The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility
Abstract
:1. Introduction
2. Maternal Obesity Affects Offspring Health
2.1. Preconceptional Maternal Obesity: Effects in the Oocyte
2.2. Maternal Obesity during Pregnancy: Effects in the Placenta
2.3. Maternal Obesity Postnatally: Effects in the Breast Milk
2.4. Maternal Effects: What Is Known and What Is Missing
3. Paternal Obesity Affects the Offspring Health
3.1. Paternal Obesity at Conception: Effects in Sperm
3.1.1. DNA Methylation
3.1.2. Histone Modification
3.1.3. sncRNAs
4. Beyond Epigenome
4.1. Oocyte Environment
4.2. Seminal Plasma and the Maternal Reproductive Tract Immune Response
4.3. Microbiota
5. Reversibility
5.1. Lifestyle Interventions: Diet and Exercise
5.2. Bariatric Surgery
5.3. Reversibility: Chances of Success
6. Concluding Remarks: When and How Can a Parent Affect Offspring Health?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Acronyms
5hmC | 5-hydroxymethylcytosine |
5mC | 5-methylcytosine |
BMI | body mass index |
DMRs | differentially methylated regions |
DOHaD | developmental origins of health and disease |
eWAT | epididymal white adipose tissue |
FA | fatty acid |
FTO | fat mass and obesity associated gene |
GWAS | genome wide association studies |
H3K4 | histone H3 lysine 4 |
H3K4me3 | histone H3 lysine 4 trimethylation |
H3K9 | histone H3 lysine 9 |
H3K9me3 | histone H3 lysine 9 trimethylation |
HE | high energy |
HFD | high-fat diet |
IGF | insulin-like growth factor |
Igf2 | insulin-like growth factor 2 |
KDM1A | lysine demethylase 1A |
Kmt1a | H3K9 trimethylase |
MC4R | melanocortin 4 receptor gene |
MEG3-IG | maternally expressed gene 3 intergenic |
miR19b | microRNA 19b |
miRNA | microRNA |
NA | not applicable |
ncRNA | non-coding RNA |
PI3-kinase | phosphoinositid-3-kinase |
piRNA | piwi-interacting RNA |
POHaD | paternal origin of health and disease |
Pparα | peroxisome proliferator-activated receptor alpha |
Scd1 | stearoyl-CoA desaturase-1 |
sncRNA | small non-coding RNA |
SREBP | sterol regulatory element-binding protein |
T2D | type 2 diabetes |
tRFs | tRNA-derived fragments |
WD | Western diet |
WT | wild-type |
References
- Wang, T.; Jia, W.; Hu, C. Advancement in Genetic Variants Conferring Obesity Susceptibility from Genome-Wide Association Studies. Front. Med. 2015, 9, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, C.H.; Andersen, G. Gene-Environment Interactions and Obesity--Further Aspects of Genomewide Association Studies. Nutr. Burbank Los Angel. Cty. Calif 2009, 25, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Körner, A.; Jacobson, P.; Carlsson, L.M.S.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO Contributes to Childhood Obesity and Severe Adult Obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef]
- Scuteri, A.; Sanna, S.; Chen, W.-M.; Uda, M.; Albai, G.; Strait, J.; Najjar, S.; Nagaraja, R.; Orrú, M.; Usala, G.; et al. Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. PLoS Genet. 2007, 3, e115. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Lindgren, C.M.; Li, S.; Wheeler, E.; Zhao, J.H.; Prokopenko, I.; Inouye, M.; Freathy, R.M.; Attwood, A.P.; Beckmann, J.S.; et al. Common Variants near MC4R Are Associated with Fat Mass, Weight and Risk of Obesity. Nat. Genet. 2008, 40, 768–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef]
- Bogardus, C. Missing Heritability and GWAS Utility. Obesity 2009, 17, 209–210. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, G.; Herrera-Cuenca, M.; Zalcman Zimberg, I.; Guajardo, V.; Gómez, G.; Quesada, D.; Rigotti, A.; Yadira Cortés, L.; Yépez García, M.; Pareja, R.G.; et al. A Comparison of Associations Between Self-Reported and Device-Based Sedentary Behavior and Obesity Markers in Adults: A Multi-National Cross-Sectional Study. Assessment 2022, 29, 1441–1457. [Google Scholar] [CrossRef]
- da Costa, N.; Silveira, J.F.d.C.; Schneiders, L.d.B.; Sehn, A.P.; Reuter, É.M.; Hobkirk, J.P.; Carroll, S.; Reuter, C.P. Moderating Role of Physical Fitness in the Association Between TV Time and Adiposity Parameters in Adolescents. Am. J. Health Promot. AJHP 2022, 36, 1104–1111. [Google Scholar] [CrossRef]
- Sugiyama, T.; Hadgraft, N.; Clark, B.K.; Dunstan, D.W.; Owen, N. Sitting at Work & Waist Circumference-A Cross-Sectional Study of Australian Workers. Prev. Med. 2020, 141, 106243. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.C.T.; Steck, V.A.; Janjua, S.; Liu, T.Y.; Murphy, R.A.; Zhang, W.; Conklin, A.I. A Systematic Review of Evidence on Employment Transitions and Weight Change by Gender in Ageing Populations. PLoS ONE 2022, 17, e0273218. [Google Scholar] [CrossRef] [PubMed]
- Boushey, C.; Ard, J.; Bazzano, L.; Heymsfield, S.; Mayer-Davis, E.; Sabaté, J.; Snetselaar, L.; Van Horn, L.; Schneeman, B.; English, L.K.; et al. Dietary Patterns and Growth, Size, Body Composition, and/or Risk of Overweight or Obesity: A Systematic Review; USDA Nutrition Evidence Systematic Reviews: Alexandria, VA, USA, 2020. [Google Scholar]
- De Amicis, R.; Mambrini, S.P.; Pellizzari, M.; Foppiani, A.; Bertoli, S.; Battezzati, A.; Leone, A. Ultra-Processed Foods and Obesity and Adiposity Parameters among Children and Adolescents: A Systematic Review. Eur. J. Nutr. 2022, 61, 2297–2311. [Google Scholar] [CrossRef] [PubMed]
- Neri, D.; Martínez-Steele, E.; Khandpur, N.; Levy, R. Associations Between Ultra-Processed Foods Consumption and Indicators of Adiposity in US Adolescents: Cross-Sectional Analysis of the 2011–2016 National Health and Nutrition Examination Survey. J. Acad. Nutr. Diet. 2022, 122, 1474–1487.e2. [Google Scholar] [CrossRef]
- Bradley, P. Diet Composition and Obesity. Lancet 2012, 379, 1100, author reply 1100–1101. [Google Scholar] [CrossRef]
- Astrup, A.; Brand-Miller, J. Diet Composition and Obesity. Lancet 2012, 379, 1100, author reply 1100–1101. [Google Scholar] [CrossRef]
- Schoonejans, J.M.; Ozanne, S.E. Developmental Programming by Maternal Obesity: Lessons from Animal Models. Diabet. Med. J. Br. Diabet. Assoc. 2021, 38, e14694. [Google Scholar] [CrossRef]
- Li, C.; Lumey, L.H. Exposure to the Chinese Famine of 1959-61 in Early Life and Long-Term Health Conditions: A Systematic Review and Meta-Analysis. Int. J. Epidemiol. 2017, 46, 1157–1170. [Google Scholar] [CrossRef] [Green Version]
- Fedotkina, O.; Luk, A.; Jain, R.; Prasad, R.B.; Shungin, D.; Simó-Servat, O.; Özgümüs, T.; Cherviakova, L.; Khalimon, N.; Svietleisha, T.; et al. Perinatal Famine Is Associated with Excess Risk of Proliferative Retinopathy in Patients with Type 2 Diabetes. Acta Ophthalmol. (Copenh.) 2022, 100, e539–e545. [Google Scholar] [CrossRef]
