhang, H.; Wang, M.K.; Qiu, L.; Chen, S. Occurrence and removal of endocrine-disrupting chemicals in wastewater treatment plants in the Three Gorges Reservoir area, Chongqing, China. J. Environ. Monit. 2012, 14, 2204–2211. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Arauzo, L.; Pimentel-Trapero, D.; Hernández-Carrasquilla, M. Simultaneous determination of resorcylic acid lactones, β and α trenbolone and stilbenes in bovine urine by UHPLC/MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 973, 89–96. [Google Scholar] [CrossRef]
- Białk-Bielińska, A.; Kumirska, J.; Borecka, M.; Caban, M.; Paszkiewicz, M.; Pazdro, K.; Stepnowski, P. Journal of Pharmaceutical and Biomedical Analysis Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment. J. Pharm. Biomed. Anal. 2016, 121, 271–296. [Google Scholar] [CrossRef] [PubMed]
- Matić, I.; Grujić, S.; Jauković, Z.; Laušević, M. Trace analysis of selected hormones and sterols in river sediments by liquid chromatography-atmospheric pressure chemical ionization–tandem mass spectrometry. J. Chromatogr. A 2014, 1364, 117–127. [Google Scholar] [CrossRef]
- Hamid, H.; Eskicioglu, C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res. 2012, 46, 5813–5833. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.L.; Escandar, G.M. Multivariate calibration-assisted high-performance liquid chromatography with dual UV and fluorimetric detection for the analysis of natural and synthetic sex hormones in environmental waters and sediments. Environ. Pollut. 2016, 209, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Naldi, A.C.; Fayad, P.B.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on—line solid—phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tomšíková, H.; Aufartová, J.; Solich, P.; Nováková, L.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. High-sensitivity analysis of female-steroid hormones in environmental samples. TrAC Trends Anal. Chem. 2012, 34, 35–58. [Google Scholar] [CrossRef]
- Migowska, N.; Caban, M.; Stepnowski, P.; Kumirska, J. Simultaneous analysis of non-steroidal anti-inflammatory drugs and estrogenic hormones in water and wastewater samples using gas chromatography–mass spectrometry and gas chromatography with electron capture detection. Sci. Total Environ. 2012, 441, 77–88. [Google Scholar] [CrossRef]
- Buszewski, B.; Szultka, M. Past, present, and future of solid phase extraction: A review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. [Google Scholar] [CrossRef]
- Matamoros, V.; Calderón-Preciado, D.; Domínguez, C.; Bayona, J.M. Analytical procedures for the determination of emerging organic contaminants in plant material: A review. Anal. Chim. Acta 2012, 722, 8–20. [Google Scholar] [CrossRef]
- Buchberger, W.W. Current approaches to trace analysis of pharmaceuticals and personal care products in the environment. J. Chromatogr. A 2011, 1218, 603–618. [Google Scholar] [CrossRef]
- Dimpe, K.M.; Nomngongo, P.N. Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC Trends Anal. Chem. 2016, 82, 199–207. [Google Scholar] [CrossRef]
- Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction Technique--Trends, Opportunities and Applications. Polish J. Environ. Stud. 2006, 15, 677–690. [Google Scholar]
- Sosa-Ferrera, Z.; Mahugo-Santana, C.; Santana-Rodríguez, J.J. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples. Biomed Res. Int. 2013, 2013, 1–23. [Google Scholar] [CrossRef]
- Wulf, G.; Sarhan, A. Macromolecular colloquim, Angevv. Chem. Int. Ed. Engl. 1972, 11, 341. [Google Scholar]
- Wackerlig, J.; Schirhagl, R. Applications of molecularly imprinted polymer nanoparticles and their advances toward industrial use: A review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.Y.; Praveena, S.M.; Aris, A.Z.; Ismail, S.N.S.; Rasdi, I. Quantification of selected steroid hormones (17β-Estradiol and 17α-Ethynylestradiol) in wastewater treatment plants in Klang Valley (Malaysia). Chemosphere 2019, 215, 153–162. [Google Scholar] [CrossRef]
