Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Modification of Screen-Printed Carbon Electrode
2.1.1. Electrodeposition of AuNPs on SPCE(AuNPs/SPCE)
2.1.2. Modification of AuNPs/SPCE with TC4
2.2. Electrochemical Analysis of Analytes
Recovery Study
3. Results and Discussion
3.1. Characterisations of Modified Electrodes
3.1.1. Fourier-Transform Infrared Spectroscopy
3.1.2. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray
3.1.3. Electrochemical Behaviour of the Modified Electrode
3.2. Optimization Study
3.3. Mechanism of Detection
3.4. Detection of Pb2+ and Cu2+
3.5. Reproducibility, Stability, and Lifetime Studies
3.6. Recovery Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meseldzija, S.; Petrovic, J.; Onjia, A.; Volkov-Husovic, T.; Nesic, A.; Vukelic, N. Utilization of agro-industrial waste for removal of copper ions from aqueous solutions and mining-wastewater. J. Ind. Eng. Chem. 2019, 75, 246–252. [Google Scholar] [CrossRef]
- Moreira, V.; Lebron, Y.; Freire, S.; Santos, L.; Palladino, F.; Jacob, R. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchem. J. 2019, 145, 119–129. [Google Scholar] [CrossRef]
- Du, T.; Wang, J.; Zhang, T.; Zhang, L.; Yang, C.; Yue, T.; Sun, J.; Li, T.; Zhou, M.; Wang, J. An Integrating Platform of Ratiometric Fluorescent Adsorbent for Unconventional Real-Time Removing and Monitoring of Copper Ions. ACS Appl. Mater. Interfaces 2020, 12, 13189–13199. [Google Scholar] [CrossRef] [PubMed]
- Adilah, A.N.; Nadia, H.N. Water Quality Status and Heavy Metal Contains in Selected Rivers at Tasik Chini due to Increasing Land Use Activities. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Borovets, Bulgaria, 26–29 November 2020. [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef]
- Ranee, S.J.; Sivaraman, G.; Pushpalatha, A.M.; Muthusubramanian, S. Quinoline based sensors for bivalent copper ions in living cells. Sens. Actuators B Chem. 2018, 255, 630–637. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, D.; Zhen, Y.; Guo, R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens. Bioelectron. 2017, 92, 140–146. [Google Scholar] [CrossRef]
- Mahdi, Z.; Yu, Q.J.; El Hanandeh, A. Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar. J. Environ. Chem. Eng. 2018, 6, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Tsade, H.K. Atomic absorption spectroscopic determination of heavy metal concentrations in Kulufo River, Arbaminch, Gamo Gofa, Ethiopia. J. Environ. Anal. Chem. 2016, 3, 1–3. [Google Scholar]
- Yarur, F.; Macairan, J.-R.; Naccache, R. Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environ. Sci. Nano 2019, 6, 1121–1130. [Google Scholar] [CrossRef]
- Alkas, F.B.; Shaban, J.A.; Sukuroglu, A.A.; Kurt, M.A.; Battal, D.; Saygi, S. Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus. Environ. Monit. Assess. 2017, 189, 1–8. [Google Scholar] [CrossRef]
- Erdemir, S.; Malkondu, S. Calix[4]arene based a NIR-fluorescent sensor with an enhanced stokes shift for the real-time visualization of Zn(II) in living cells. Sens. Actuators B Chem. 2020, 306, 127574. [Google Scholar] [CrossRef]