- Rodriguez, J.S.; Rodríguez-González, G.L.; Reyes-Castro, L.A.; Ibáñez, C.; Ramírez, A.; Chavira, R.; Larrea, F.; Nathanielsz, P.W.; Zambrano, E. Maternal Obesity in the Rat Programs Male Offspring Exploratory, Learning and Motivation Behavior: Prevention by Dietary Intervention Pre-Gestation or in Gestation. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2012, 30, 75–81. [Google Scholar] [CrossRef]
- Vaiserman, A.M. Early-Life Nutritional Programming of Type 2 Diabetes: Experimental and Quasi-Experimental Evidence. Nutrients 2017, 9, E236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, V.; Bautista, R.J.; Frausto-González, O.; Rodríguez-Peña, N.; Betancourt, E.T.; Bautista, C.J. Developmental Programming in Animal Models: Critical Evidence of Current Environmental Negative Changes. Reprod. Sci. Thousand Oaks Calif 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Lane, M.; Owens, J.A.; Bakos, H.W. Paternal Obesity Negatively Affects Male Fertility and Assisted Reproduction Outcomes: A Systematic Review and Meta-Analysis. Reprod. Biomed. Online 2015, 31, 593–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberle, C.; Kirchner, M.F.; Herden, R.; Stichling, S. Paternal Metabolic and Cardiovascular Programming of Their Offspring: A Systematic Scoping Review. PLoS ONE 2020, 15, e0244826. [Google Scholar] [CrossRef]
- Soubry, A. POHaD: Why We Should Study Future Fathers. Environ. Epigenetics 2018, 4, dvy007. [Google Scholar] [CrossRef]
- Huypens, P.; Sass, S.; Wu, M.; Dyckhoff, D.; Tschöp, M.; Theis, F.; Marschall, S.; Hrabě de Angelis, M.; Beckers, J. Epigenetic Germline Inheritance of Diet-Induced Obesity and Insulin Resistance. Nat. Genet. 2016, 48, 497–499. [Google Scholar] [CrossRef]
- Waddington, C.H. The Epigenotype. Int. J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Holliday, R. The Inheritance of Epigenetic Defects. Science 1987, 238, 163–170. [Google Scholar] [CrossRef]
- Russo, V.E.A.; Martienssen, R.A.; Riggs, A.D. Epigenetic Mechanisms of Gene Regulation; Cold Spring Harbor Monograph Series; Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1996; ISBN 978-0-87969-490-6. [Google Scholar]
- van der Graaf, A.; Wardenaar, R.; Neumann, D.A.; Taudt, A.; Shaw, R.G.; Jansen, R.C.; Schmitz, R.J.; Colomé-Tatché, M.; Johannes, F. Rate, Spectrum, and Evolutionary Dynamics of Spontaneous Epimutations. Proc. Natl. Acad. Sci. USA. 2015, 112, 6676–6681. [Google Scholar] [CrossRef] [Green Version]
- Burggren, W. Epigenetic Inheritance and Its Role in Evolutionary Biology: Re-Evaluation and New Perspectives. Biology 2016, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Stöger, R. The Thrifty Epigenotype: An Acquired and Heritable Predisposition for Obesity and Diabetes? BioEssays 2008, 30, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.N.; Barker, D.J. Type 2 (Non-Insulin-Dependent) Diabetes Mellitus: The Thrifty Phenotype Hypothesis. Diabetologia 1992, 35, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.H.; Ozanne, S.E. Fetal Programming of Glucose-Insulin Metabolism. Mol. Cell. Endocrinol. 2009, 297, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariri, N.; Thibault, L. High-Fat Diet-Induced Obesity in Animal Models. Nutr. Res. Rev. 2010, 23, 270–299. [Google Scholar] [CrossRef] [Green Version]
- Musial, B.; Vaughan, O.R.; Fernandez-Twinn, D.S.; Voshol, P.; Ozanne, S.E.; Fowden, A.L.; Sferruzzi-Perri, A.N. A Western-Style Obesogenic Diet Alters Maternal Metabolic Physiology with Consequences for Fetal Nutrient Acquisition in Mice. J. Physiol. 2017, 595, 4875–4892. [Google Scholar] [CrossRef] [Green Version]
- Dahlen, C.R.; Borowicz, P.P.; Ward, A.K.; Caton, J.S.; Czernik, M.; Palazzese, L.; Loi, P.; Reynolds, L.P. Programming of Embryonic Development. Int. J. Mol. Sci. 2021, 22, 11668. [Google Scholar] [CrossRef]
- Spann, R.A.; Grayson, B.E. Curbing Obesity from One Generation to Another: The Effects of Bariatric Surgery on the In Utero Environment and Beyond. Reprod. Sci. Thousand Oaks Calif 2020, 27, 1821–1833. [Google Scholar] [CrossRef]
- Hedegger, K.; Philippou-Massier, J.; Krebs, S.; Blum, H.; Kunzelmann, S.; Förstemann, K.; Gimpfl, M.; Roscher, A.A.; Ensenauer, R.; Wolf, E.; et al. Sex-Specific Programming Effects of Parental Obesity in Pre-Implantation Embryonic Development. Int. J. Obes. 2005 2020, 44, 1185–1190. [Google Scholar] [CrossRef]
- Aagaard-Tillery, K.M.; Grove, K.; Bishop, J.; Ke, X.; Fu, Q.; McKnight, R.; Lane, R.H. Developmental Origins of Disease and Determinants of Chromatin Structure: Maternal Diet Modifies the Primate Fetal Epigenome. J. Mol. Endocrinol. 2008, 41, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Li, Q.; Zhang, Y.; Balluff, Z.; Pan, Y.-X. Histone Deacetylase 3 (HDAC3) Participates in the Transcriptional Repression of the P16 (INK4a) Gene in Mammary Gland of the Female Rat Offspring Exposed to an Early-Life High-Fat Diet. Epigenetics 2012, 7, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Sharp, G.C.; Lawlor, D.A.; Richmond, R.C.; Fraser, A.; Simpkin, A.; Suderman, M.; Shihab, H.A.; Lyttleton, O.; McArdle, W.; Ring, S.M.; et al. Maternal Pre-Pregnancy BMI and Gestational Weight Gain, Offspring DNA Methylation and Later Offspring Adiposity: Findings from the Avon Longitudinal Study of Parents and Children. Int. J. Epidemiol. 2015, 44, 1288–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.L.; Jima, D.; Sharp, G.C.; McCullough, L.E.; Park, S.S.; Gowdy, K.M.; Skaar, D.; Cowley, M.; Maguire, R.L.; Fuemmeler, B.; et al. Maternal Pre-Pregnancy Obesity, Offspring Cord Blood DNA Methylation, and Offspring Cardiometabolic Health in Early Childhood: An Epigenome-Wide Association Study. Epigenetics 2019, 14, 325–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phang, M.; Ross, J.; Raythatha, J.H.; Dissanayake, H.U.; McMullan, R.L.; Kong, Y.; Hyett, J.; Gordon, A.; Molloy, P.; Skilton, M.R. Epigenetic Aging in Newborns: Role of Maternal Diet. Am. J. Clin. Nutr. 2020, 111, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D.; Ouidir, M.; Workalemahu, T.; Zeng, X.; Tekola-Ayele, F. Placental DNA Methylation Changes Associated with Maternal Prepregnancy BMI and Gestational Weight Gain. Int. J. Obes. 2005 2020, 44, 1406–1416. [Google Scholar] [CrossRef]
- Chang, E.; Hafner, H.; Varghese, M.; Griffin, C.; Clemente, J.; Islam, M.; Carlson, Z.; Zhu, A.; Hak, L.; Abrishami, S.; et al. Programming Effects of Maternal and Gestational Obesity on Offspring Metabolism and Metabolic Inflammation. Sci. Rep. 2019, 9, 16027. [Google Scholar] [CrossRef] [Green Version]
