Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Protein and Aptamers
2.3. Sensor Chip Fabrication
2.4. Chemical Modification of the Surface of the Nanoribbon Sensor Chip
2.5. Covalent Immobilization of Aptamer Molecular Probes onto the NR Surface
2.6. Preparation of CA 125 Solutions in Buffer
2.7. AFM Visualization of Aptamer–Target Complexes on the SOI Surface
2.8. Proteolysis on the Surface of SOI Wafers
2.9. MALDI-TOF-MS Analysis
2.10. Plasma Samples
2.11. Electrical Biosensor Measurements
3. Results
3.1. Confirmation of the Formation of Probe–Target Complexes on the SOI Surface via AFM and MS
3.2. Detection of CA 125 in Potassium Phosphate Buffer
3.3. Detection of CA 125 in Plasma Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rissin, D.M.; Kan, C.W.; Campbell, T.G.; Howes, S.C.; Fournier, D.R.; Song, L.; Piech, T.; Patel, P.P.; Chang, L.; Rivnak, A.J.; et al. Single-Molecule Enzyme-Linked Immunosorbent Assay Detects Serum Proteins at Subfemtomolar Concentrations. Nat. Biotechnol. 2010, 28, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Johari-Ahar, M.; Rashidi, M.R.; Barar, J.; Aghaie, M.; Mohammadnejad, D.; Ramazani, A.; Karami, P.; Coukos, G.; Omidi, Y. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale 2015, 7, 3768–3779. [Google Scholar] [CrossRef]
- Archakov, A.I.; Ivanov, Y.D.; Lisitsa, A.V.; Zgoda, V.G. AFM fishing nanotechnology is the way to reverse the Avogadro number in proteomics. Proteomics 2007, 7, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Fägerstam, L.G. Biospecific Interaction Analysis in Real Time Using a Biosensor System with Surface Plasmon Resonance Detection. In Applied Virology Research; Kurstak, E., Marusyk, R.G., Murphy, F.A., Van Regenmortel, M.H.V., Eds.; Springer: Boston, MA, USA, 1994; Volume 3. [Google Scholar] [CrossRef]
- Stern, E.; Vacic, A.; Rajan, N.K.; Criscione, J.M.; Park, J.; Ilic, B.R.; Mooney, D.J.; Reed, M.A.; Fahmy, T.M. Label-free biomarker detection from whole blood. Nat. Nanotechnol. 2010, 5, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Patolsky, F.; Zheng, G.F.; Hayden, O.; Lakadamyali, M.; Zhuang, X.; Lieber, C.M. Electrical detection of single viruses. Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W.U.; Lieber, C.M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301. [Google Scholar] [CrossRef]
- Ivanov, Y.; Pleshakova, T.; Kozlov, A.; Malsagova, K.; Krohin, N.; Shumyantseva, V.; Shumov, I.; Popov, V.; Naumova, O.; Fomin, B.; et al. SOI nanowire for the high-sensitive detection of HBsAg and α-fetoprotein. Lab Chip 2012, 12, 5104–5111. [Google Scholar] [CrossRef] [PubMed]
- Malsagova, K.; Ivanov, Y.; Pleshakova, T.; Kaysheva, A.; Shumov, I.; Kozlov, A.; Archakov, A.; Popov, V.; Fomin, B.; Latyshev, A. A SOI-nanowire biosensor for the multiple detection of D-NFATc1 protein in the serum. Anal. Methods 2015, 7, 8078–8085. [Google Scholar] [CrossRef]