- Aziz, S.F.N.A.; Zawawi, R.; Ahmad, S.A.A. An Electrochemical Sensing Platform for the Detection of Lead Ions Based on Dicarboxyl-Calix[4]arene. Electroanalysis 2018, 30, 533–542. [Google Scholar] [CrossRef]
- Sultan, S.; Shah, A.; Khan, B.; Qureshi, R.; Al-Mutawah, J.I.; Shah, M.R.; Shah, A.H. Simultaneous Ultrasensitive Detection of Toxic Heavy Metal Ions Using bis(imidazo[4,5-f][1, 10] phenanthroline) Appended bis-triazolo Calix[4] Arene (8)/Glassy Carbon Electrode. J. Electrochem. Soc. 2019, 166, B1719. [Google Scholar] [CrossRef]
- Adarakatti, P.S.; Foster, C.W.; Banks, C.E.; NS, A.K.; Malingappa, P. Calixarene bulk modified screen-printed electrodes (SPCCEs) as a one-shot disposable sensor for the simultaneous detection of lead(II), copper(II) and mercury(II) ions: Application to environmental samples. Sens. Actuators A Phys. 2017, 267, 517–525. [Google Scholar] [CrossRef]
- Adarakatti, P.S.; Siddaramanna, A.; Malingappa, P. Fabrication of a new calix[4]arene-functionalized Mn3O4 nanoparticle-based modified glassy carbon electrode as a fast responding sensor towards Pb2+ and Cd2+ ions. Anal. Methods 2019, 11, 813–820. [Google Scholar] [CrossRef]
- Rana, S.; Mittal, S.K.; Singh, N.; Singh, J.; Banks, C.E. Schiff base modified screen printed electrode for selective determination of aluminium(III) at trace level. Sens. Actuators B Chem. 2017, 239, 17–27. [Google Scholar] [CrossRef]
- Metters, J.P.; Kadara, R.O.; Banks, C.E. New directions in screen printed electroanalytical sensors: An overview of recent developments. Analyst 2011, 136, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Wang, X.; Zhao, D.; Rex, M.M.; Cho, H.J.; Lee, W.H. A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochim. Acta 2019, 298, 440–448. [Google Scholar] [CrossRef]
- Lee, S.; Oh, J.; Kim, D.; Piao, Y. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 2016, 160, 528–536. [Google Scholar] [CrossRef]
- Silwana, B.; van der Horst, C.; Iwuoha, E.; Somerset, V. Screen-printed carbon electrodes modified with a bismuth film for stripping voltammetric analysis of platinum group metals in environmental samples. Electrochim. Acta 2014, 128, 119–127. [Google Scholar] [CrossRef]
- Durai, L.; Badhulika, S. Ultra-selective, trace level detection of As3+ ions in blood samples using PANI coated BiVO4 modified SPCE via differential pulse anode stripping voltammetry. Mater. Sci. Eng. C 2020, 111, 110806. [Google Scholar] [CrossRef]
- Wu, K.-H.; Lo, H.-M.; Wang, J.-C.; Yu, S.-Y.; Yan, B.-D. Electrochemical detection of heavy metal pollutant using crosslinked chitosan/carbon nanotubes thin film electrodes. Mater. Express 2017, 7, 15–24. [Google Scholar] [CrossRef]
- Pudza, M.Y.; Abidin, Z.Z.; Abdul-Rashid, S.; Yasin, F.M.; Noor, A.S.M.; Abdullah, J. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot–modified electrode. Environ. Sci. Pollut. Res. 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Jian, J.-M.; Liu, Y.-Y.; Zhang, Y.-L.; Guo, X.-S.; Cai, Q. Fast and sensitive detection of Pb2+ in foods using disposable screen-printed electrode modified by reduced graphene oxide. Sensors 2013, 13, 13063–13075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Wu, J.; Ju, H. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens. Bioelectron. 2016, 79, 861–865. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, G.; Shi, Q.; Zhao, R.; Chen, M. Preparation of thiolated calix[8]arene/AuNPs/MWCNTs modified glassy carbon electrode and its electrocatalytic oxidation toward paracetamol. Sens. Actuators B Chem. 2018, 277, 289–296. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Shi, G.; Peng, C.; Ding, Y. Thiacalixarene Covalently Functionalized Multiwalled Carbon Nanotubes as Chemically Modified Electrode Material for Detection of Ultratrace Pb2+ Ions. Anal. Chem. 2012, 84, 10560–10567. [Google Scholar] [CrossRef] [PubMed]
- Pulkkinen, P.M.S.; Hassinen, J.; Ras, R.; Tenhu, H. Gold nanoparticles: Calixarene complexation in a mixed calixarene–alkanethiol monolayer. RSC Adv. 2014, 4, 13453–13460. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.V.; Bertolino, F.; Fernández-Baldo, M.A.; Messina, G.A.; Salinas, E.; Sanz, M.I.; Raba, J. A microfluidic device based on a screen-printed carbon electrode with electrodeposited gold nanoparticles for the detection of IgG anti-Trypanosoma cruzi antibodies. Analyst 2011, 136, 4745–4751. [Google Scholar] [CrossRef]
- Dechtrirat, D.; Yingyuad, P.; Prajongtat, P.; Chuenchom, L.; Sriprachuabwong, C.; Tuantranont, A.; Tang, I.-M. A screen-printed carbon electrode modified with gold nanoparticles, poly (3,4-ethylenedioxythiophene), poly (styrene sulfonate) and a molecular imprint for voltammetric determination of nitrofurantoin. Microchim. Acta 2018, 185, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 2007, 598, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Zainal, P.N.S.; Ahmad, S.A.A.; Ngee, L.H.; Ling, I. Development of Electrochemical Sensor Based on Thiolated Calixarene-Functionalized Gold Nanoparticles for the Selective Recognition of Anthracene. IEEE Sens. J. 2020, 21, 5703–5710. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740. [Google Scholar] [CrossRef]
- Obaje, E.A.; Cummins, G.; Schulze, H.; Mahmood, S.; Desmulliez, M.P.; Bachmann, T.T. Carbon screen-printed electrodes on ceramic substrates for label-free molecular detection of antibiotic resistance. J. Interdiscip. Nanomed. 2016, 1, 93–109. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, M.; Liu, X.; Zhou, J.; Xie, J.; Diao, G. Self-assembled thiolated calix[n]arene (n = 4, 6, 8) films on gold electrodes and application for electrochemical determination dopamine. Electrochim. Acta 2014, 136, 301–309. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, K.; Wei, Y. A simple strategy for the detection of Cu(ii), Cd(ii) and Pb(ii) in water by a voltammetric sensor on a TC4A modified electrode. New J. Chem. 2019, 43, 1544–1550. [Google Scholar] [CrossRef]
- Adarakatti, P.S.; Malingappa, P. Amino-calixarene-modified graphitic carbon as a novel electrochemical interface for simultaneous measurement of lead and cadmium ions at picomolar level. J. Solid State Electrochem. 2016, 20, 3349–3358. [Google Scholar] [CrossRef] [Green Version]