- Lassi, Z.S.; Kedzior, S.G.; Tariq, W.; Jadoon, Y.; Das, J.K.; Bhutta, Z.A. Effects of Preconception Care and Periconception Interventions on Maternal Nutritional Status and Birth Outcomes in Low- and Middle-Income Countries: A Systematic Review. Nutrients 2020, 12, 606. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, H.; Tuzun, F.; Taheri, S.; Korhan, P.; Akokay, P.; Yılmaz, O.; Duman, N.; Özer, E.; Tufan, E.; Kumral, A.; et al. Epigenetic Programming Through Breast Milk and Its Impact on Milk-Siblings Mating. Front. Genet. 2020, 11, 569232. [Google Scholar] [CrossRef]
- Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E. Maternal Weight and Excessive Weight Gain during Pregnancy Modify the Immunomodulatory Potential of Breast Milk. Pediatr. Res. 2012, 72, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Miras, A.D.; Jackson, R.N.; Jackson, S.N.; Goldstone, A.P.; Olbers, T.; et al. The Human Milk Microbiome Changes over Lactation and Is Shaped by Maternal Weight and Mode of Delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Kumar, H.; du Toit, E.; Kulkarni, A.; Aakko, J.; Linderborg, K.M.; Zhang, Y.; Nicol, M.P.; Isolauri, E.; Yang, B.; Collado, M.C.; et al. Distinct Patterns in Human Milk Microbiota and Fatty Acid Profiles Across Specific Geographic Locations. Front. Microbiol. 2016, 7, 1619. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.E.; Carrothers, J.M.; Lackey, K.A.; Beatty, N.F.; York, M.A.; Brooker, S.L.; Shafii, B.; Price, W.J.; Settles, M.L.; McGuire, M.A.; et al. Human Milk Microbial Community Structure Is Relatively Stable and Related to Variations in Macronutrient and Micronutrient Intakes in Healthy Lactating Women. J. Nutr. 2017, 147, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Newell-Fugate, A.E.; Lenz, K.; Skenandore, C.; Nowak, R.A.; White, B.A.; Braundmeier-Fleming, A. Effects of Coconut Oil on Glycemia, Inflammation, and Urogenital Microbial Parameters in Female Ossabaw Mini-Pigs. PLoS ONE 2017, 12, e0179542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schjenken, J.E.; Moldenhauer, L.M.; Sharkey, D.J.; Chan, H.Y.; Chin, P.Y.; Fullston, T.; McPherson, N.O.; Robertson, S.A. High-Fat Diet Alters Male Seminal Plasma Composition to Impair Female Immune Adaptation for Pregnancy in Mice. Endocrinology 2021, 162, bqab123. [Google Scholar] [CrossRef] [PubMed]
- Dumas, T.C. Adult Health and Early Life Adversity: Behind the Curtains of Maternal Care Research. Front. Physiol. 2022, 13, 804239. [Google Scholar] [CrossRef]
- Stäubli, A.; Peters, A.H. Mechanisms of Maternal Intergenerational Epigenetic Inheritance. Curr. Opin. Genet. Dev. 2021, 67, 151–162. [Google Scholar] [CrossRef]
- Gu, L.; Liu, H.; Gu, X.; Boots, C.; Moley, K.H.; Wang, Q. Metabolic Control of Oocyte Development: Linking Maternal Nutrition and Reproductive Outcomes. Cell. Mol. Life Sci. CMLS 2015, 72, 251–271. [Google Scholar] [CrossRef]
- Hou, Y.-J.; Zhu, C.-C.; Duan, X.; Liu, H.-L.; Wang, Q.; Sun, S.-C. Both Diet and Gene Mutation Induced Obesity Affect Oocyte Quality in Mice. Sci. Rep. 2016, 6, 18858. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Ru, G.; Sun, J.; Sun, L.; Li, Z. Elevated RIF1 Participates in the Epigenetic Abnormalities of Zygotes by Regulating Histone Modifications on MuERV-L in Obese Mice. Mol. Med. Camb. Mass 2022, 28, 17. [Google Scholar] [CrossRef]
- Ge, Z.-J.; Luo, S.-M.; Lin, F.; Liang, Q.-X.; Huang, L.; Wei, Y.-C.; Hou, Y.; Han, Z.-M.; Schatten, H.; Sun, Q.-Y. DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet-Induced Obesity. Environ. Health Perspect. 2014, 122, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Lin, X.-H.; Xiong, Y.-M.; Liu, M.-E.; Yu, T.-T.; Lv, M.; Zhao, W.; Xu, G.-F.; Ding, G.-L.; Xu, C.-M.; et al. Prevalence of Prediabetes Risk in Offspring Born to Mothers with Hyperandrogenism. EBioMedicine 2017, 16, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Ren, C.; Li, L.; Li, X.; Ge, J.; Wang, H.; Miao, Y.-L.; Guo, X.; Moley, K.H.; Shu, W.; et al. Embryonic Defects Induced by Maternal Obesity in Mice Derive from Stella Insufficiency in Oocytes. Nat. Genet. 2018, 50, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Gu, C.; You, D.; Huang, Z.; Qian, J.; Yang, Q.; Cheng, X.; Zhang, L.; Wang, H.; Wang, P.; et al. Decoding Dynamic Epigenetic Landscapes in Human Oocytes Using Single-Cell Multi-Omics Sequencing. Cell Stem Cell 2021, 28, 1641–1656.e7. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Liu, S.; Wu, Q.; Zhang, L.; Guo, F. Integrative Single-Cell Analysis of Transcriptome, DNA Methylome and Chromatin Accessibility in Mouse Oocytes. Cell Res. 2019, 29, 110–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, L.; Greenwood, S.L.; Wareing, M.; Sibley, C.P.; Mills, T.A. Obesity and the Placenta: A Consideration of Nutrient Exchange Mechanisms in Relation to Aberrant Fetal Growth. Placenta 2011, 32, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, L.; Franx, A.; Vogelvang, T.E.; Houben, M.L.; van Rijn, B.B.; Nikkels, P.G. Association of Maternal Prepregnancy Body Mass Index With Placental Histopathological Characteristics in Uncomplicated Term Pregnancies. Pediatr. Dev. Pathol. Off. J. Soc. Pediatr. Pathol. Paediatr. Pathol. Soc. 2019, 22, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Gallou-Kabani, C.; Gabory, A.; Tost, J.; Karimi, M.; Mayeur, S.; Lesage, J.; Boudadi, E.; Gross, M.-S.; Taurelle, J.; Vigé, A.; et al. Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet. PLoS ONE 2010, 5, e14398. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, T.; Turnwald, E.-M.; Janoschek, R.; Zentis, P.; Bae-Gartz, I.; Beers, T.; Handwerk, M.; Wohlfarth, M.; Ghilav, M.; Bloch, W.; et al. Maternal High Fat Diet-Induced Obesity Affects Trophoblast Differentiation and Placental Function in Mice. Biol. Reprod. 2020, 103, 1260–1274. [Google Scholar] [CrossRef] [PubMed]
- de Barros Mucci, D.; Kusinski, L.C.; Wilsmore, P.; Loche, E.; Pantaleão, L.C.; Ashmore, T.J.; Blackmore, H.L.; Fernandez-Twinn, D.S.; Carmo, M.d.G.T.d.; Ozanne, S.E. Impact of Maternal Obesity on Placental Transcriptome and Morphology Associated with Fetal Growth Restriction in Mice. Int. J. Obes. 2005 2020, 44, 1087–1096. [Google Scholar] [CrossRef] [Green Version]
- Thakali, K.M.; Zhong, Y.; Cleves, M.; Andres, A.; Shankar, K. Associations between Maternal Body Mass Index and Diet Composition with Placental DNA Methylation at Term. Placenta 2020, 93, 74–82. [Google Scholar] [CrossRef]
- Shimano, H.; Sato, R. SREBP-Regulated Lipid Metabolism: Convergent Physiology—Divergent Pathophysiology. Nat. Rev. Endocrinol. 2017, 13, 710–730. [Google Scholar] [CrossRef]
