Evaluating the Effect of a Brewery By-Product as Feed Supplementation on the Quality of Eggs by Means of a Human Panel and E-Tongue and E-Nose Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Sensory Analysis of the Egg Samples
2.2. Electronic Tongue Analysis of the Egg Samples
2.3. Electronic Nose Analysis of the Egg Samples
2.4. Data Analysis
3. Results and Discussion
3.1. Results of Human Sensory Evaluation of the Egg Samples
3.2. Results of E-Tongue Evaluation of the Egg Samples
3.3. Results of E-Nose Evaluation of the Egg Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karoui, R.; De Ketelaere, B.; Kemps, B.; Bamelis, F.; Mertens, K.; De Baerdemaeker, J. Eggs and egg products. In Infrared Spectroscopy for Food Quality Analysis and Control; Elsevier Inc.: Amsterdam, The Netherlands, 2009; pp. 399–410. ISBN 978-0-12-374136-3. [Google Scholar]
- Huevo, I. El Gran Libro del Huevo, 1st ed.; EDITORIAL EVEREST: Madrid, Spain, 2009; ISBN 978-84-441-0208-5. [Google Scholar]
- Betancourt, L.; Díaz, G. Enriquecimiento de huevos con ácidos grasos omega-3 mediante la suplementación con semilla de lino (Linum usitatissimum) en la dieta. MVZ 2009, 14, 1602–1610. [Google Scholar]
- Lima, H.; Souza, L. Vitamin A in the diet of laying hens: Enrichment of table eggs to prevent nutritional deficiencies in humans. World’s Poult. Sci. J. 2018, 74, 619–626. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, H.; Yang, K.; Tang, X.; Chen, S.; Ajuwon, K.M.; Degen, A.; Fang, R. Effect of the level and source of supplementary dietary zinc on egg production, quality, and zinc content and on serum antioxidant parameters and zinc concentration in laying hens. Poult. Sci. 2020, 99, 6233–6238. [Google Scholar] [CrossRef]
- Kaewsutas, M.; Nararatwanchai, T.; Sittiprapaporn, P. The effects of dietary microalgae (Schizochytrium spp.) and fish oil in layers on docosahexaenoic acid omega-3 enrichment of the eggs Original Research Poultry The effects of dietary microalgae (Schizochytrium spp.) and fish oil in layers on docosahex. J. Appl. Anim. Nutr. 2016, 4, 1–6. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zink. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Hara, T.; Takeda, T.; Takagishi, T.; Fukue, K.; Kambe, T.; Fukada, T. Physiological roles of zinc transporters: Molecular and genetic importance in zinc homeostasis. J. Physiol. Sci. 2017, 67, 283–301. [Google Scholar] [CrossRef]
- Mao, S.Y.; Lien, T.F. Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Arch. Anim. Nutr. 2017, 71, 373–383. [Google Scholar] [CrossRef]
- Tüzün, A.E.; Olgun, O.; Yildiz, A.Ö. The Effect of High-Level Dietary Supplementation with Different Zinc Sources on Performance, Eggshell Quality and Bone Characteristics in Layer Quails. Agric. Life Life Agric. Conf. Proc. 2018, 1, 176–182. [Google Scholar] [CrossRef] [Green Version]
- The European Commission. Commission Implementing Regulation (EU) 2016/1095 of 6 July. Off. J. Eur. Union 2016, 10, 7–27. [Google Scholar]
- Scheideler, S.E.; Froning, G.; Cuppett, S. Studies of consumer acceptance of high omega-3 fatty acid-enriched eggs. J. Appl. Poult. Res. 1997, 6, 137–146. [Google Scholar] [CrossRef]
