Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Morphology
3.2. Sensor Properties
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mujahid, A.; Afzal, A.; Dickert, F.L. An overview of High Frequency Acoustic Sensors-QCMs, SAWs and FBARs-Chemical and Biochemical Applications. Sensors 2019, 19, 4395. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-G.; Lee, H.-J.; Lee, J.-H.; Jung, H.-I.; Yook, J.-G. A highly sensitive and label free biosensing platform for wireless sensor node system. Biosens. Bioelectron. 2013, 50, 362–367. [Google Scholar] [CrossRef]
- Ozer, T.; Geiss, B.J.; Henry, C.S. Review-Chemical and Biological Sensors for Viral Detection. J. Electrochem. Soc. 2020, 167, 037523. [Google Scholar] [CrossRef] [Green Version]
- Jayanthi, V.S.A.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron. 2017, 91, 15–23. [Google Scholar] [CrossRef]
- Garcia, M.A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D Appl. Phys. 2011, 44, 283001. [Google Scholar] [CrossRef]
- Agostini, M.; Greco, G.; Cecchini, M. A Rayleigh surface acoustic wave (R-SAW) resonator biosensor based on positive and negative reflectors with sub-nanomolar limit of detection. Sens. Actuators B Chem. 2018, 254, 1–7. [Google Scholar] [CrossRef]
- Laenge, K.; Rapp, B.E.; Rapp, M. Surface acoustic wave biosensors: A review. Anal. Bioanal. Chem. 2008, 391, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, D.S.; White, R.M.; Martin, S.I.; Ricco, A.J.; Zellers, E.T.; Frye, G.C.; Wohltjen, H. Acoustic Wave Sensors, Theory, Design and Physico-Chemical Applications; Academic Press: San Diego, CA, USA, 1997. [Google Scholar]
- Jakubik, W.; Powroznik, P.; Wrotniak, J.; Krzywiecki, M. Theoretical analysis of acoustoelectrical sensitivity in SAW gas sensors with single and bi-layer structures. Sens. Actuators B Chem. 2016, 236, 1069–1074. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.-I.; March-Iborra, C.; Montoya-Baides, A.; Arnau-Vives, A. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors 2009, 9, 5740–5769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sens. Actuators B Chem. 2015, 217, 100–106. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Tomas, M.; Gupta, V. Highly sensitive Love Wave acoustic biosensor for uric acid. Sens. Actuators B Chem. 2018, 261, 169–177. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Vellingiri, K.; Samaddar, P.; Kumar, P.; Deep, A.; Kumar, N. Hybrid porous thin films: Opportunities and challenges for sensing applications. Biosens. Bioelectron. 2018, 104, 120–137. [Google Scholar] [CrossRef] [PubMed]
- Seker, E.; Reed, M.L.; Begley, M.R. Nanoporous Gold: Fabrication, Characterization, and Applications. Materials 2009, 2, 2188–2215. [Google Scholar] [CrossRef] [Green Version]
- Hieda, M.; Garcia, R.; Dixon, M.; Daniel, T.; Allara, D.; Chan, M.H. Ultrasensitive quartz microbalance with porous gold electrodes. Appl. Phys. Let. 2004, 84, 628–630. [Google Scholar] [CrossRef]
- Viespe, C.; Dinca, V.; Popescu-Pelin, G.; Miu, D. Love Wave Surface Acoustic Wave Sensor with Laser-Deposited Nanoporous Gold Sensitive Layer. Sensors 2019, 19, 4492. [Google Scholar] [CrossRef] [Green Version]
- Issou, E.; Le Drogoff, B.; Chaker, M.; Guay, D. Correlation between plasma expansion dynamics and gold-thin film structure during pulsed-laser deposition. Appl. Phys. Lett. 2002, 80, 1716. [Google Scholar] [CrossRef]
- Verma, S.; Rao, B.T.; Rai, S.; Ganesan, V.; Kukreja, L.M. Influence of process parameters on surface plasmon resonance characteristics of densely packed gold nanoparticle films grown by pulsed laser deposition. Appl. Surf. Sci. 2015, 258, 4898–4905. [Google Scholar] [CrossRef]
- Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V.V. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem. Rev. 2017, 117, 12492–13038. [Google Scholar] [CrossRef] [PubMed]
- Puiu, M.; Gurban, A.-M.; Rotariu, L.; Brajnicov, S.; Viespe, C.; Bala, C. Enhanced Sensitive Love Wave Surface Acoustic Wave Sensor Designed for Immunoassay Formats. Sensors 2015, 15, 10511–10525. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.; Fu, C.; Kin, K.; Lee, K. Wireless and Simultaneous Detections of Multiple Bio-Molecules in a Single Sensor Using Love Wave Biosensor. Sensors 2014, 14, 21660–21675. [Google Scholar] [CrossRef] [Green Version]
- Lackner, J.M.; Waldhauser, W.; Hartmann, P.; Miskovics, O.; Schmied, F.; Teichert, C.; Schoeberl, T. Self-assembling (nano-)wrinkling topography formation in low-temperature vacuum deposition on soft polymer surfaces. Thin Solid Films 2012, 520, 2833–2840. [Google Scholar] [CrossRef]
- Image J Open-Source Image Processing Program; NIH, Bethesda, USA, 2008.