- Alva, S.; Widinugroho, A.; Adrian, M.; Khaerudini, D.S.; Pratiwi, S.E.; Aziz, A.S.A. The New Lead(II) Ion Selective Electrode Based On Free Plasticizer Film of pTHFA Photopolymer. J. Electrochem. Soc. 2019, 166, B1513. [Google Scholar] [CrossRef]
- Pizarro, J.; Flores, E.; Jimenez, V.; Maldonado, T.; Saitz, C.; Vega, A.; Godoy, F.; Segura, R. Synthesis and characterization of the first cyrhetrenyl-appended calix[4]arene macrocycle and its application as an electrochemical sensor for the determination of Cu(II) in bivalve mollusks using square wave anodic stripping voltammetry. Sens. Actuators B Chem. 2019, 281, 115–122. [Google Scholar] [CrossRef]
- Perrachione, F.; Dalmasso, P.R.; Gutierrez, F.A.; Rivas, G.A. Double-walled carbon nanotubes functionalized with Allium sativum (garlic extract): Analytical applications for Pb(II) electrochemical sensing. Microchem. J. 2021, 160, 105653. [Google Scholar] [CrossRef]
- Xu, T.; Dai, H.; Jin, Y. Electrochemical sensing of lead(II) by differential pulse voltammetry using conductive polypyrrole nanoparticles. Microchim. Acta 2020, 187, 1–7. [Google Scholar] [CrossRef]
- Benhsina, E.; Hermouche, L.; Assani, A.; Saadi, M.; Labjar, N.; El Hajjaji, S.; Lahmar, A.; El Ammari, L. Synthesis, characterization, magnetic properties, and lead sensing based on a new alluaudite-like phosphate Na2Mn2Cr(PO4)3. J. Mater. Sci. 2021, 56, 2163–2175. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W.; Wu, L.; He, J.; Dai, W.; Zhou, C.; Du, H.; Ye, J. Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sens. Actuators B Chem. 2021, 326, 128957. [Google Scholar] [CrossRef]
- Bagheri, A.; Marand, M.H. Voltammetric and Potentiometric Determination of Cu2+ Using an Overoxidized Polypyrrole Based Electrochemical Sensor. Russ. J. Electrochem. 2020, 56, 453–461. [Google Scholar] [CrossRef]
- Xiong, W.; Zhang, P.; Liu, S.; Lv, Y.; Zhang, D. Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu(II) and Hg(II). Diam. Relat. Mater. 2021, 111, 108170. [Google Scholar] [CrossRef]
- Maddipatla, D.; Saeed, T.S.; Narakathu, B.B.; Obare, S.O.; Atashbar, M.Z. Incorporating a Novel Hexaazatriphenylene Derivative to a Flexible Screen-Printed Electrochemical Sensor for Copper Ion Detection in Water Samples. IEEE Sens. J. 2020, 20, 12582–12591. [Google Scholar] [CrossRef]
- Saldaña, J.; Gallay, P.; Gutierrez, S.; Eguílaz, M.; Rivas, G. Multi-walled carbon nanotubes functionalized with bathocuproinedisulfonic acid: Analytical applications for the quantification of Cu(II). Anal. Bioanal. Chem. 2020, 412, 5089–5096. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Efstathiou, C.E. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry. Electrochim. Acta 2008, 53, 5294–5299. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Q.; Wu, Y.; Ye, B. Langmuir–Blodgett film of p-tert-butylthiacalix[4]arene modified glassy carbon electrode as voltammetric sensor for the determination of Ag+. J. Electroanal. Chem. 2009, 1, 49–54. [Google Scholar] [CrossRef]
Analytes | Electrode | Detection Range | Limitation of Detection (LOD) | Reference |
---|---|---|---|---|
Pb2+ | Double-walled carbon nanotubes (DWCNTs) noncovalently functionalised with Allium sativum extract on GCEs on GCE | 0.50 × 10−2–10.00 × 10−2 ppm * | 0.15 × 10−2 ppm * | [42] |