- Ivanov, Y.; Pleshakova, T.; Kozlov, A.; Malsagova, K.; Krokhin, N.; Kaisheva, A.; Shumov, I.; Archakov, A.; Popov, V.; Naumova, O.; et al. SOI nanowire transistor for detection of D-NFATc1 molecules. Optoelectron. Instrum. Data Process. 2013, 49, 520–525. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kaysheva, A.L.; Shumov, I.D.; Ilnitskii, M.A.; Popov, V.P.; Glukhov, A.V.; Archakov, A.I.; Ivanov, Y.D. Ultrasensitive nanowire-based detection of HCVcoreAg in the serum using a microwave generator. Anal. Methods 2018, 10, 2740–2749. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Popov, V.P.; Tikhonenko, F.V.; Glukhov, A.V.; Ziborov, V.S.; Petrov, O.F.; et al. Highly Sensitive Detection of CA 125 Protein with the Use of an n-Type Nanowire Biosensor. Biosensors 2020, 10, 210. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Shumov, I.D.; Kozlov, A.F.; Romanova, T.S.; Popov, V.P.; Glukhov, A.V.; Konev, V.A.; Archakov, A.I.; et al. Nanowire Aptamer-Sensitized Biosensor Chips with Gas Plasma-Treated Surface for the Detection of Hepatitis C Virus Core Antigen. Coatings 2020, 10, 753. [Google Scholar] [CrossRef]
- Hahm, J.; Lieber, C.M. Direct ultrasensitive electrical detecion of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004, 4, 51–54. [Google Scholar] [CrossRef]
- Lin, C.-H.; Hung, C.-H.; Hsiao, C.-Y.; Lin, H.-C.; Ko, F.-H.; Yang, Y.-S. Poly-silicon nanowire field-effect transistor and label-free detection of pathogenic avian influenza DNA. Biosens. Bioelectron. 2009, 24, 3019–3024. [Google Scholar] [CrossRef]
- Ivanov, Y.; Pleshakova, T.; Malsagova, K.; Kozlov, A.; Kaysheva, A.; Shumov, I.; Galiullin, R.; Kurbatov, L.; Popov, V.; Naumova, O.; et al. Detection of marker miRNAs in plasma using SOI-NW biosensor. Sens. Actuat. B Chem. 2018, 261, 566–571. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Romanova, T.S.; Shumov, I.D.; Popov, V.P.; Tikhonenko, F.V.; Glukhov, A.V.; Smirnov, A.Y.; et al. SOI-Nanowire Biosensor for the Detection of Glioma-Associated miRNAs in Plasma. Chemosensors 2020, 8, 95. [Google Scholar] [CrossRef]
- Malsagova, K.A.; Pleshakova, T.O.; Kozlov, A.F.; Shumov, I.D.; Ilnitskii, M.A.; Miakonkikh, A.V.; Popov, V.P.; Rudenko, K.V.; Glukhov, A.V.; Kupriyanov, I.N.; et al. Micro-Raman Spectroscopy for Monitoring of Deposition Quality of High-k Stack Protective Layer onto Nanowire FET Chips for Highly Sensitive miRNA Detection. Biosensors 2018, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanov, Y.; Pleshakova, T.; Malsagova, K.; Kurbatov, L.; Popov, V.; Glukhov, A.; Smirnov, A.; Enikeev, D.; Potoldykova, N.; Alekseev, B.; et al. Detection of Marker miRNAs, Associated with Prostate Cancer, in Plasma Using SOI-NW Biosensor in Direct and Inversion Modes. Sensors 2019, 19, 5248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, R.; Regonda, S.J.; Gao, J.; Liu, Y.; Hu, W. Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 2011, 11, 19552–19561. [Google Scholar] [CrossRef]
- Patolsky, F.; Zheng, G.; Lieber, C.M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724. [Google Scholar] [CrossRef]
- Elfström, N.; Juhasz, R.; Sychugov, I.; Engfeldt, T.; Karlström, A.E.; Linnros, J. Surface charge sensitivity of silicon nanowires: Size dependence. Nano Lett. 2007, 7, 2608–2612. [Google Scholar] [CrossRef] [Green Version]
- Wenga, G.; Jacques, E.; Salaün, A.-C.; Rogel, R.; Pichon, L.; Geneste, F. Bottom-gate and step-gate polysilicon nanowires field effect transistors for ultrasensitive label-free biosensing application. Procedia Eng. 2012, 47, 414–417. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Popov, V.P.; Naumova, O.V.; Aseev, A.L.; Archakov, A.I. SOI-Nanowire Biosensors for High-Sensitivity Protein and Gene Detection. In Functional Nanomaterials and Evices for Electronuics, Sensors and Energy Harvesting; Nazarov, A., Balestra, F., Kilchytska, V., Flandre, D., Eds.; Springer: Cham, Switzerland; London, UK, 2014; pp. 445–467. [Google Scholar] [CrossRef]