- Leeson, S.; Caston, L.; Maclaurin, T. Organoleptic Evaluation of Eggs Produced by Laying Hens Fed Diets Containing Graded Levels of Flaxseed and Vitamin E. Poult. Sci. 1998, 77, 1436–1440. [Google Scholar] [CrossRef]
- Gonzalez-Esquerra, R.; Leeson, S. Effect of feeding hens regular or deodorized menhaden oil on production parameters, yolk fatty acid profile, and sensory quality of eggs. Poult. Sci. 2000, 79, 1597–1602. [Google Scholar] [CrossRef]
- Coorey, R.; Novinda, A.; Williams, H.; Jayasena, V. Omega-3 Fatty Acid Profile of Eggs from Laying Hens Fed Diets Supplemented with Chia, Fish Oil, and Flaxseed. J. Food Sci. 2015, 80, S180–S187. [Google Scholar] [CrossRef]
- Eid, Y.; Kirrella, A.A.; Tolba, A.; El-Deeb, M.; Sayed, S.; El-Sawy, H.B.; Shukry, M.; Dawood, M.A.O. Dietary pomegranate by-product alleviated the oxidative stress induced by dexamethasone in laying hens in the pre-peak period. Animals 2021, 11, 1022. [Google Scholar] [CrossRef]
- Moon, Y.-H.; Jung, I.-C. Effect of Citrus Byproduct on Quality and Fatty Acid Composition of Chicken Eggs. J. Life Sci. 2010, 20, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of dietary incorporation of linseed alone or togueter with tomato-red pepper mix on laying hen’s egg yolk fatty acids profile and health lipid indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Varzaru, I.; Untea, A.E.; Panaite, T.; Olteanu, M. Effect of dietary phytochemicals from tomato peels and rosehip meal on the lipid peroxidation of eggs from laying hens. Arch. Anim. Nutr. 2020, 75, 18–30. [Google Scholar] [CrossRef]
- Świa̧tkiewicz, S.; Koreleski, J. The use of distillers dried grains with solubles (DDGS) in poultry nutrition. World’s Poult. Sci. J. 2008, 64, 257–265. [Google Scholar] [CrossRef]
- Cufadar, Y.; Göçmen, R.; Kanbur, G. The effect of replacing soya bean oil with glycerol in diets on performance, egg quality and egg fatty acid composition in laying hens. Animal 2016, 10, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Fontinele, G.S.P.; Leite, S.C.B.; Cordeiro, C.N.; De Castro Goulart, C.; Costa, A.C.; Neves, J.O.; Silva, J.D.B. Glycerin from biodiesel in the feeding of red-egg layers. Semin. Ciênc. Agrár. 2017, 38, 1009–1016. [Google Scholar] [CrossRef]
- Yu, P.; Low, M.Y.; Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 2018, 71, 202–215. [Google Scholar] [CrossRef]
- Hayat, Z.; Cherian, G.; Pasha, T.N.; Khattak, F.M.; Jabbar, M.A. Sensory evaluation and consumer acceptance of eggs from hens fed flax seed and 2 different antioxidants. Poult. Sci. 2010, 89, 2293–2298. [Google Scholar] [CrossRef]
- Kalus, K.; Konkol, D.; Korczyński, M.; Koziel, J.A.; Opaliński, S. Laying hens biochar diet supplementation—Effect on performance, excreta N content, NH3 and VOCs emissions, egg traits and egg consumers acceptance. Agriculture 2020, 10, 237. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Apetrei, C.; Lozano, J.; Anyogu, A. Potential use of electronic noses, electronic tongues and biosensors as multisensor systems for spoilage examination in foods. Trends Food Sci. Technol. 2018, 80, 71–92. [Google Scholar] [CrossRef]
- Alpha MOS. Heracles Manual; Alpha MOS: Toulouse, France, 2018; pp. 1–163. [Google Scholar]
- Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S.; Citrus, U.; Ave, S.N.W.; Haven, W. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef]