- Moraes, F.C.; Rossi, B.; Donatoni, M.C.; de Oliveira, K.T.; Pereira, E.C. Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Anal. Chim. Acta 2015, 881, 37–43. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Q.; Qu, G.; Song, S.; Sun, J.; Shi, J.; Jiang, G. Simultaneous determination of five estrogens and four androgens in water samples by online solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2013, 1281, 9–18. [Google Scholar] [CrossRef]
- Su, R.; Wang, X.; Xu, X.; Wang, Z.; Li, D.; Zhao, X.; Li, X.; Zhang, H.; Yu, A. Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. J. Chromatogr. A 2011, 1218, 5047–5054. [Google Scholar] [CrossRef]
- Silva, C.P.; Lima, D.L.D.; Schneider, R.J.; Otero, M.; Esteves, V.I. Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. J. Environ. Manag. 2013, 124, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Beldean-Galea, M.S.; Klein, R.; Coman, M.-V. Simultaneous Determination of Four Nonsteroidal Anti-Inflammatory Drugs and Three Estrogen Steroid Hormones in Wastewater Samples by Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet and HPLC. J. AOAC Int. 2020, 103, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Kotowska, U.; Kapelewska, J.; Kotowski, A.; Pietuszewska, E. Rapid and sensitive analysis of hormones and other emerging contaminants in groundwater using ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by GC-MS Detection. Water 2019, 11, 1638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.-S.; Xie, Y.-F.; Li, X.-W.; Wang, D.-Y.; Yang, L.-S.; Nie, Z.-Q. Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Sci. Total Environ. 2015, 538, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Andrási, N.; Molnár, B.; Dobos, B.; Vasanits-Zsigrai, A.; Záray, G.; Molnár-Perl, I. Determination of steroids in the dissolved and in the suspended phases of wastewater and Danube River samples by gas chromatography, tandem mass spectrometry. Talanta 2013, 115, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-G.; Zhang, Y.; Zhan, P.-P.; Chen, X.-H.; Pan, S.-D.; Jin, M.-C. Fast determination of 24 steroid hormones in river water using magnetic dispersive solid phase extraction followed by liquid chromatography–tandem mass spectrometry. Environ. Sci. Pollut. Res. 2016, 23, 1529–1539. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-X.; Zhou, Y.; Jiang, Q.-W. Simultaneous screening of estrogens, progestogens, and phenols and their metabolites in potable water and river water by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Microchem. J. 2012, 100, 83–94. [Google Scholar] [CrossRef]
- Goyon, A.; Cai, J.Z.; Kraehenbuehl, K.; Hartmann, C.; Shao, B.; Mottier, P. Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk. Food Addit. Contam. Part A 2016, 33, 804–816. [Google Scholar] [CrossRef] [PubMed]
- MFM Sampaio, N.; DB Castilhos, N.; C da Silva, B.; C Riegel-Vidotti, I.; JG Silva, B. Evaluation of Polyvinyl Alcohol/Pectin-Based Hydrogel Disks as Extraction Phase for Determination of Steroidal Hormones in Aqueous Samples by GC-MS/MS. Molecules 2019, 24, 40. [Google Scholar] [CrossRef] [Green Version]
- Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 2020, 6, 250–258. [Google Scholar] [CrossRef]
- Jauković, Z.D.; Grujić, S.D.; Bujagić, I.V.M.; Laušević, M.D. Determination of sterols and steroid hormones in surface water and wastewater using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Microchem. J. 2017, 135, 39–47. [Google Scholar] [CrossRef]
- Arismendi, D.; Díaz, K.; Aguilera-Marabolí, N.; Sepúlveda, B.; Richter, P. Rotating-disk sorptive extraction for the determination of sex hormones and triclosan in urine by gas chromatography-mass spectrometry: Clean-up integrated steps and improved derivatization. Microchem. J. 2020, 105149. [Google Scholar] [CrossRef]