- Ghidelli, M.; Mascaretti, L.; Bricchi, B.R.; Zapelli, A.; Russo, V.; Casari, C.S.; Li Bossi, A. Engineering plasmonic nanostructured surfaces by pulsed laser deposition. Appl. Surf. Sci. 2018, 434, 1064–1073. [Google Scholar] [CrossRef]
- Stetsenko, M.O.; Maksimenko, L.K.; Rudenko, S.P.; Krishchenko, I.M.; Korchovyi, A.A.; Kryvyi, S.B.; Koganovich, E.B.; Serdega, B.K. Surface Plasmon’s Dispersion Properties of Porous Gold Films. Nanoscale Res. Lett. 2016, 11, 116. [Google Scholar] [CrossRef] [Green Version]
- Issou, E.; Le Drogoff, B.; Chaker, M.; Guay, D. Influence of the expansion dynamics of laser-produced gold plasmas on thin film structure grown in various atmospheres. J. Appl. Phys. 2003, 94, 4796. [Google Scholar] [CrossRef]
- Viespe, C.; Miu, D. Surface Acoustic Wave Sensor with Pd/ZnO Bilayer Structure for Room Temperature Hydrogen Detection. Sensors 2017, 17, 1529. [Google Scholar] [CrossRef] [PubMed]
- Warrender, J.M.; Aziz, M.J. Kinetic energy effects on morphology evolution during pulsed laser deposition of metal-on-insulator films. Phys. Rev. B 2007, 75, 085433. [Google Scholar] [CrossRef]
- Lackner, J.M.; Waldhauser, W.; Alamanou, A.; Teichert, C.; Schmied, F.; Major, L.; Major, B. Mechnaisms for self-assembling topography formation in low-temperature vacuum deposition of inorganic coatings on polymer surfaces. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58, 281. [Google Scholar]
- Zhang, L.; Lang, X.; Hirada, A.; Chen, M. Wrinkled nanoporous gold films with Ultrahigh Surface-Enhanced Raman Scattering Enhancement. ACS Nano 2011, 5, 4407–4413. [Google Scholar] [CrossRef]
- Wolny, P.M.; Spatz, J.P.; Richter, R.P. On the Adsorption Behavior of Biotin-Binding Proteins on Gold and Silica. Langmuir 2010, 26, 1029–1034. [Google Scholar] [CrossRef]
- Casals, E.; Pfaller, T.; Duschl, A.; Oostingh, G.J.; Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 2010, 4, 3623–3632. [Google Scholar] [CrossRef]
- Polyak, W.; Chapman-Smith, A. Biotin, Module in Biomedical Sciences. Encycl. Biol. Chem. 2013, 4, 221–225. [Google Scholar]
- Zhou, H.X.; Dill, K.A. Stabilization of proteins in confined spaces. Biochemistry 2001, 4, 11289–11293. [Google Scholar] [CrossRef] [PubMed]
Sensor | Ar Pressure. (Torr) | Number of Pulses | Oscillation Frequencies (MHz) | Frequency Change (kHz) | Oscillation Frequencies (MHz) | Frequency Change (kHz) | |
---|---|---|---|---|---|---|---|
Au/PMMA | Avidin/ Au/PMMA | Biotin/ Avidin/Au/PMMA | |||||
S1 | 10−5 | 2200 | 68.468 | 68.463 | 5 | 68.459 | 4 |
S2 | 1 | 10,000 | 68.776 | 68.761 | 15 | 68.749 | 12 |
S3 | 4 | 10,000 | 68.256 | 68.239 | 17 | 68.227 | 12 |
S4 | 4 | 30,000 | 68.884 | 68.848 | 36 | 68.829 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miu, D.; Constantinoiu, I.; Dinca, V.; Viespe, C. Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity. Chemosensors 2021, 9, 173. https://doi.org/10.3390/chemosensors9070173
Miu D, Constantinoiu I, Dinca V, Viespe C. Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity. Chemosensors. 2021; 9(7):173. https://doi.org/10.3390/chemosensors9070173
Chicago/Turabian StyleMiu, Dana, Izabela Constantinoiu, Valentina Dinca, and Cristian Viespe. 2021. "Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity" Chemosensors 9, no. 7: 173. https://doi.org/10.3390/chemosensors9070173
APA StyleMiu, D., Constantinoiu, I., Dinca, V., & Viespe, C. (2021). Surface Acoustic Wave Biosensor with Laser-Deposited Gold Layer Having Controlled Porosity. Chemosensors, 9(7), 173. https://doi.org/10.3390/chemosensors9070173