- Alpha MOS. Electronic Tongue; Alpha MOS: Toulouse, France, 2021. [Google Scholar]
- Wang, Q.; Jin, G.; Jin, Y.; Ma, M.; Wang, N.; Liu, C.; He, L. Discriminating eggs from different poultry species by fatty acids and volatiles profiling: Comparison of SPME-GC/MS, electronic nose, and principal component analysis method. Eur. J. Lipid Sci. Technol. 2014, 116, 1044–1053. [Google Scholar] [CrossRef]
- Adamiec, J.; Dolezal, M.; Míková, K.; Davídek, J. Changes in egg volatiles during storage. Food Sci. 2002, 20, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Yimenu, S.M.; Kim, J.Y.; Kim, B.S. Prediction of egg freshness during storage using electronic nose. Poult. Sci. 2017, 96, 3733–3746. [Google Scholar] [CrossRef] [PubMed]
- Cherian, G.; Goeger, M.P.; Ahn, D.U. Dietary Conjugated Linoleic Acid with Fish Oil Alters Yolk n-3 and Trans Fatty Acid Content and Volatile Compounds in Raw, Cooked, and Irradiated Eggs. Poult. Sci. 2002, 81, 1571–1577. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- De Castro, L.A.; Lizi, J.M.; das Chagas, E.G.L.; de Carvalho, R.A.; Vanin, F.M. From Orange Juice By-Product in the Food Industry to a Functional Ingredient: Application in the Circular Economy. Foods 2020, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Communities. Council Directive 86/609/EEC; ECC: Brussels, Belgium, 1986; Volume 358, pp. 1–28. [Google Scholar]
- The Parliament. Act XXVIII of 1998 on the Protection and Sparing of Animals; FAOLEX Database: Budapest, Hungary, 2021. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994; Volume 74, ISBN 0309048923. [Google Scholar]
- Aurand, L.W.; Woods, A.E.; Wells, M.R. Sampling and proximate analysis. In Food Composition and Analysis; Springer: Dordrecht, The Netherlands, 1987; pp. 19–34. ISBN 978-94-015-7398-6. [Google Scholar]
- AOAC. Official Methods of Analytical Methods of Analysis; AOAC International: Washington, DC, USA, 2006. [Google Scholar]
- MSZT Sensory Examination. Methodology. General Instructions. MSZ ISO 6658:2018; Hungarin Standards Institution (MSZT): Budapest, Hungary, 2003.
- Madsen, B.S. Statistics for Non-Statisticians; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 9783642176555. [Google Scholar]
- R Core Team. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2020. [Google Scholar]
- Umano, K.; Hagi, Y.; Shoji, A.; Shibamoto, T. Volatile Compounds Formed from Cooked Whole Egg, Egg Yolk, and Egg White. J. Agric. Food Chem. 1990, 38, 461–464. [Google Scholar] [CrossRef]
- Matiella, J.; Hsieh, T. Volatile Compounds in Scrambled Eggs. J. Food Sci. 1991, 56, 387–390. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, Y.; Yu, Z.; Ma, M.; Zhu, Z.; Jin, Y. Non-destructive characterization of egg odor and fertilization status by SPME/GC-MS coupled with electronic nose. J. Sci. Food Agric. 2019, 99, 3264–3275. [Google Scholar] [CrossRef]
- Macleod, A.J.; Cavea, S.J. Volatile Flavour Components of Eggs. Sci. Food Agric. 1975, 26, 351–360. [Google Scholar] [CrossRef]
Ingredient (%) | Control | ZP 2.5% | ZP 5.0% |
---|---|---|---|
Corn | 37.00 | 36.80 | 35.60 |
Extracted soybean meal (46% CP) | 13.00 | 10.60 | 8.30 |