- Olatunji, O.S.; Fatoki, O.S.; Opeolu, B.O.; Ximba, B.J.; Chitongo, R. Determination of selected steroid hormones in some surface water around animal farms in Cape Town using HPLC-DAD. Environ. Monit. Assess. 2017, 189, 363. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Z.; Wang, H.; Dang, Z.; Liu, Y. Occurrence and removal of 17α-ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges. Chemosphere 2021, 129551. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Gao, R.; Shi, L.; Liu, D.; Tang, Y.; Guo, Z. Water-compatible magnetic imprinted nanoparticles served as solid-phase extraction sorbents for selective determination of trace 17beta-estradiol in environmental water samples by liquid chromatography. J. Chromatogr. A 2015, 1396, 7–16. [Google Scholar] [CrossRef]
- Kopperi, M.; Riekkola, M.-L. Non-targeted evaluation of selectivity of water-compatible class selective adsorbents for the analysis of steroids in wastewater. Anal. Chim. Acta 2016, 920, 47–53. [Google Scholar] [CrossRef]
- Gao, R.; Su, X.; He, X.; Chen, L.; Zhang, Y. Preparation and characterisation of core–shell CNTs@ MIPs nanocomposites and selective removal of estrone from water samples. Talanta 2011, 83, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Yagishita, M.; Kubo, T.; Nakano, T.; Shiraishi, F.; Tanigawa, T.; Naito, T.; Sano, T.; Nakayama, S.F.; Nakajima, D.; Otsuka, K. Efficient extraction of estrogen receptor–active compounds from environmental surface water via a receptor-mimic adsorbent, a hydrophilic PEG-based molecularly imprinted polymer. Chemosphere 2019, 217, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; He, Q.; Wang, L.; Wang, X.; Dong, Q.; Huang, C. Preparation of magnetic multi-functional molecularly imprinted polymer beads for determining environmental estrogens in water samples. J. Hazard. Mater. 2013, 252, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Gan, N.; Hu, F.; Wang, D.; Lan, H.; Li, T.; Wang, H. Magnetic nanospheres with a molecularly imprinted shell for the preconcentration of diethylstilbestrol. Microchim. Acta 2014, 181, 1341–1351. [Google Scholar] [CrossRef]
- Lucci, P.; Núñez, O.; Galceran, M.T. Solid-phase extraction using molecularly imprinted polymer for selective extraction of natural and synthetic estrogens from aqueous samples. J. Chromatogr. A 2011, 1218, 4828–4833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Yang, Z.; Liu, Z. Development of dual-templates molecularly imprinted stir bar sorptive extraction and its application for the analysis of environmental estrogens in water and plastic samples. J. Chromatogr. A 2014, 1358, 52–59. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Cerdà, V. Development of an automatic sequential injection analysis-lab on valve system exploiting molecularly imprinted polymers coupled with high performance liquid chromatography for the determination of estrogens in wastewater samples. Talanta 2020, 209, 120564. [Google Scholar] [CrossRef]
- González-Sálamo, J.; Socas-Rodríguez, B.; Hernández-Borges, J.; del Mar Afonso, M.; Rodríguez-Delgado, M.Á. Evaluation of two molecularly imprinted polymers for the solid-phase extraction of natural, synthetic and mycoestrogens from environmental water samples before liquid chromatography with mass spectrometry. J. Sep. Sci. 2015, 38, 2692–2699. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, R.; Gadzała-Kopciuch, R. Isolation and determination of estrogens in water samples by solid-phase extraction using molecularly imprinted polymers and HPLC. J. Sep. Sci. 2013, 36, 2299–2305. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xue, M.; Xue, F.; Mu, X.; Xu, Z.; Meng, Z.; Zhu, G.; Shea, K.J. Molecularly imprinted hollow spheres for the solid phase extraction of estrogens. Talanta 2015, 140, 68–72. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Mei, X.; Wang, J.; Lian, Z.; Tan, L.; Wu, W. Determination of diethylstilbestrol in seawater by molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography. Mar. Pollut. Bull. 2016, 102, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Whitcombe, M.J.; Nicholls, I.A. Molecular Imprinting Science and Technology: A Survey of the Literature for the Years from 2004 to 2011. J. Mol. Recognit. 2011, 27, 297–401. [Google Scholar]