- Huang, J.; Lin, Q.; Yu, J.; Ge, S.; Li, J.; Yu, M.; Zhao, Z.; Wang, X.; Zhang, X.; He, X.; et al. Comparison of a Resonant Mirror Biosensor (IAsys) and a Quartz Crystal Microbalance (QCM) for the Study on Interaction between Paeoniae Radix 801 and Endothelin-1. Sensors 2008, 8, 8275–8290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-J.; Chai, K.T.C.; Luo, H.Z.H.; Huang, J.M.; Tay, I.G.K.; Lim, A.; Eu, -J.; Je, M. Multiplexed detection of cardiac biomarkers in serum with nanowire arrays using readout ASIC. Biosens. Bioelectron. 2012, 35, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Arshavsky-Graham, S.; Urmann, K.; Salam, R.; Massad-Ivanir, N.; Walter, J.-G.; Scheper, T.; Segal, E. Aptamers vs. antibodies as capture probes in optical porous silicon biosensors. Analyst 2020, 145, 4991–5003. [Google Scholar] [CrossRef]
- Lee, J.-O.; So, H.-M.; Jeon, E.-K.; Chang, H.; Won, K.; Kim, Y.H. Aptamers as molecular recognition elements for electrical nanobiosensors. Anal. Bioanal. Chem. 2008, 390, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html (accessed on 29 January 2021).
- Office for National Statistics, Cancer Survival by Stage at Diagnosis for England. 2019. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancersurvivalratescancersurvivalinenglandadultsdiagnosed (accessed on 29 January 2021).
- Kushlinskii, N.E.; Krasil’nikov, M.A. Biological Tumor Markers: Basic and Clinical Research; RAMS Publishing House: Moscow, Russia, 2017. [Google Scholar]
- Bast, R.C., Jr. Status of tumor markers in ovarian cancer screening J. Clin. Oncol. 2003, 21 (Suppl. S10), 200s–205s. [Google Scholar] [CrossRef]
- Szymańska, B.; Lukaszewski, Z.; Hermanowicz-Szamatowicz, K.; Gorodkiewicz, E. A biosensor for determination of the circulating biomarker CA 125/MUC16 by Surface Plasmon Resonance Imaging. Talanta 2019, 206, 120187. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Nunna, B.B.; Zhuang, S.; Rakshit, S.; Lee, E.S. Carbon nanotubes based biosensor for detection of cancer antigens (CA-125) under shear flow condition. Nano Struct. Nano Objects 2018, 15, 180–185. [Google Scholar] [CrossRef]
- Attia, M.S.; Ali, K.; El-Kemari, M.; Darwish, W.M. Phthalocyanine-doped polystyrene fluorescent nanocomposite as a highly selective biosensor for quantitative determination of cancer antigen 125. Talanta 2019, 201, 185–193. [Google Scholar] [CrossRef]
- Petrova, I.; Konopsky, V.; Nabiev, I.; Sukhanova, A. Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Sci. Rep. 2019, 9, 8745. [Google Scholar] [CrossRef] [PubMed]
- Naumova, O.V.; Fomin, B.I.; Nasimov, D.A.; Dudchenko, N.V.; Devyatova, S.F.; Zhanaev, E.D.; Popov, V.P.; Latyshev, A.V.; Aseev, A.L.; Ivanov, Y.D.; et al. SOI Nanowires as Sensors for Charge Detection. Semicond. Sci. Technol. 2010, 25, 055004. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Kaysheva, A.L.; Frantsuzov, P.A.; Pleshakova, T.O.; Krohin, N.V.; Izotov, A.A.; Shumov, I.D.; Uchaikin, V.F.; Konev, V.A.; Ziborov, V.S.; et al. Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry. Int. J. Nanomed. 2015, 10, 1597–1608. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, Y.D.; Bukharina, N.S.; Pleshakova, T.O.; Frantsuzov, P.A.; Andreeva, E.Y.; Kaysheva, A.L.; Zgoda, V.G.; Izotov, A.A.; Pavlova, T.I.; Ziborov, V.S.; et al. Atomic force microscopy fishing and mass spectrometry identification of gp120 on immobilized aptamers. Int. J. Nanomed. 2014, 9, 4659–4670. [Google Scholar] [CrossRef] [Green Version]