- Gabory, A.; Ferry, L.; Fajardy, I.; Jouneau, L.; Gothié, J.-D.; Vigé, A.; Fleur, C.; Mayeur, S.; Gallou-Kabani, C.; Gross, M.-S.; et al. Maternal Diets Trigger Sex-Specific Divergent Trajectories of Gene Expression and Epigenetic Systems in Mouse Placenta. PLoS ONE 2012, 7, e47986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaweed, M.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. Human Milk MiRNAs Primarily Originate from the Mammary Gland Resulting in Unique MiRNA Profiles of Fractionated Milk. Sci. Rep. 2016, 6, 20680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gila-Díaz, A.; Herranz Carrillo, G.; Cañas, S.; Saenz de Pipaón, M.; Martínez-Orgado, J.A.; Rodríguez-Rodríguez, P.; López de Pablo, Á.L.; Martin-Cabrejas, M.A.; Ramiro-Cortijo, D.; Arribas, S.M. Influence of Maternal Age and Gestational Age on Breast Milk Antioxidants During the First Month of Lactation. Nutrients 2020, 12, 2569. [Google Scholar] [CrossRef] [PubMed]
- Burianova, I.; Bronsky, J.; Pavlikova, M.; Janota, J.; Maly, J. Maternal Body Mass Index, Parity and Smoking Are Associated with Human Milk Macronutrient Content after Preterm Delivery. Early Hum. Dev. 2019, 137, 104832. [Google Scholar] [CrossRef]
- Alexandre-Gouabau, M.-C.; David-Sochard, A.; Royer, A.-L.; Parnet, P.; Paillé, V. Moderate High Caloric Maternal Diet Impacts Dam Breast Milk Metabotype and Offspring Lipidome in a Sex-Specific Manner. Int. J. Mol. Sci. 2020, 21, 5428. [Google Scholar] [CrossRef]
- Lowry, D.E.; Paul, H.A.; Reimer, R.A. Impact of Maternal Obesity and Prebiotic Supplementation on Select Maternal Milk MicroRNA Levels and Correlation with Offspring Outcomes. Br. J. Nutr. 2022, 127, 335–343. [Google Scholar] [CrossRef]
- Hicks, S.D.; Confair, A.; Warren, K.; Chandran, D. Levels of Breast Milk MicroRNAs and Other Non-Coding RNAs Are Impacted by Milk Maturity and Maternal Diet. Front. Immunol. 2021, 12, 785217. [Google Scholar] [CrossRef]
- Butruille, L.; Marousez, L.; Pourpe, C.; Oger, F.; Lecoutre, S.; Catheline, D.; Görs, S.; Metges, C.C.; Guinez, C.; Laborie, C.; et al. Maternal High-Fat Diet during Suckling Programs Visceral Adiposity and Epigenetic Regulation of Adipose Tissue Stearoyl-CoA Desaturase-1 in Offspring. Int. J. Obes. 2019, 43, 2381–2393. [Google Scholar] [CrossRef]
- Gorski, J.N.; Dunn-Meynell, A.A.; Hartman, T.G.; Levin, B.E. Postnatal Environment Overrides Genetic and Prenatal Factors Influencing Offspring Obesity and Insulin Resistance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R768–R778. [Google Scholar] [CrossRef]
- Davis, T.L.; Yang, G.J.; McCarrey, J.R.; Bartolomei, M.S. The H19 Methylation Imprint Is Erased and Re-Established Differentially on the Parental Alleles during Male Germ Cell Development. Hum. Mol. Genet. 2000, 9, 2885–2894. [Google Scholar] [CrossRef]
- Reik, W.; Dean, W.; Walter, J. Epigenetic Reprogramming in Mammalian Development. Science 2001, 293, 1089–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.W.C.; Kobayashi, T.; Irie, N.; Dietmann, S.; Surani, M.A. Specification and Epigenetic Programming of the Human Germ Line. Nat. Rev. Genet. 2016, 17, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Drake, A.J.; Walker, B.R.; Seckl, J.R. Intergenerational Consequences of Fetal Programming by in Utero Exposure to Glucocorticoids in Rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R34–R38. [Google Scholar] [CrossRef] [Green Version]
- Kaati, G.; Bygren, L.O.; Pembrey, M.; Sjöström, M. Transgenerational Response to Nutrition, Early Life Circumstances and Longevity. Eur. J. Hum. Genet. EJHG 2007, 15, 784–790. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.-F.; Lin, R.C.Y.; Laybutt, D.R.; Barres, R.; Owens, J.A.; Morris, M.J. Chronic High-Fat Diet in Fathers Programs β-Cell Dysfunction in Female Rat Offspring. Nature 2010, 467, 963–966. [Google Scholar] [CrossRef]
- Radford, E.J.; Ito, M.; Shi, H.; Corish, J.A.; Yamazawa, K.; Isganaitis, E.; Seisenberger, S.; Hore, T.A.; Reik, W.; Erkek, S.; et al. In Utero Effects. In Utero Undernourishment Perturbs the Adult Sperm Methylome and Intergenerational Metabolism. Science 2014, 345, 1255903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontelles, C.C.; da Cruz, R.S.; Gonsiewski, A.K.; Barin, E.; Tekmen, V.; Jin, L.; Cruz, M.I.; Loudig, O.; Warri, A.; de Assis, S. Systemic Alterations Play a Dominant Role in Epigenetic Predisposition to Breast Cancer in Offspring of Obese Fathers and Is Transmitted to a Second Generation. Sci. Rep. 2021, 11, 7317. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Hada, M.; Fukuda, Y.; Inoue, E.; Makino, Y.; Katou, Y.; Shirahige, K.; Okada, Y. Re-Evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep. 2018, 23, 3920–3932. [Google Scholar] [CrossRef]
- Donkin, I.; Barrès, R. Sperm Epigenetics and Influence of Environmental Factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef]
- Erkek, S.; Hisano, M.; Liang, C.-Y.; Gill, M.; Murr, R.; Dieker, J.; Schübeler, D.; van der Vlag, J.; Stadler, M.B.; Peters, A.H.F.M. Molecular Determinants of Nucleosome Retention at CpG-Rich Sequences in Mouse Spermatozoa. Nat. Struct. Mol. Biol. 2013, 20, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.W.C.; Dietmann, S.; Irie, N.; Leitch, H.G.; Floros, V.I.; Bradshaw, C.R.; Hackett, J.A.; Chinnery, P.F.; Surani, M.A. A Unique Gene Regulatory Network Resets the Human Germline Epigenome for Development. Cell 2015, 161, 1453–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anisimov, S.V. A Prevalence of Imprinted Genes within the Total Transcriptomes of Human Tissues and Cells. Mol. Biol. Int. 2012, 2012, 793506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kremsky, I.; Corces, V.G. Protection from DNA Re-Methylation by Transcription Factors in Primordial Germ Cells and Pre-Implantation Embryos Can Explain Trans-Generational Epigenetic Inheritance. Genome Biol. 2020, 21, 118. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, R.J.; Anton, E.; Krawetz, S.A. Isolating MRNA and Small Noncoding RNAs from Human Sperm. Methods Mol. Biol. Clifton NJ 2013, 927, 385–396. [Google Scholar] [CrossRef]
- Javurek, A.B.; Spollen, W.G.; Johnson, S.A.; Bivens, N.J.; Bromert, K.H.; Givan, S.A.; Rosenfeld, C.S. Consumption of a High-Fat Diet Alters the Seminal Fluid and Gut Microbiomes in Male Mice. Reprod. Fertil. Dev. 2017, 29, 1602–1612. [Google Scholar] [CrossRef]
- Fullston, T.; Ohlsson Teague, E.M.C.; Palmer, N.O.; DeBlasio, M.J.; Mitchell, M.; Corbett, M.; Print, C.G.; Owens, J.A.; Lane, M. Paternal Obesity Initiates Metabolic Disturbances in Two Generations of Mice with Incomplete Penetrance to the F2 Generation and Alters the Transcriptional Profile of Testis and Sperm MicroRNA Content. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2013, 27, 4226–4243. [Google Scholar] [CrossRef]