- Beyazit, S.; Tse, B.; Bui, S.; Haupt, K.; Gonzato, C. Progress in Polymer Science Molecularly imprinted polymer nanomaterials and nanocomposites by controlled / living radical polymerization. Prog. Polym. Sci. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Profumo, A. Analytica Chimica Acta Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: A review. Anal. Chim. Acta 2017, 974, 1–26. [Google Scholar] [CrossRef]
- Zink, S.; Moura, F.A.; da Silva Autreto, P.A.; Galvao, D.S.; Mizaikoff, B. Efficient prediction of suitable functional monomers for molecular imprinting via local density of states calculations. Phys. Chem. Chem. Phys. 2018, 20, 13153–13158. [Google Scholar] [CrossRef] [PubMed]
- Guć, M.; Schroeder, G. Molecularly Imprinted Polymers and Magnetic Molecularly Imprinted Polymers for Selective Determination of Estrogens in Water by ESI-MS/FAPA-MS. Biomolecules 2020, 10, 672. [Google Scholar] [CrossRef]
- Figueiredo, L.; Erny, G.L.; Santos, L.; Alves, A. Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review. Talanta 2016, 146, 754–765. [Google Scholar] [CrossRef] [Green Version]
- Spivak, D.A. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug Deliv. Rev. 2005, 57, 1779–1794. [Google Scholar] [CrossRef]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly imprinted polymers: Present and future prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Molinelli, A.; Mizaikoff, B. Molecularly imprinted micro and nanospheres for the selective recognition of 17 β-estradiol. Biosens. Bioelectron. 2006, 21, 1943–1951. [Google Scholar] [CrossRef]
- Chen, L.; Li, J. Recent advances in molecular imprinting technology: Current status, challenges and highlighted applications. Chem. Soc. Rev. 2011, 40, 2922–2942. [Google Scholar] [CrossRef]
- Caro, E.; Masqué, N.; Marcé, R.M.; Borrull, F.; Cormack, P.A.G.; Sherrington, D.C. Non-covalent and semi-covalent molecularly imprinted polymers for selective on-line solid-phase extraction of 4-nitrophenol from water samples. J. Chromatogr. A 2002, 963, 169–178. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting: Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137–2211. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef] [PubMed]
- Włoch, M.; Datta, J. Synthesis and polymerisation techniques of molecularly imprinted polymers. Compr. Anal. Chem. 2019, 86, 17–40. [Google Scholar]
- Phungpanya, C.; Chaipuang, A.; Machan, T.; Watla-iad, K.; Thongpoon, C.; Suwantong, O. Synthesis of prednisolone molecularly imprinted polymer nanoparticles by precipitation polymerization. Polym. Adv. Technol. 2018, 29, 3075–3084. [Google Scholar] [CrossRef]
- Beltran, A.; Marcé, R.M.; Cormack, P.A.G.; Borrull, F. Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine. J. Chromatogr. A 2009, 1216, 2248–2253. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Li, S.; Liu, L.; Chen, Y.; Zhou, W.; Pei, J.; Liang, Z.; Zhang, L.; Zhang, Y. Epitope imprinting technology: Progress, applications, and perspectives toward artificial antibodies. Adv. Mater. 2019, 31, 1902048. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, J. Molecular Imprinting with Functional DNA. Small 2019, 15, 1805246. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Pan, G.; Zhang, Y.; Guo, X.; Zhang, H. Comparative study of the molecularly imprinted polymers prepared by reversible addition–fragmentation chain transfer “bulk” polymerization and traditional radical “bulk” polymerization. J. Mol. Recognit. 2013, 26, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Riedel, D.; Mizaikoff, B. Surface Imprinted Micro- and Nanoparticles. In Comprehensive Analytical Chemistry; Marć, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 153–191. [Google Scholar]