- Pleshakova, T.O.; Kaysheva, A.L.; Shumov, I.D.; Ziborov, V.S.; Bayzyanova, J.M.; Konev, V.A.; Uchaikin, V.F.; Archakov, A.I.; Ivanov, Y.D. Detection of Hepatitis C Virus Core Protein in Serum Using Aptamer-Functionalized AFM Chips. Micromachines 2019, 10, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaysheva, A.L.; Pleshakova, T.O.; Stepanov, A.A.; Ziborov, V.S.; Saravanabhavan, S.S.; Natesan, B.; Archakov, A.I.; Ivanov, Y.D. Immuno-MALDI MS dataset for improved detection of HCVcoreAg in sera. Data Brief. 2019, 25, 104240. [Google Scholar] [CrossRef] [PubMed]
- Pleshakova, T.O.; Kaysheva, A.L.; Bayzyanova, J.M.; Anashkina, A.S.; Uchaikin, V.F.; Shumov, I.D.; Ziborov, V.S.; Konev, V.A.; Archakov, A.I.; Ivanov, Y.D. Advantages of aptamers as ligands upon protein detection by AFM-based fishing. Anal. Meth. 2017, 9, 6049–6060. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Pleshakova, T.O.; Krohin, N.V.; Kaysheva, A.L.; Usanov, S.A.; Archakov, A.I. Registration of the protein with compact disk. Biosens. Bioelectron. 2013, 43, 384–390. [Google Scholar] [CrossRef]
- Ivanov, Y.D.; Danichev, V.V.; Pleshakova, T.O.; Shumov, I.D.; Ziborov, V.S.; Krokhin, N.V.; Zagumenniy, M.N.; Ustinov, V.S.; Smirnov, L.P.; Shironin, A.V.; et al. Irreversible chemical AFM-based fishing for detection of low-copied proteins. Biochem. (Moscow) Suppl. Ser. B Biomed. Chem. 2013, 7, 46–61. [Google Scholar] [CrossRef]
Plasma Sample No. | Age | Sex | Pathology | TNM Stage |
---|---|---|---|---|
1 | 53 | F | Healthy volunteer | – |
2 | 18 | F | Healthy volunteer | – |
60 | 67 | F | Serous moderate ovarian tumor | T1ANXM0 |
67 | 63 | F | Serous papillary adenocarcinoma (cyst adenocarcinoma) | T3cNXM1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, Y.D.; Malsagova, K.A.; Pleshakova, T.O.; Galiullin, R.A.; Kozlov, A.F.; Shumov, I.D.; Popov, V.P.; Kapustina, S.I.; Ivanova, I.A.; Isaeva, A.I.; et al. Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma. Chemosensors 2021, 9, 222. https://doi.org/10.3390/chemosensors9080222
Ivanov YD, Malsagova KA, Pleshakova TO, Galiullin RA, Kozlov AF, Shumov ID, Popov VP, Kapustina SI, Ivanova IA, Isaeva AI, et al. Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma. Chemosensors. 2021; 9(8):222. https://doi.org/10.3390/chemosensors9080222
Chicago/Turabian StyleIvanov, Yuri D., Kristina A. Malsagova, Tatyana O. Pleshakova, Rafael A. Galiullin, Andrey F. Kozlov, Ivan D. Shumov, Vladimir P. Popov, Svetlana I. Kapustina, Irina A. Ivanova, Arina I. Isaeva, and et al. 2021. "Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma" Chemosensors 9, no. 8: 222. https://doi.org/10.3390/chemosensors9080222
APA StyleIvanov, Y. D., Malsagova, K. A., Pleshakova, T. O., Galiullin, R. A., Kozlov, A. F., Shumov, I. D., Popov, V. P., Kapustina, S. I., Ivanova, I. A., Isaeva, A. I., Tikhonenko, F. V., Kushlinskii, N. E., Alferov, A. A., Tatur, V. Y., Ziborov, V. S., Petrov, O. F., Glukhov, A. V., & Archakov, A. I. (2021). Aptamer-Sensitized Nanoribbon Biosensor for Ovarian Cancer Marker Detection in Plasma. Chemosensors, 9(8), 222. https://doi.org/10.3390/chemosensors9080222