- de Castro Barbosa, T.; Ingerslev, L.R.; Alm, P.S.; Versteyhe, S.; Massart, J.; Rasmussen, M.; Donkin, I.; Sjögren, R.; Mudry, J.M.; Vetterli, L.; et al. High-Fat Diet Reprograms the Epigenome of Rat Spermatozoa and Transgenerationally Affects Metabolism of the Offspring. Mol. Metab. 2015, 5, 184–197. [Google Scholar] [CrossRef]
- Carone, B.R.; Fauquier, L.; Habib, N.; Shea, J.M.; Hart, C.E.; Li, R.; Bock, C.; Li, C.; Gu, H.; Zamore, P.D.; et al. Paternally Induced Transgenerational Environmental Reprogramming of Metabolic Gene Expression in Mammals. Cell 2010, 143, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Shea, J.M.; Serra, R.W.; Carone, B.R.; Shulha, H.P.; Kucukural, A.; Ziller, M.J.; Vallaster, M.P.; Gu, H.; Tapper, A.R.; Gardner, P.D.; et al. Genetic and Epigenetic Variation, but Not Diet, Shape the Sperm Methylome. Dev. Cell 2015, 35, 750–758. [Google Scholar] [CrossRef] [Green Version]
- Donkin, I.; Versteyhe, S.; Ingerslev, L.R.; Qian, K.; Mechta, M.; Nordkap, L.; Mortensen, B.; Appel, E.V.R.; Jørgensen, N.; Kristiansen, V.B.; et al. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metab. 2016, 23, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Keyhan, S.; Burke, E.; Schrott, R.; Huang, Z.; Grenier, C.; Price, T.; Raburn, D.; Corcoran, D.L.; Soubry, A.; Hoyo, C.; et al. Male Obesity Impacts DNA Methylation Reprogramming in Sperm. Clin. Epigenetics 2021, 13, 17. [Google Scholar] [CrossRef] [PubMed]
- Potabattula, R.; Dittrich, M.; Schorsch, M.; Hahn, T.; Haaf, T.; El Hajj, N. Male Obesity Effects on Sperm and Next-Generation Cord Blood DNA Methylation. PLoS ONE 2019, 14, e0218615. [Google Scholar] [CrossRef] [PubMed]
- Soubry, A.; Guo, L.; Huang, Z.; Hoyo, C.; Romanus, S.; Price, T.; Murphy, S.K. Obesity-Related DNA Methylation at Imprinted Genes in Human Sperm: Results from the TIEGER Study. Clin. Epigenetics 2016, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Soubry, A.; Murphy, S.K.; Vansant, G.; He, Y.; Price, T.M.; Hoyo, C. Opposing Epigenetic Signatures in Human Sperm by Intake of Fast Food Versus Healthy Food. Front. Endocrinol. 2021, 12, 625204. [Google Scholar] [CrossRef] [PubMed]
- Soubry, A.; Murphy, S.K.; Wang, F.; Huang, Z.; Vidal, A.C.; Fuemmeler, B.F.; Kurtzberg, J.; Murtha, A.; Jirtle, R.L.; Schildkraut, J.M.; et al. Newborns of Obese Parents Have Altered DNA Methylation Patterns at Imprinted Genes. Int. J. Obes. 2005 2015, 39, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Terashima, M.; Barbour, S.; Ren, J.; Yu, W.; Han, Y.; Muegge, K. Effect of High Fat Diet on Paternal Sperm Histone Distribution and Male Offspring Liver Gene Expression. Epigenetics 2015, 10, 861–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claycombe-Larson, K.G.; Bundy, A.N.; Roemmich, J.N. Paternal High-Fat Diet and Exercise Regulate Sperm MiRNA and Histone Methylation to Modify Placental Inflammation, Nutrient Transporter MRNA Expression and Fetal Weight in a Sex-Dependent Manner. J. Nutr. Biochem. 2020, 81, 108373. [Google Scholar] [CrossRef]
- Siklenka, K.; Erkek, S.; Godmann, M.; Lambrot, R.; McGraw, S.; Lafleur, C.; Cohen, T.; Xia, J.; Suderman, M.; Hallett, M.; et al. Disruption of Histone Methylation in Developing Sperm Impairs Offspring Health Transgenerationally. Science 2015, 350, aab2006. [Google Scholar] [CrossRef]
- Pepin, A.-S.; Lafleur, C.; Lambrot, R.; Dumeaux, V.; Kimmins, S. Sperm Histone H3 Lysine 4 Tri-Methylation Serves as a Metabolic Sensor of Paternal Obesity and Is Associated with the Inheritance of Metabolic Dysfunction. Mol. Metab. 2022, 59, 101463. [Google Scholar] [CrossRef]
- Zhang, B.; Zheng, H.; Huang, B.; Li, W.; Xiang, Y.; Peng, X.; Ming, J.; Wu, X.; Zhang, Y.; Xu, Q.; et al. Allelic Reprogramming of the Histone Modification H3K4me3 in Early Mammalian Development. Nature 2016, 537, 553–557. [Google Scholar] [CrossRef]
- Chen, Q.; Yan, M.; Cao, Z.; Li, X.; Zhang, Y.; Shi, J.; Feng, G.; Peng, H.; Zhang, X.; Zhang, Y.; et al. Sperm TsRNAs Contribute to Intergenerational Inheritance of an Acquired Metabolic Disorder. Science 2016, 351, 397–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandjean, V.; Fourré, S.; De Abreu, D.A.F.; Derieppe, M.-A.; Remy, J.-J.; Rassoulzadegan, M. RNA-Mediated Paternal Heredity of Diet-Induced Obesity and Metabolic Disorders. Sci. Rep. 2015, 5, 18193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nätt, D.; Kugelberg, U.; Casas, E.; Nedstrand, E.; Zalavary, S.; Henriksson, P.; Nijm, C.; Jäderquist, J.; Sandborg, J.; Flinke, E.; et al. Human Sperm Displays Rapid Responses to Diet. PLoS Biol. 2019, 17, e3000559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, X.; Shi, J.; Tuorto, F.; Li, X.; Liu, Y.; Liebers, R.; Zhang, L.; Qu, Y.; Qian, J.; et al. Dnmt2 Mediates Intergenerational Transmission of Paternally Acquired Metabolic Disorders through Sperm Small Non-Coding RNAs. Nat. Cell Biol. 2018, 20, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Raad, G.; Serra, F.; Martin, L.; Derieppe, M.-A.; Gilleron, J.; Costa, V.L.; Pisani, D.F.; Amri, E.-Z.; Trabucchi, M.; Grandjean, V. Paternal Multigenerational Exposure to an Obesogenic Diet Drives Epigenetic Predisposition to Metabolic Diseases in Mice. eLife 2021, 10, e61736. [Google Scholar] [CrossRef]
- Trigg, N.A.; Eamens, A.L.; Nixon, B. The Contribution of Epididymosomes to the Sperm Small RNA Profile. Reprod. Camb. Engl. 2019, 157, R209–R223. [Google Scholar] [CrossRef] [Green Version]
- Darr, J.; Tomar, A.; Lassi, M.; Gerlini, R.; Berti, L.; Hering, A.; Scheid, F.; Hrabě de Angelis, M.; Witting, M.; Teperino, R. ITAG-RNA Isolates Cell-Specific Transcriptional Responses to Environmental Stimuli and Identifies an RNA-Based Endocrine Axis. Cell Rep. 2020, 30, 3183–3194.e4. [Google Scholar] [CrossRef] [Green Version]
- Tomar, A.; Teperino, R. Genetic Control of Non-Genetic Inheritance in Mammals: State-of-the-Art and Perspectives. Mamm. Genome Off. J. Int. Mamm. Genome Soc. 2020, 31, 146–156. [Google Scholar] [CrossRef]
- Brodie, E.D.; Gregory, B.; Lisch, D.; Riddle, N.C. The Epigenome and Beyond: How Does Non-Genetic Inheritance Change Our View of Evolution? Integr. Comp. Biol. 2022, 61, 2199–2207. [Google Scholar] [CrossRef]
- Ge, J.; Li, C.; Sun, H.; Xin, Y.; Zhu, S.; Liu, Y.; Tang, S.; Han, L.; Huang, Z.; Wang, Q. Telomere Dysfunction in Oocytes and Embryos from Obese Mice. Front. Cell Dev. Biol. 2021, 9, 617225. [Google Scholar] [CrossRef]