- Dinc, M.; Esen, C.; Mizaikoff, B. Recent advances on core–shell magnetic molecularly imprinted polymers for biomacromolecules. Trends Anal. Chem. 2019, 14, 202–217. [Google Scholar] [CrossRef]
- Zhu, H.; Yao, H.; Xia, K.; Liu, J.; Yin, X.; Zhang, W.; Pan, J. Magnetic nanoparticles combining teamed boronate affinity and surface imprinting for efficient selective recognition of glycoproteins under physiological pH. Chem. Eng. J. 2018, 346, 317–328. [Google Scholar] [CrossRef]
- Meier, F.; Schott, B.; Riedel, D.; Mizaikoff, B. Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers. Anal. Chim. Acta 2012, 744, 68–74. [Google Scholar] [CrossRef]
- Vozzi, G.; Morelli, I.; Vozzi, F.; Andreoni, C.; Salsedo, E.; Morachioli, A.; Giusti, P.; Ciardelli, G. SOFT-MI: A novel microfabrication technique integrating soft-lithography and molecular imprinting for tissue engineering applications. Biotechnol. Bioeng. 2010, 106, 804–817. [Google Scholar] [CrossRef]
- Torres, J.J.; Montejano, H.A.; Chesta, C.A. Characterization of imprinted microbeads synthesized via minisuspension polymerization. Macromol. Mater. Eng. 2012, 297, 342–352. [Google Scholar] [CrossRef]
- Song, Z.; Meng, M.; Pan, J.; Li, C.; Wang, J.; Dai, J.; Yan, Y. Surface molecularly imprinted polymers based on yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin from aqueous medium. J. Appl. Polym. Sci. 2013, 131. [Google Scholar] [CrossRef]
- Sharma, P.S.; Pietrzyk-Le, A.; D’souza, F.; Kutner, W. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, L.M. Electropolymerized molecularly imprinted polymers (e-MIPs), perceptions based in recent literature for soon-to-be world-class scientists. Curr. Opin. Electrochem. 2020. [Google Scholar] [CrossRef]
- Peng, Y.; Su, H. Recent innovations of molecularly imprinted electrochemical sensors based on electropolymerization technique. Curr. Anal. Chem. 2015, 11, 307–317. [Google Scholar] [CrossRef]
- Lu, H.; Xu, S. Mesoporous structured estrone imprinted Fe3O4@ SiO2@ mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC. Talanta 2015, 144, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Guedes-Alonso, R.; Santana-Viera, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater. J. Sep. Sci. 2015, 38, 3961–3968. [Google Scholar] [CrossRef] [PubMed]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Juszczak, R.; Skrzypek, S.; Gadzała-Kopciuch, R. Molecularly imprinted polymer film grafted from porous silica for efficient enrichment of steroid hormones in water samples. J. Sep. Sci. 2019, 42, 2858–2866. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.; Chen, X.; Hu, Y.; Li, G. A novel molecularly imprinted solid-phase microextraction fiber coupled with high performance liquid chromatography for analysis of trace estrogens in fishery samples. Talanta 2010, 80, 2099–2105. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Yuan, L.; Xiao, Y.; Wang, X.; Yang, Z. Trace analysis of estrogens in milk samples by molecularly imprinted solid phase extraction with genistein as a dummy template molecule and high-performance liquid chromatography–tandem mass spectrometry. Steroids 2019, 145, 23–31. [Google Scholar] [CrossRef]
- Xiong, H.; Wu, X.; Lu, W.; Fu, J.; Peng, H.; Li, J.; Wang, X.; Xiong, H.; Chen, L. Switchable zipper-like thermoresponsive molecularly imprinted polymers for selective recognition and extraction of estradiol. Talanta 2018, 176, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, R.; Kardani, F.; Ramezani, Z. A nanocomposite consisting of graphene oxide, zeolite imidazolate framework 8, and a molecularly imprinted polymer for (multiple) fiber solid phase microextraction of sterol and steroid hormones prior to their quantitation by HPLC. Microchim. Acta 2019, 186, 129. [Google Scholar] [CrossRef]