Corn–DDGS | 11.00 | 11.00 | 11.00 |
Wheat | 10.00 | 10.00 | 10.00 |
Extracted sunflower meal | 7.70 | 8.00 | 8.00 |
Limestone grit | 5.00 | 5.00 | 5.00 |
Corn germ meal | 5.00 | 5.00 | 5.00 |
Corn feed flour | 5.04 | 4.84 | 5.85 |
Limestone | 4.32 | 4.35 | 4.40 |
Zincoppyeast 1 | - | 2.50 | 5.00 |
MCP | 0.55 | 0.50 | 0.44 |
Soybean oil | 0.45 | 0.48 | 0.49 |
Salt | 0.32 | 0.32 | 0.32 |
Premix 2 (%) | 0.30 | 0.30 | 0.30 |
L-lysine-HCL | 0.15 | 0.14 | 0.13 |
DL-methionine | 0.07 | 0.07 | 0.07 |
Lupro-Cid 3 | 0.05 | 0.05 | 0.05 |
Vitafix Plus 4 | 0.05 | 0.05 | 0.05 |
Chemical Composition (%) | Control | ZP 2.5% | ZP 5.0% |
---|---|---|---|
Dry matter | 89.00 | 89.00 | 89.00 |
Crude protein | 17.00 | 17.00 | 17.00 |
Crude fat | 4.20 | 4.20 | 4.00 |
Crude fiber | 4.80 | 4.80 | 4.80 |
Crude ash | 12.90 | 12.90 | 12.90 |
Starch | 34.50 | 34.50 | 34.50 |
Sugar (total) | 3.00 | 3.00 | 3.00 |
Total calcium | 3.70 | 3.70 | 3.70 |
Total phosphorus | 0.52 | 0.53 | 0.53 |
Sodium | 0.17 | 0.17 | 0.17 |
SID Lys | 0.67 | 0.67 | 0.67 |
SID M + C | 0.57 | 0.57 | 0.57 |
SID Thr | 0.50 | 0.50 | 0.50 |
SID Trp | 0.14 | 0.14 | 0.14 |
SID Val | 0.68 | 0.68 | 0.68 |
AMEn (MJ/kg) | 11.07 | 11.07 | 11.07 |
Control | ZP 2.5% | ZP 5.0% | ||||
---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 1 | Batch 2 | Batch 1 | Batch 2 | |
Mesophilic microorganism count, CFU g−1 | <100 | 10 | <100 | 20 | <100 | 10 |
Enterobacteriaceae, CFU g−1 | <10 | <10 | <10 | <10 | <10 | <10 |
Escherichia coli, CFU g−1 | <1 | <10 | <1 | <10 | <1 | <10 |
Enterococcus spp., CFU g−1 | <10 | <10 | <10 | <10 | <10 | <10 |
Salmonella spp., CFU/25 g | Negative | Negative | Negative | Negative | Negative | Negative |
Listeria monocytogenes, CFU/25 g | Negative | Negative | Negative | Negative | Negative | Negative |
Coagulase-positive Staphylococcus spp., CFU g−1 | <10 | <10 | <10 | <10 | <10 | <10 |
Group | Average | S. Dev | Stat. Diff. * | |
---|---|---|---|---|
Fat content (%) | Control | 9.48 | 0.04 | A |
ZP 2.5% | 9.42 | 0.06 | AB | |
ZP 5.0% | 9.30 | 0.13 | B | |
Protein content (%) | Control | 12.67 | 0.22 | A |
ZP 2.5% | 13.49 | 0.34 | B | |
ZP 5.0% | 13.35 | 0.38 | B |
Batch 1 | Batch 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Average accuracies | % | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | |
Recognition 95.92% | Control | 97.64 | 0.00 | 0.00 | Recognition 100.0% | Control | 100.00 | 0.00 | 0.00 |
ZP 2.5% | 0.00 | 97.25 | 7.14 | ZP 2.5% | 0.00 | 100.00 | 0.00 | ||
ZP 5.0% | 2.36 | 2.75 | 92.86 | ZP 5.0% | 0.00 | 0.00 | 100.00 | ||
% | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | ||
Cross-validation 64.81% | Control | 46.02 | 15.89 | 4.72 | Cross-validation 56.23% | Control | 88.94 | 0.00 | 33.33 |
ZP 2.5% | 39.74 | 72.95 | 19.81 | ZP 2.5% | 5.53 | 61.95 | 48.87 | ||
ZP 5.0% | 14.25 | 11.17 | 75.47 | ZP 5.0% | 5.53 | 38.05 | 17.79 |
Batch 1, 50 °C | Batch 2, 50 °C | |||||||
---|---|---|---|---|---|---|---|---|
% | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | |
Recognition 98.00% | Control | 100.00 | 0.00 | 0.00 | Control | 96.04 | 0.00 | 8.03 |
ZP 2.5% | 0.00 | 100.00 | 0.00 | ZP 2.5% | 0.00 | 100.00 | 0.00 | |
ZP 5.0% | 0.00 | 0.00 | 100.00 | ZP 5.0% | 3.96 | 0.00 | 91.97 | |
% | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | |
Cross-validation 68.49% | Control | 38.83 | 5.50 | 0.00 | Control | 58.73 | 0.00 | 23.50 |
ZP 2.5% | 27.83 | 83.33 | 6.60 | ZP 2.5% | 11.82 | 77.83 | 17.67 | |
ZP 5.0% | 33.33 | 11.17 | 93.40 | ZP 5.0% | 29.45 | 22.17 | 58.83 | |
Batch 1, 80 °C | Batch 2, 80 °C | |||||||
% | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | |
Recognition 82.65% | Control | 100.00 | 14.78 | 0.00 | Control | 100.00 | 0.00 | 14.78 |
ZP 2.5% | 0.00 | 74.11 | 14.78 | ZP 2.5% | 0.00 | 81.00 | 29.67 | |
ZP 5.0% | 0.00 | 11.11 | 85.22 | ZP 5.0% | 0.00 | 19.00 | 55.56 | |
% | Control | ZP 2.5% | ZP 5.0% | % | Control | ZP 2.5% | ZP 5.0% | |
Cross-validation 62.22% | Control | 77.83 | 5.50 | 0.00 | Control | 100.00 | 13.40 | 33.33 |
ZP 2.5% | 16.67 | 77.83 | 44.50 | ZP 2.5% | 0.00 | 40.00 | 44.50 | |
ZP 5.0% | 5.50 | 16.67 | 55.50 | ZP 5.0% | 0.00 | 46.60 | 22.17 |
MXT-5 | C-S | Volatile Compounds | Sensory Description | Discrimination Tendency |
---|---|---|---|---|
429.90 | 428 | Acetaldehyde | Ethereal, fresh, fruity, pungent | Figure 5: (b) B/G–50 °C; (d) B–80 °C; Figure 6: (b,d) D*–50 °C; Figure 7: (b,d) D*–80 °C |
430.57 | 425 | Methanol | Pungent | |
441.88 | 448 | Ethanol | Alcoholic, ethanol, pungent, sweet | Figure 6: (b) D*–50 °C |
448 | Methanethiol | Alcoholic, ethanol, pungent, sweet | ||
469.52 | Not found | |||
493.72 | 498 | 2-propanone (or acetone) | Fruity, glue, solvent | Figure 5: (b) G–50 °C; (d) G–80 °C; Figure 6: (b) D*–50 °C; Figure 7: (b,d) D*–80 °C |
494.47 | 499 | Propanal | Etherwal, plastic, pungent, solvent | |
528.17 | 527 | Methyl acetate | Blackcurrant, ethereal, fruity | Figure 5: (b) G–50 °C; (d) B–80 °C; Figure 6: (b,d) D*–50 °C; Figure 7: (b,d) D*–80 °C |
528.86 | 522 | 2-methylpropanal | Burnt, fruity, green, malty, pungent, spicy, toasted | |
602.58 | 603 | 2-butanol | Fusel-alcoholic, oily, winey | Figure 5: (b) G–50 °C; (d) G–80 °C; Figure 6: (b,d) D*–50 °C; Figure 7: (b,d) D*–80 °C |
602.94 | 600 | Hexane | Alkane, ethereal, kerosene | |
614.28 | 614 | 2-methyl-3-buten-2-ol | Earthy, fruity, herbaceous, oily, sweet | Figure 6: (b) D*–50 °C; Figure 7: (b) D*–80 °C |
613.86 | 614 | Ethyl acetate | Acidic, butter, caramelized, ethereal, fruity, orange, pineapple | |
632.11 | 636 | 1-butamine | Alcoholic, bitter, chemical, glue, licorice, solvent, winey | Figure 5: (b) B/G |
627 | Propyl formate | Berry, ethereal, green, sweet | ||
660.89 | 662 | 2-methylbutanal | Almond, cocoa, green, malty, strong burnt | Figure 5: (b) B/G–50 °C; Figure 6: (b) D*–50 °C; Figure 7: (b,d) D*–80 °C |
665.16 | 664 | n-butanol | Cheese, fermented, fruity | |
680.81 | 681 | 1- penten-3-one | Fishy, fruity, leather, plastic, pungent, rotten, sewer, spicy | Figure 7: (b) D*–80° |
684 | Pent-1-en-3-ol | Butter, green, milky, pungent | ||
803.41 | 801 | 2-hexanol | Fatty, fruity, winey | Figure 6: (b,d) D*–50 °C; Figure 7: (b,d) D*–80 °C |
803.46 | 801 | Hexanal | Acorn, fatty, fishy, grassy, green, herbaceous, leafy, tallowy | |
818.81 | 819 | 2,4,5-trimethyl-3-oxazoline | Musty | Figure 5: (b) B/G–50 °C; Figure 6: (b) D*–50 °C; Figure 7: (b) D*–80 °C |
818.98 | 817 | 2- butanone, 3-mercapto- | Onion, sulfurous | |