- Rao, A.; Satheesh, A.; Nayak, G.; Poojary, P.S.; Kumari, S.; Kalthur, S.G.; Mutalik, S.; Adiga, S.K.; Kalthur, G. High-Fat Diet Leads to Elevated Lipid Accumulation and Endoplasmic Reticulum Stress in Oocytes, Causing Poor Embryo Development. Reprod. Fertil. Dev. 2020, 32, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.A. Seminal Plasma and Male Factor Signalling in the Female Reproductive Tract. Cell Tissue Res. 2005, 322, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Aluvihare, V.R.; Kallikourdis, M.; Betz, A.G. Regulatory T Cells Mediate Maternal Tolerance to the Fetus. Nat. Immunol. 2004, 5, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Woidacki, K.; Meyer, N.; Schumacher, A.; Goldschmidt, A.; Maurer, M.; Zenclussen, A.C. Transfer of Regulatory T Cells into Abortion-Prone Mice Promotes the Expansion of Uterine Mast Cells and Normalizes Early Pregnancy Angiogenesis. Sci. Rep. 2015, 5, 13938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T Cells in Embryo Implantation and the Immune Response to Pregnancy. J. Clin. Investig. 2018, 128, 4224–4235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenclussen, A.C.; Gerlof, K.; Zenclussen, M.L.; Sollwedel, A.; Bertoja, A.Z.; Ritter, T.; Kotsch, K.; Leber, J.; Volk, H.-D. Abnormal T-Cell Reactivity against Paternal Antigens in Spontaneous Abortion: Adoptive Transfer of Pregnancy-Induced CD4+CD25+ T Regulatory Cells Prevents Fetal Rejection in a Murine Abortion Model. Am. J. Pathol. 2005, 166, 811–822. [Google Scholar] [CrossRef]
- Shima, T.; Sasaki, Y.; Itoh, M.; Nakashima, A.; Ishii, N.; Sugamura, K.; Saito, S. Regulatory T Cells Are Necessary for Implantation and Maintenance of Early Pregnancy but Not Late Pregnancy in Allogeneic Mice. J. Reprod. Immunol. 2010, 85, 121–129. [Google Scholar] [CrossRef]
- Chan, H.Y.; Moldenhauer, L.M.; Groome, H.M.; Schjenken, J.E.; Robertson, S.A. Toll-like Receptor-4 Null Mutation Causes Fetal Loss and Fetal Growth Restriction Associated with Impaired Maternal Immune Tolerance in Mice. Sci. Rep. 2021, 11, 16569. [Google Scholar] [CrossRef]
- Leisegang, K.; Bouic, P.J.D.; Menkveld, R.; Henkel, R.R. Obesity Is Associated with Increased Seminal Insulin and Leptin alongside Reduced Fertility Parameters in a Controlled Male Cohort. Reprod. Biol. Endocrinol. RBE 2014, 12, 34. [Google Scholar] [CrossRef] [Green Version]
- Binder, N.K.; Sheedy, J.R.; Hannan, N.J.; Gardner, D.K. Male Obesity Is Associated with Changed Spermatozoa Cox4i1 MRNA Level and Altered Seminal Vesicle Fluid Composition in a Mouse Model. Mol. Hum. Reprod. 2015, 21, 424–434. [Google Scholar] [CrossRef]
- Fan, W.; Xu, Y.; Liu, Y.; Zhang, Z.; Lu, L.; Ding, Z. Obesity or Overweight, a Chronic Inflammatory Status in Male Reproductive System, Leads to Mice and Human Subfertility. Front. Physiol. 2018, 8, 1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassi, M.; Tomar, A.; Comas-Armangué, G.; Vogtmann, R.; Dijkstra, D.J.; Corujo, D.; Gerlini, R.; Darr, J.; Scheid, F.; Rozman, J.; et al. Disruption of Paternal Circadian Rhythm Affects Metabolic Health in Male Offspring via Nongerm Cell Factors. Sci. Adv. 2021, 7, eabg6424. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.L.; Watkins, A.J. The Influence of Seminal Plasma on Offspring Development and Health. Semin. Cell Dev. Biol. 2020, 97, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Hayes, R.B. Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annu. Rev. Public Health 2021, 42, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical Application and Potential of Fecal Microbiota Transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; et al. Maternal Gut Microbiota in Pregnancy Influences Offspring Metabolic Phenotype in Mice. Science 2020, 367, eaaw8429. [Google Scholar] [CrossRef] [PubMed]
- Myles, I.A.; Fontecilla, N.M.; Janelsins, B.M.; Vithayathil, P.J.; Segre, J.A.; Datta, S.K. Parental Dietary Fat Intake Alters Offspring Microbiome and Immunity. J. Immunol. Baltim. Md 1950 2013, 191, 3200–3209. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Prince, A.L.; Bader, D.; Hu, M.; Ganu, R.; Baquero, K.; Blundell, P.; Alan Harris, R.; Frias, A.E.; Grove, K.L.; et al. High-Fat Maternal Diet during Pregnancy Persistently Alters the Offspring Microbiome in a Primate Model. Nat. Commun. 2014, 5, 3889. [Google Scholar] [CrossRef] [Green Version]
- Wankhade, U.D.; Zhong, Y.; Kang, P.; Alfaro, M.; Chintapalli, S.V.; Thakali, K.M.; Shankar, K. Enhanced Offspring Predisposition to Steatohepatitis with Maternal High-Fat Diet Is Associated with Epigenetic and Microbiome Alterations. PLoS ONE 2017, 12, e0175675. [Google Scholar] [CrossRef] [Green Version]
- Bhagavata Srinivasan, S.P.; Raipuria, M.; Bahari, H.; Kaakoush, N.O.; Morris, M.J. Impacts of Diet and Exercise on Maternal Gut Microbiota Are Transferred to Offspring. Front. Endocrinol. 2018, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Liu, Y. Microorganisms in the Reproductive System and Probiotic’s Regulatory Effects on Reproductive Health. Comput. Struct. Biotechnol. J. 2022, 20, 1541–1553. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.M.; Antony, K.M.; Ma, J.; Prince, A.L.; Showalter, L.; Moller, M.; Aagaard, K.M. The Early Infant Gut Microbiome Varies in Association with a Maternal High-Fat Diet. Genome Med. 2016, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponzo, V.; Ferrocino, I.; Zarovska, A.; Amenta, M.B.; Leone, F.; Monzeglio, C.; Rosato, R.; Pellegrini, M.; Gambino, R.; Cassader, M.; et al. The Microbiota Composition of the Offspring of Patients with Gestational Diabetes Mellitus (GDM). PLoS ONE 2019, 14, e0226545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babakobi, M.D.; Reshef, L.; Gihaz, S.; Belgorodsky, B.; Fishman, A.; Bujanover, Y.; Gophna, U. Effect of Maternal Diet and Milk Lipid Composition on the Infant Gut and Maternal Milk Microbiomes. Nutrients 2020, 12, E2539. [Google Scholar] [CrossRef]
- Sindi, A.S.; Geddes, D.T.; Wlodek, M.E.; Muhlhausler, B.S.; Payne, M.S.; Stinson, L.F. Can We Modulate the Breastfed Infant Gut Microbiota through Maternal Diet? FEMS Microbiol. Rev. 2021, 45, fuab011. [Google Scholar] [CrossRef]
- Korpela, K. Impact of Delivery Mode on Infant Gut Microbiota. Ann. Nutr. Metab. 2021, 77, 11–19. [Google Scholar] [CrossRef]
- Treichel, N.S.; Prevoršek, Z.; Mrak, V.; Kostrić, M.; Vestergaard, G.; Foesel, B.; Pfeiffer, S.; Stres, B.; Schöler, A.; Schloter, M. Effect of the Nursing Mother on the Gut Microbiome of the Offspring During Early Mouse Development. Microb. Ecol. 2019, 78, 517–527. [Google Scholar] [CrossRef]
- Sun, H.; Yamada, P.; Paetow, A.; Chan, M.; Arslan, A.; Landberg, R.; Dominguez-Bello, M.G.; Young, B.K. A Randomized Controlled Trial of the Effects of Whole Grains versus Refined Grains Diets on the Microbiome in Pregnancy. Sci. Rep. 2022, 12, 7509. [Google Scholar] [CrossRef]
- Whyte, J.J.; Alexenko, A.P.; Davis, A.M.; Ellersieck, M.R.; Fountain, E.D.; Rosenfeld, C.S. Maternal Diet Composition Alters Serum Steroid and Free Fatty Acid Concentrations and Vaginal PH in Mice. J. Endocrinol. 2007, 192, 75–81. [Google Scholar] [CrossRef]