- Ning, F.; Peng, H.; Li, J.; Chen, L.; Xiong, H. Molecularly imprinted polymer on magnetic graphene oxide for fast and selective extraction of 17β-estradiol. J. Agric. Food Chem. 2014, 62, 7436–7443. [Google Scholar] [CrossRef]
- Gao, G.; Xing, Y.; Liu, T.; Wang, J.; Hou, X. UiO-66(Zr) as sorbent for porous membrane protected micro-solid-phase extraction androgens and progestogens in environmental water samples coupled with LC-MS/MS analysis: The application of experimental and molecular simulation method. Microchem. J. 2019, 146, 126–133. [Google Scholar] [CrossRef]
- Gong, Y.; Niu, Y.; Gong, X.; Ma, M.; Ren, X.; Zhu, W.; Luo, R.; Gong, B. Preparation of 17β-estradiol-imprinted material by surface-initiated atom transfer radical polymerization and its application. J. Sep. Sci. 2015, 38, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ni, Y.; Wang, L.; Ma, J.; Zhang, Z. Selective solid-phase extraction of artificial chemicals from milk samples using multiple-template surface molecularly imprinted polymers. Biomed. Chromatogr. 2015, 29, 1267–1273. [Google Scholar] [CrossRef]
- Lan, H.; Gan, N.; Pan, D.; Hu, F.; Li, T.; Long, N.; Qiao, L. An automated solid-phase microextraction method based on magnetic molecularly imprinted polymer as fiber coating for detection of trace estrogens in milk powder. J. Chromatogr. A 2014, 1331, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Ma, J.; Ding, M.; Wang, S.; Wu, X.; Li, Y.; Ma, K.; Zhou, X.; Li, F. Preparation of estriol–molecularly imprinted silica nanoparticles for determining oestrogens in milk tablets. Food Chem. 2012, 131, 1063–1068. [Google Scholar] [CrossRef]
- Qiao, L.; Gan, N.; Wang, J.; Gao, H.; Hu, F.; Wang, H.; Li, T. Novel molecularly imprinted stir bar sorptive extraction based on an 8-electrode array for preconcentration of trace exogenous estrogens in meat. Anal. Chim. Acta 2015, 853, 342–350. [Google Scholar] [CrossRef]
- Wang, L.; Yan, H.; Yang, C.; Li, Z.; Qiao, F. Synthesis of mimic molecularly imprinted ordered mesoporous silica adsorbent by thermally reversible semicovalent approach for pipette-tip solid-phase extraction-liquid chromatography fluorescence determination of estradiol in milk. J. Chromatogr. A 2016, 1456, 58–67. [Google Scholar] [CrossRef]
- Zhu, W.; Peng, H.; Luo, M.; Yu, N.; Xiong, H.; Wang, R.; Li, Y. Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples. Food Chem. 2018, 261, 87–95. [Google Scholar] [CrossRef]
- Qiu, L.; Liu, W.; Huang, M.; Zhang, L. Preparation and application of solid-phase microextraction fiber based on molecularly imprinted polymer for determination of anabolic steroids in complicated samples. J. Chromatogr. A 2010, 1217, 7461–7470. [Google Scholar] [CrossRef] [PubMed]
- Nezhadali, A.; Es’haghi, Z.; Khatibi, A. Selective extraction of progesterone hormones from environmental and biological samples using a polypyrrole molecularly imprinted polymer and determination by gas chromatography. Anal. Methods 2016, 8, 1813–1827. [Google Scholar] [CrossRef]
- Du, W.; Zhang, B.; Guo, P.; Chen, G.; Chang, C.; Fu, Q. Facile preparation of magnetic molecularly imprinted polymers for the selective extraction and determination of dexamethasone in skincare cosmetics using HPLC. J. Sep. Sci. 2018, 41, 2441–2452. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Li, X.; Li, J.; Wu, Z.; Wang, F.; Liu, L.; Tan, X.; Lei, F. Selective separation and determination of glucocorticoids in cosmetics using dual-template magnetic molecularly imprinted polymers and HPLC. J. Colloid Interface Sci. 2017, 504, 124–133. [Google Scholar] [CrossRef]
- de Oliveira, H.L.; Pires, B.C.; Teixeira, L.S.; Dinali, L.A.F.; Simões, N.S.; de Souza Borges, W.; Borges, K.B. Novel restricted access material combined to molecularly imprinted polymer for selective magnetic solid-phase extraction of estrogens from human urine. Microchem. J. 2019, 149, 104043. [Google Scholar] [CrossRef]