Polypyrrole nanoparticles on GCE | 2.07 × 10−2–1036.00 × 10−2 ppm * | 1.14 × 10−2 ppm * | [43] | |
Carbon graphite powder with Na2Mn2Cr(PO4)3 on carbonpaste electrode | 4.14 × 10−2–2072.00 × 10−2 ppm * | 5.18 × 10−2 ppm * | [44] | |
MWCNTs-COOH/UiO-66-NH2/MWCNTs-COOH/GCE) on GCE | 0.10 × 10−2–12.1 × 10−2 ppm * | 0.07 × 10−3 ppm * | [45] | |
TC4/AuNPs/SPCE | 0.20 ppm–1.00 ppm | 0.80 × 10−2 ppm | This work | |
Cu2+ | Polypyrrole-modified electrode | 0.06 × 10−4–6355.00 × 10−2 ppm * | 0.01 × 10−2 ppm * | [46] |
OP30–2.0-CSs/GCE-modified electrode | 3.18 × 10−2–31.78 × 10−2 ppm * | 0.06 × 10−2 ppm * | [47] | |
HNQP/SPCE | 0.00 × 10−2–635.50 × 10−2 ppm * | 0.90 × 10−2 ppm * | [48] | |
GCE/MWCNTs-BCS | 3.17 × 10−2–38.13 × 10−2 ppm * | 0.95 × 10−2 ppm * | [49] | |
TC4/AuNPs/SPCE | 0.20 ppm–1.00 ppm | 1.34 × 10−2 ppm | This work |
Interferent | Pb2+ | Cu2+ | ||
---|---|---|---|---|
Signal Change (%) | RSD (%) | Signal Change (%) | RSD (%) | |
Cd2+ | −4.80 | 5.19 | 81.79 | 13.25 |
Mg2+ | 3.25 | 1.99 | 22.64 | 14.34 |
Ni2+ | 19.37 | 5.30 | 61.67 | 7.57 |
Ca2+ | 10.94 | 3.03 | 16.68 | 8.70 |
Zn2+ | 36.04 | 3.77 | 70.68 | 5.04 |
Hg2+ | 35.81 | 4.64 | 77.68 | 1.84 |
Cu2+ | 19.23 | 6.30 | - | - |
Pb2+ | - | - | 91.71 | 12.50 |
Analytes | Reproducibility RSD (%) | Stability RSD (%) |
---|---|---|
Pb2+ | 3.08 | 6.61 |
Cu2+ | 3.59 | 2.12 |
Lifetime | Pb2+ | Cu2+ | ||
---|---|---|---|---|
Signal Change (%) | RSD | Signal Change (%) | RSD | |
7 days | 24.98 | 6.06 | 29.03 | 5.43 |
15 days | 31.55 | 4.26 | 38.42 | 12.69 |
22 days | 47.99 | 6.77 | 41.30 | 13.70 |
31 days | 60.25 | 11.36 | 43.39 | 5.71 |
Method | Samples | Added Pb(II) (ppm) | Found Pb(II) (ppm) | Recovery (%) | RSD (%) | Added Cu(II) (ppm) | Found Cu(II) (ppm) | Recovery (%) | RSD (%) |
---|---|---|---|---|---|---|---|---|---|
ICP-OES | Deionised water | 1 ppm | 0.89 | 89 | 1.15 | 1 ppm | 1.03 | 103 | 0.35 |
TC4 | Deionised water | 1 ppm | 0.94 | 94 | 0.66 | 1 ppm | 1.03 | 103 | 2.83 |
TC4 | Deionised water | 0.6 ppm | 0.64 | 105.94 | 3.26 | 0.6 ppm | 0.58 | 96.67 | 3.42 |
ICP-OES | River water | 1 ppm | 0.98 | 98 | 2.03 | 1 ppm | 1.08 | 108 | 0.11 |
TC4 | River water | 1 ppm | 0.95 | 95 | 1.9 | 1 ppm | 0.99 | 99 | 2.75 |
TC4 | River water | 2 ppm | 2.1 | 108 | 3.05 | 2 ppm | 1.88 | 94 | 3.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, C.J.; Yusof, N.A.; Alang Ahmad, S.A. Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. Chemosensors 2021, 9, 157. https://doi.org/10.3390/chemosensors9070157
Mei CJ, Yusof NA, Alang Ahmad SA. Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. Chemosensors. 2021; 9(7):157. https://doi.org/10.3390/chemosensors9070157
Chicago/Turabian StyleMei, Chong Jin, Nor Azah Yusof, and Shahrul Ainliah Alang Ahmad. 2021. "Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode" Chemosensors 9, no. 7: 157. https://doi.org/10.3390/chemosensors9070157
APA StyleMei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical Determination of Lead & Copper Ions Using Thiolated Calix[4]arene-Modified Screen-Printed Carbon Electrode. Chemosensors, 9(7), 157. https://doi.org/10.3390/chemosensors9070157