- Jašarević, E.; Howard, C.D.; Morrison, K.; Misic, A.; Weinkopff, T.; Scott, P.; Hunter, C.; Beiting, D.; Bale, T.L. The Maternal Vaginal Microbiome Partially Mediates the Effects of Prenatal Stress on Offspring Gut and Hypothalamus. Nat. Neurosci. 2018, 21, 1061–1071. [Google Scholar] [CrossRef]
- Jašarević, E.; Hill, E.M.; Kane, P.J.; Rutt, L.; Gyles, T.; Folts, L.; Rock, K.D.; Howard, C.D.; Morrison, K.E.; Ravel, J.; et al. The Composition of Human Vaginal Microbiota Transferred at Birth Affects Offspring Health in a Mouse Model. Nat. Commun. 2021, 12, 6289. [Google Scholar] [CrossRef] [PubMed]
- Pocheron, A.-L.; Le Dréan, G.; Billard, H.; Moyon, T.; Pagniez, A.; Heberden, C.; Le Chatelier, E.; Darmaun, D.; Michel, C.; Parnet, P. Maternal Microbiota Transfer Programs Offspring Eating Behavior. Front. Microbiol. 2021, 12, 672224. [Google Scholar] [CrossRef] [PubMed]
- Javurek, A.B.; Spollen, W.G.; Ali, A.M.M.; Johnson, S.A.; Lubahn, D.B.; Bivens, N.J.; Bromert, K.H.; Ellersieck, M.R.; Givan, S.A.; Rosenfeld, C.S. Discovery of a Novel Seminal Fluid Microbiome and Influence of Estrogen Receptor Alpha Genetic Status. Sci. Rep. 2016, 6, 23027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altmäe, S.; Franasiak, J.M.; Mändar, R. The Seminal Microbiome in Health and Disease. Nat. Rev. Urol. 2019, 16, 703–721. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kwon, J.; Kim, M.-S.; Park, H.; Ji, Y.; Holzapfel, W.; Hyun, C.-K. Protective Effects of Bacillus Probiotics against High-Fat Diet-Induced Metabolic Disorders in Mice. PLoS ONE 2018, 13, e0210120. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Tse, I.M.Y.; Li, E.T.S. Maternal Green Tea Extract Supplementation to Rats Fed a High-Fat Diet Ameliorates Insulin Resistance in Adult Male Offspring. J. Nutr. Biochem. 2012, 23, 1655–1660. [Google Scholar] [CrossRef]
- Su, X.; Wang, W.; Fang, C.; Ni, C.; Zhou, J.; Wang, X.; Zhang, L.; Xu, X.; Cao, R.; Lang, H.; et al. Vitamin K2 Alleviates Insulin Resistance in Skeletal Muscle by Improving Mitochondrial Function Via SIRT1 Signaling. Antioxid. Redox Signal. 2021, 34, 99–117. [Google Scholar] [CrossRef]
- Krasnow, S.M.; Nguyen, M.L.T.; Marks, D.L. Increased Maternal Fat Consumption during Pregnancy Alters Body Composition in Neonatal Mice. Am. J. Physiol. Endocrinol. Metab. 2011, 301, E1243–E1253. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Fu, Q.; Zhou, Y.; Xue, C.; Olson, P.; Lynch, E.C.; Zhang, K.K.; Wu, C.; Murano, P.; Zhang, L.; et al. A Long-Term Maternal Diet Intervention Is Necessary to Avoid the Obesogenic Effect of Maternal High-Fat Diet in the Offspring. J. Nutr. Biochem. 2018, 62, 210–220. [Google Scholar] [CrossRef]
- Summerfield, M.; Zhou, Y.; Zhou, T.; Wu, C.; Alpini, G.; Zhang, K.K.; Xie, L. A Long-Term Maternal Diet Transition from High-Fat Diet to Normal Fat Diet during Pre-Pregnancy Avoids Adipose Tissue Inflammation in next Generation. PLoS ONE 2018, 13, e0209053. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Peng, H.; Xu, H.; Li, J.; Golovko, M.; Cheng, H.; Lynch, E.C.; Liu, L.; McCauley, N.; Kennedy, L.; et al. Maternal Diet Intervention before Pregnancy Primes Offspring Lipid Metabolism in Liver. Lab. Investig. J. Tech. Methods Pathol. 2020, 100, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ding, Z.; Lynch, E.C.; McCauley, N.; Zhou, Y.; Zhang, K.K.; Xie, L. Pregestational Diet Transition to Normal-Fat Diet Avoids the Deterioration of Pancreatic β-Cell Function in Male Offspring Induced by Maternal High-Fat Diet. J. Nutr. Biochem. 2020, 86, 108495. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, P.E.; Lacroix, M.-C.; Jouin, M.; Voisin, S.; Badonnel, K.; Lemaire, M.; Meunier, N.; Safi-Stibler, S.; Persuy, M.-A.; Jouneau, L.; et al. Effect of Maternal Obesity and Preconceptional Weight Loss on Male and Female Offspring Metabolism and Olfactory Performance in Mice. Nutrients 2019, 11, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Q.; Olson, P.; Rasmussen, D.; Keith, B.; Williamson, M.; Zhang, K.K.; Xie, L. A Short-Term Transition from a High-Fat Diet to a Normal-Fat Diet before Pregnancy Exacerbates Female Mouse Offspring Obesity. Int. J. Obes. 2016, 40, 564–572. [Google Scholar] [CrossRef] [Green Version]
- Kasper, P.; Breuer, S.; Hoffmann, T.; Vohlen, C.; Janoschek, R.; Schmitz, L.; Appel, S.; Fink, G.; Hünseler, C.; Quaas, A.; et al. Maternal Exercise Mediates Hepatic Metabolic Programming via Activation of AMPK-PGC1α Axis in the Offspring of Obese Mothers. Cells 2021, 10, 1247. [Google Scholar] [CrossRef]
- Son, J.S.; Liu, X.; Tian, Q.; Zhao, L.; Chen, Y.; Hu, Y.; Chae, S.A.; de Avila, J.M.; Zhu, M.-J.; Du, M. Exercise Prevents the Adverse Effects of Maternal Obesity on Placental Vascularization and Fetal Growth. J. Physiol. 2019, 597, 3333–3347. [Google Scholar] [CrossRef]
- Wesolowski, S.R.; Mulligan, C.M.; Janssen, R.C.; Baker, P.R.; Bergman, B.C.; D’Alessandro, A.; Nemkov, T.; Maclean, K.N.; Jiang, H.; Dean, T.A.; et al. Switching Obese Mothers to a Healthy Diet Improves Fetal Hypoxemia, Hepatic Metabolites, and Lipotoxicity in Non-Human Primates. Mol. Metab. 2018, 18, 25–41. [Google Scholar] [CrossRef]
- McPherson, N.O.; Fullston, T.; Bakos, H.W.; Setchell, B.P.; Lane, M. Obese Father’s Metabolic State, Adiposity, and Reproductive Capacity Indicate Son’s Reproductive Health. Fertil. Steril. 2014, 101, 865–873. [Google Scholar] [CrossRef] [Green Version]
- McPherson, N.O.; Owens, J.A.; Fullston, T.; Lane, M. Preconception Diet or Exercise Intervention in Obese Fathers Normalizes Sperm MicroRNA Profile and Metabolic Syndrome in Female Offspring. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E805–E821. [Google Scholar] [CrossRef] [Green Version]
- McPherson, N.O.; Bakos, H.W.; Owens, J.A.; Setchell, B.P.; Lane, M. Improving Metabolic Health in Obese Male Mice via Diet and Exercise Restores Embryo Development and Fetal Growth. PLoS ONE 2013, 8, e71459. [Google Scholar] [CrossRef] [Green Version]
- McPherson, N.O.; Lane, M.; Sandeman, L.; Owens, J.A.; Fullston, T. An Exercise-Only Intervention in Obese Fathers Restores Glucose and Insulin Regulation in Conjunction with the Rescue of Pancreatic Islet Cell Morphology and MicroRNA Expression in Male Offspring. Nutrients 2017, 9, E122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, N.O.; Bakos, H.W.; Owens, J.A.; Setchell, B.P.; Lane, M. Diet and Exercise in an Obese Mouse Fed a High-Fat Diet Improve Metabolic Health and Reverse Perturbed Sperm Function. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E768–E780. [Google Scholar] [CrossRef] [PubMed]