- de Oliveira, H.L.; Teixeira, L.S.; Dinali, L.A.F.; Pires, B.C.; Simões, N.S.; Borges, K.B. Microextraction by packed sorbent using a new restricted molecularly imprinted polymer for the determination of estrogens from human urine samples. Microchem. J. 2019, 150, 104162. [Google Scholar] [CrossRef]
- Bousoumah, R.; Antignac, J.P.; Camel, V.; Grimaldi, M.; Balaguer, P.; Courant, F.; Bichon, E.; Morvan, M.-L.; Le Bizec, B. Development of a molecular recognition based approach for multi-residue extraction of estrogenic endocrine disruptors from biological fluids coupled to liquid chromatography-tandem mass spectrometry measurement. Anal. Bioanal. Chem. 2015, 407, 8713–8723. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Chen, X.; Hu, S.; Gong, T.; Xian, Q. A novel molecularly imprinted polymer-solid phase extraction method coupled with high performance liquid chromatography tandem mass spectrometry for the determination of nitrosamines in water and beverage samples. Food Chem. 2019, 292, 267–274. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J.; Wang, X.; Li, B.; Chen, L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. TrAC Trends Anal. Chem. 2020, 115923. [Google Scholar] [CrossRef]
- Zhu, G.; Fan, J.; Gao, Y.; Gao, X.; Wang, J. Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs. Talanta 2011, 84, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Tavengwa, N.T.; Chimuka, L. Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J. Pharm. Biomed. Anal. 2018, 147, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Green chemistry features in molecularly imprinted polymers preparation process. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 337–364. ISBN 0166-526X. [Google Scholar]
- Yang, B.; Fu, C.; Li, J.; Xu, G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. TrAC-Trends Anal. Chem. 2018, 105, 52–67. [Google Scholar] [CrossRef]
- Garcia, R.; Gomes da Silva, M.D.R.; Cabrita, M.J. “On-off” switchable tool for food sample preparation: Merging molecularly imprinting technology with stimuli-responsive blocks. Current status, challenges and highlighted applications. Talanta 2018, 176, 479–484. [Google Scholar] [CrossRef]
- Vaneckova, T.; Bezdekova, J.; Han, G.; Adam, V.; Vaculovicova, M. Application of molecularly imprinted polymers as artificial receptors for imaging. Acta Biomater. 2020, 101, 444–458. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef]
Country | Sample Type | Type of Hormone | Conc. Level | Ref. |
---|---|---|---|---|
Malaysia | Wastewater | 17-β-E2 and 17-α-EE2 | 0.02–93.9 ng/L | [29] |
South Africa | Wastewater | 17-β-E2 | 15–2000 ng/L | [9] |
Brazil | River water | 17-β-E2 | 14.9 µg/L | [30] |
China | River and wastewater | E1 and E3 | 2.1–360 ng/L | [31] |
France | Butter | Medroxyprogesterone | 4.1 µg/kg | [32] |
Portugal | Wastewater | 17-β-E2 | 0.085 µg/L | [33] |
Romania | Wastewater | E3 and ethynylestradiol (EE) | 2.6–4.7 µg/L | [34] |
Poland | Ground water | E1 | 309 ng/L | [35] |
China | Soil | PRO, androstenedione, TST, and 17α-E2 | 0.06–1/20 µg/kg | [36] |
Hungary | River water | E2, coprostanol, cholesterol, stigmasterol, and β-stosterol | 0.322–488 µg/L | [37] |
China | River water | PRO, boldenone, and norgestrel | 8.22–66.2 ng/L | [38] |
China | River and surface water | E1, E3, and bisphenol A (BPA) | 1.0–690 ng/L | [39] |
Switzerland | Milk | E1, PRO, hydroprogesterone, cortisone, 4-androstenedione, and E2 | 10–342 ng/kg | [40] |
Brazil | Surface water | E1, 17β-E2l, PRO, and 17α-EE2 | 0–5.84 µg/L | [41] |
South Africa | Wastewater and river water | PRO, E1, E2, and E3 | 0–7133 ng/L | [42] |
Serbia | Surface and wastewater | Cholesterol, coprostanol, campesterol, stigmasterol, β-sitosterol, and sitostanol | 12–4808 ng/L | [43] |
Chile | Human urine | TST, PRO, and E2 | 0.20–21.23 ng/L | [44] |
Hormones | Matrix | Analytical Techniques | Polymerization Method | LOD (µg/L) | %Recovery | Reference |
---|---|---|---|---|---|---|