985.82 | 986 | 3-octanone | Butter, herbaceous, resinous | Figure 5: (b,) B–50 °C; Figure 6: (b,) D*–50 °C |
986.50 | 986 | 6-methyl-5-hepten-2-one | Blackcurrant, boiled fruit, citrus, earthy, mushroom, rubber | |
1000.93 | 1000 | 2-octanol | Fatty, mushroom, oily | Figure 7: (b) D*–80 °C |
1001 | Propyl pentanoate | Ethereal | ||
1140.68 | 1140 | Homofuraneol | Caramelized | Figure 5: (b) G–50 °C |
1140.88 | 1140 | Methyl 3-pyridinecarboxylate | Herbaceous, sweet, tobacco | |
1286.33 | 1286 | Isoborneol, acetate | Balsamic | Figure 5: (b) G–50 °C; Figure 6: (b) D*–50 °C; Figure 7: (d) D*–80 °C |
1286.41 | 1287 | Pentyl hexanoate | Fruity | |
1312.65 | 1313 | 1-ethylnapththalene | Earthy, green, musty, naphthyl | Figure 5: (b,) B/G–50 °C |
1312.50 | 1312 | Cinamyl alcohol | Oily | |
1399.81 | 1400 | Tetradecane | Alkane, fusel, mild herbaceous, sweet | Figure 5: (b) B/G–50 °C; Figure 6: (b) D*–50 °C |
1400.26 | 1400 | Diphenyl ether | Green | |
1414.33 | 1414 | Linalyl butanoate | Floral, Pear, sweet | Figure 5: (d) B–80 °C; Figure 7: (b) D*–80 °C |
1415 | (e)-beta-damascone | Apple | ||
1532.40 | 1532 | Cadina-1,4-diene | Fruity, mango, spicy, wood | Figure 5: (b) B–50 °C; Figure 7: (b) D*–80 °C |
1533.21 | 1532 | Methyldodecanoate | Coconut, creamy, fatty, fruity, sweet, waxy, weak waxy | |
1691.60 | 1695 | Beta-Sinensal | Sweet | Figure 7: (b) *D–80 °C |
1695 | Tetradecanenitrile | Fresh | ||
1807.03 | 1808 | Nootkatone | Banana, citrus, grape, sour fruit, spicy, woody | Figure 5: (b) B–50 °C; (d) B–80 °C; Figure 6: (b) D*–50 °C; Figure 7: (b,d) D*–80 °C |
1807.30 | 1804 | 2-hexadecanone | Fruity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguinaga Bósquez, J.P.; Kovacs, Z.; Gillay, Z.; Bázár, G.; Palkó, C.; Hingyi, H.; Csavajda, É.; Üveges, M.; Jókainé Szatura, Z.; Barbulescu, I.D.; et al. Evaluating the Effect of a Brewery By-Product as Feed Supplementation on the Quality of Eggs by Means of a Human Panel and E-Tongue and E-Nose Analysis. Chemosensors 2021, 9, 213. https://doi.org/10.3390/chemosensors9080213
Aguinaga Bósquez JP, Kovacs Z, Gillay Z, Bázár G, Palkó C, Hingyi H, Csavajda É, Üveges M, Jókainé Szatura Z, Barbulescu ID, et al. Evaluating the Effect of a Brewery By-Product as Feed Supplementation on the Quality of Eggs by Means of a Human Panel and E-Tongue and E-Nose Analysis. Chemosensors. 2021; 9(8):213. https://doi.org/10.3390/chemosensors9080213
Chicago/Turabian StyleAguinaga Bósquez, Juan Pablo, Zoltan Kovacs, Zoltán Gillay, György Bázár, Csaba Palkó, Hajnalka Hingyi, Éva Csavajda, Márta Üveges, Zsuzsanna Jókainé Szatura, Iuliana Diana Barbulescu, and et al. 2021. "Evaluating the Effect of a Brewery By-Product as Feed Supplementation on the Quality of Eggs by Means of a Human Panel and E-Tongue and E-Nose Analysis" Chemosensors 9, no. 8: 213. https://doi.org/10.3390/chemosensors9080213
APA StyleAguinaga Bósquez, J. P., Kovacs, Z., Gillay, Z., Bázár, G., Palkó, C., Hingyi, H., Csavajda, É., Üveges, M., Jókainé Szatura, Z., Barbulescu, I. D., Begea, M., & Tóth, T. (2021). Evaluating the Effect of a Brewery By-Product as Feed Supplementation on the Quality of Eggs by Means of a Human Panel and E-Tongue and E-Nose Analysis. Chemosensors, 9(8), 213. https://doi.org/10.3390/chemosensors9080213