- Maggard, M.A.; Yermilov, I.; Li, Z.; Maglione, M.; Newberry, S.; Suttorp, M.; Hilton, L.; Santry, H.P.; Morton, J.M.; Livingston, E.H.; et al. Pregnancy and Fertility Following Bariatric Surgery: A Systematic Review. JAMA 2008, 300, 2286–2296. [Google Scholar] [CrossRef] [PubMed]
- Alwan, N.A.; Grove, G.; Taylor, E.; Ziauddeen, N. Maternal Weight Change between Successive Pregnancies: An Opportunity for Lifecourse Obesity Prevention. Proc. Nutr. Soc. 2020, 79, 272–282. [Google Scholar] [CrossRef]
- Grayson, B.E.; Schneider, K.M.; Woods, S.C.; Seeley, R.J. Improved Rodent Maternal Metabolism but Reduced Intrauterine Growth after Vertical Sleeve Gastrectomy. Sci. Transl. Med. 2013, 5, 199ra112. [Google Scholar] [CrossRef] [Green Version]
- Spann, R.A.; Taylor, E.B.; Welch, B.A.; Grayson, B.E. Altered Immune System in Offspring of Rat Maternal Vertical Sleeve Gastrectomy. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R852–R863. [Google Scholar] [CrossRef]
- Spann, R.A.; Lawson, W.J.; Bidwell, G.L.; Zamarripa, C.A.; Maranon, R.O.; Bandyopadhyay, S.; Taylor, E.R.; Reckelhoff, J.F.; Garrett, M.R.; Grayson, B.E. Rodent Vertical Sleeve Gastrectomy Alters Maternal Immune Health and Fetoplacental Development. Clin. Sci. Lond. Engl. 1979 2018, 132, 295–312. [Google Scholar] [CrossRef]
- Willmer, M.; Berglind, D.; Sørensen, T.I.A.; Näslund, E.; Tynelius, P.; Rasmussen, F. Surgically Induced Interpregnancy Weight Loss and Prevalence of Overweight and Obesity in Offspring. PLoS ONE 2013, 8, e82247. [Google Scholar] [CrossRef] [Green Version]
Diet | Length/Period When Consumed | Species | Suggested Mechanism of Transmission | References |
---|---|---|---|---|
HFD—45% fat (MD12032) | 12 weeks | mouse | global decrease in 5mC in oocytes | Hou et al., 2016 [59] |
HFD—60% fat (H10060) | eight weeks | mouse | global decrease of 5mC and H3K4me3; global increase of 5mhC and H3K9me3 in oocytes | Huang et al., 2022 [60] |
HFD—60 kcal% fat (D12492) | 12 weeks | mouse | increased DNA methylation in leptin promoter and altered DNA methylation in the peroxisome proliferator-activated receptor alpha (Pparα) promoter | Ge et al., 2014 [61] |
HFD—60 kcal% fat (D12492) | 15 days after mating | mouse | global hypomethylation in female placentas | Gallou-Kabani et al., 2010 [68] |
maternal BMI was assessed before week 10 of gestation and maternal diet composition was assessed using 3-day food records at each trimester | NA (not applicable) | human | altered DNA methylation of genes related to several biological processes (SREBP signaling, chromatin remodeling, IGF receptor signaling, PI3-kinase signaling, and nitric oxide synthase) | Thakali et al., 2020 [71] |
HFD—60 kcal% fat (D12492) | 15 days after mating | mouse | downregulation of the H3K9 trimethylase (Kmt1a) without global changes in levels of the H3K9me3 by western blot | Gabory et al., 2012 [73] |
HFD—60% kcal fat (D12492) | entire lactation period | rats | decrease in methylation levels in Scd1 promoter coupled with higher expression levels of the gene | Butruille et al., 2019 [80] |
high-energy (HE) 4.41 kcal/g—32% as fat (D12266B) | three months before mating, through gestation, and weaning | rats | changes in hypothalamic neuropeptides, such as insulin and leptin receptors | Gorski et al., 2006 [81] |
Diet | Length/Period When It Is Consumed | Species | Suggested Mechanism of Transmission | References |
---|---|---|---|---|
HFD—21% fat (TD.88137) | 10 weeks before mating | mouse | hypomethylation sperm DNA; differentially expressed sperm miRNA | Fullston et al., 2013 [98] * |
HFD—42/45% fat (TD.88137/TD.08811) | 12 weeks before mating | rat | altered methylation in DMRs; differentially expressed miRNA in sperm | de Castro Barbosa et al., 2015 [99] * |
obesity (BMI > 29.7, median BMI of 31.8)and glucose intolerance | NA | human | altered methylation in DMRs; differentially expressed sncRNA in sperm | Donkin et al., 2016 [102] |
obesity (BMI > 25) | NA | human | altered methylation in DMRs in mature spermatozoa | Keyhan et al., 2021 [103] |
underweight (BMI < 19), normal weight (BMI: 19–24.9), pre-obesity (BMI: 25–29.9), obesity (BMI: 30–40.3) | NA | human | increased methylation in maternally expressed gene 3 intergenic (MEG3-IG) DMR in sperm | Potabattula et al., 2019 [104] |
overweight (25 ≤ BMI < 30)/obesity (BMI ≥ 30) | NA | human | altered methylation in certain imprinted genes DMRs in sperm | Soubry et al., 2016 [105] |
unhealthy (“fast”) food | record of food intake from the last seven days before the study | human | increased methylation in DMRs of certain imprinted genes in sperm | Soubry et al., 2021 [106] |
HFD—60% fat | 10 weeks before mating | mouse | differential H3 retention in spermatozoa | Terashima, M. et al., 2015 [108] |
HFD—45% fat | three months before mating | mouse | decreased H3K9 dimethylation in spermatozoa | Claycombe-Larson et al., 2020 [109] |
HFD—60% fat (D12492)WT or transgenic overexpressing KDM1A | 10–12 weeks before mating | mouse | alterations in H3K4me3 in spermatozoa | Pepin et al., 2022 [111] * |
HFD—60% fat | six months before fertilization | mouse | differentially expressed sperm-derived sncRNAs and their modifications | Chen et al., 2016 [113] |
WD—21% fat, 34% sucrose (Western 1635, SAFE) | four months before mating | mouse | sperm or testis-derived total RNA; differentially expressed individual miRNAs | Grandjean et al., 2015 [114] |
HFD—60% fat (D12492)WT or Dnmt2 knockout | from six weeks to six months of age | mouse | differentially expressed sperm-derived sncRNAs and their modifications | Zhang et al., 2018 [116] |
WD—45% fat (U8954 version 205) | multigenerational: three months before mating, repeated for five consecutive generations | mouse | differentially expressed sperm-derived sncRNAs for partial transmission of metabolic phenotype | Raad et al., 2021 [117] * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comas-Armangue, G.; Makharadze, L.; Gomez-Velazquez, M.; Teperino, R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines 2022, 10, 2461. https://doi.org/10.3390/biomedicines10102461
Comas-Armangue G, Makharadze L, Gomez-Velazquez M, Teperino R. The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines. 2022; 10(10):2461. https://doi.org/10.3390/biomedicines10102461
Chicago/Turabian StyleComas-Armangue, Gemma, Lela Makharadze, Melisa Gomez-Velazquez, and Raffaele Teperino. 2022. "The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility" Biomedicines 10, no. 10: 2461. https://doi.org/10.3390/biomedicines10102461
APA StyleComas-Armangue, G., Makharadze, L., Gomez-Velazquez, M., & Teperino, R. (2022). The Legacy of Parental Obesity: Mechanisms of Non-Genetic Transmission and Reversibility. Biomedicines, 10(10), 2461. https://doi.org/10.3390/biomedicines10102461