17β-E2 | Lake, river water, effluent | HPLC | One-spot solvothermal reaction | 0.04 | 88.3–99 | [47] |
E1, E3, 17β-E2, 17α-EE2, trans-androsterone, TST, and PRO | Wastewater | GC × GC‒TOFMS and LC‒MS | Bulk polymerization | - | - | [48] |
Diethylstilbestrol (DES), E1, and E3 | River, lake and tap water | HPLC–UV | Semicovalent polymerization | 10–16 | 96–98 | [49] |
E3 and 17β-E2 | Wastewater | LC–Q-TOFMS | - | - | - | [50] |
E2, E3, and EE2 | Tap, drinking, river water | HPLC–FLD | Surface polymerization | 2.5–5.8 | 72–102 | [51] |
E2, E3, and DES | Lake and river water | HPLC–UV | Surface polymerization and sol–gel method | 0.08–0.27 | 85–95 | [52] |
E1, E2, E3, DES, and EE2 | River water | LC–MS | - | 0.0045–0.0098 | 47–104 | [53] |
E1, E2, and DES | Lake and river water | HPLC–DAD | - | 0.3–1.5 | 75–93 | [54] |
E1, E2, E3, and EE2 | Wastewater | HPLC | - | 1.96–2.76 | 81–113 | [55] |
17α-E2, 17β-E2, E1, hexestrol (HEX), 17α-EE2, DES, dienestrol (DS), zearalenone (ZEN), α-zearalanol (α-ZAL), and β-zearalanol (β-ZAL) | Mineral water and wastewater | HPLC–DAD | - | 0.01–0.44 | 65–101 | [56] |
17β-E2, E1, and E3 | Water | HPLC–DAD/ECD | Bulk polymerization | 0.07–10.99 | 74–82 | [57] |
E2, EE, DES, ethisterone (ES), and E1 | River water | HPLC–UV | Surface polymerization | 0.1 to 0.26 mmol/L | 50–96 | [58] |
estrogen dienestrol (DIS) | Seawater | HPLC–DAD | Surface polymerization | 0.16 | 87.3–96.4 | [59] |
Hormones | Food Type | Analytical Technique | Polymerization Method | LOD µg/L | %Recovery | Refs |
---|---|---|---|---|---|---|
E2 | Goat milk | HPLC–PDA | Bulk polymerization | 4.81 | 76–90 | [94] |
PRO, TST, β-sitosterol, cholesterol, and campesterol | White meat, egg yolks, and vegetables | HPLC | - | 0.003–0.005 | 97–101 | [95] |
E2 | Milk powder | UV | Surface polymerization | 9.533 | 84 | [96] |
E2 | Milk | HPLC–UV | Surface polymerization | 0.01 | 89–92 | [97] |
E2 | Beef | HPLC–PDA | Surface initiated atom transfer radical polymerization | 0.25 | 97–99 | [98] |
E1, E2, and E3 | Milk | HPLC | Surface polymerization | - | 81.6–91.6 | [99] |
E1, E3, and EE2 | Fish and shrimp | HPLC–UV | Multiple copolymerization | 0.98–2.39 | 80–94 | [92] |
E1, E2, E3. and DES | Milk powder | HPLC–UV | surface polymerization | 1.5–5.5 ng/g | 81–95 | [100] |
E2 and E3 | Milk tablets | HPLC–UV | Surface polymerization | 1.49–1.83 | 89.1–93.5 | [101] |
DES | Pork and chicken | HPLC–UV | Surface polymerization | 0.28–0.47 | 83–99 | [102] |
E2 | Milk | HPLC–FLD | - | 0.006 | 95–107 | [103] |
Hormones | Matrix | Analytical Techniques | Polymerization Method | LOD µg/L | %Recovery | Refs |
---|---|---|---|---|---|---|
E1 and E3 | Urine | HPLC–UV | - | 25–32 | 70–80 | [109] |
EE2 and E2 | Urine | HPLC–UV | - | 76–92 | 96–99 | [110] |
E1, 17α- α-E2, β-E2, E3, EE2, DES, BPA, bisphenol S (BPS), 4-n-octylphenol (OP), 4-n-coumestrol (COU), genistein (GEN), and enterolactone (ENT) | Maternal serum, cord serum, and urine | UHPLC–MS/MS | - | 0.01–0.7 | >100 | [111] |
PRO and TST | Human urine | HPLC–DAD | Bulk polymerization | 0.47 | >80 | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpupa, A.; Selahle, S.K.; Mizaikoff, B.; Nomngongo, P.N. Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors 2021, 9, 151. https://doi.org/10.3390/chemosensors9070151
Mpupa A, Selahle SK, Mizaikoff B, Nomngongo PN. Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors. 2021; 9(7):151. https://doi.org/10.3390/chemosensors9070151
Chicago/Turabian StyleMpupa, Anele, Shirley Kholofelo Selahle, Boris Mizaikoff, and Philiswa Nosizo Nomngongo. 2021. "Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones" Chemosensors 9, no. 7: 151. https://doi.org/10.3390/chemosensors9070151
APA StyleMpupa, A., Selahle, S. K., Mizaikoff, B., & Nomngongo, P. N. (2021). Recent Advances in Solid-Phase Extraction (SPE) Based on Molecularly Imprinted Polymers (MIPs) for Analysis of Hormones. Chemosensors, 9(7), 151. https://doi.org/10.3390/chemosensors9070151