DNA Hypomethylation as a Potential Link between Excessive Alcohol Intake and Cardiometabolic Dysfunction in Morbidly Obese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Participants
2.2. Anthropometric and Cardiometabolic Measurements
2.3. Plasma Homocysteine (Hcy) and One-Carbon Metabolism Factors
2.4. Flow-Mediated Dilation (FMD)
2.5. Measurements of Microvascular Flow-Induced Dilation
2.6. Methylation PCR Analysis
2.7. Real-Time PCR (Polymerase Chain Reaction)
2.8. Statistical Analyses
3. Results
3.1. Physical Characteristics and Cardiometabolic Risk Factors
3.2. DNA Methylation and Expression of Inflammatory Genes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piano, M.R. Alcohol’s Effects on the Cardiovascular System. Alcohol Res. 2017, 38, 219–241. [Google Scholar] [PubMed]
- Briasoulis, A.; Agarwal, V.; Messerli, F.H. Alcohol consumption and the risk of hypertension in men and women: A systematic review and meta-analysis. J. Clin. Hypertens 2012, 14, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Halanych, J.H.; Safford, M.M.; Kertesz, S.G.; Pletcher, M.J.; Kim, Y.I.; Person, S.D.; Lewis, C.E.; Kiefe, C.I. Alcohol consumption in young adults and incident hypertension: 20-year follow-up from the Coronary Artery Risk Development in Young Adults Study. Am. J. Epidemiol. 2010, 171, 532–539. [Google Scholar] [CrossRef]
- Taylor, B.; Irving, H.M.; Baliunas, D.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol and hypertension: Gender differences in dose-response relationships determined through systematic review and meta-analysis. Addiction 2009, 104, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Ceron, C.S.; Marchi, K.C.; Muniz, J.J.; Tirapelli, C.R. Vascular oxidative stress: A key factor in the development of hypertension associated with ethanol consumption. Curr. Hypertens Rev. 2014, 10, 213–222. [Google Scholar] [CrossRef]
- Marchi, K.C.; Muniz, J.J.; Tirapelli, C.R. Hypertension and chronic ethanol consumption: What do we know after a century of study? World J. Cardiol. 2014, 6, 283–294. [Google Scholar] [CrossRef]
- Tirapelli, C.R.; Leone, A.F.; Yogi, A.; Tostes, R.C.; Lanchote, V.L.; Uyemura, S.A.; Resstel, L.B.; Correa, F.M.; Padovan, C.M.; de Oliveira, A.M.; et al. Ethanol consumption increases blood pressure and alters the responsiveness of the mesenteric vasculature in rats. J. Pharm. Pharmacol. 2008, 60, 331–341. [Google Scholar] [CrossRef]
- Bian, J.T.; Piano, M.R.; Kotlo, K.U.; Mahmoud, A.M.; Phillips, S.A. MicroRNA-21 Contributes to Reduced Microvascular Function in Binge Drinking Young Adults. Alcohol. Clin. Exp. Res. 2018, 42, 278–285. [Google Scholar] [CrossRef]
- Rychter, A.M.; Ratajczak, A.E.; Zawada, A.; Dobrowolska, A.; Krela-Kazmierczak, I. Non-Systematic Review of Diet and Nutritional Risk Factors of Cardiovascular Disease in Obesity. Nutrients 2020, 12, 814. [Google Scholar] [CrossRef]
- Ogden, C.L.; Carroll, M.D.; McDowell, M.A.; Flegal, K.M. Obesity among Adults in the United States—No Statistically Significant Change since 2003–2004; NCHS Data Brief: Hyattsville, MD, USA, 2007; pp. 1–8.
- Ogden, C.L.; Yanovski, S.Z.; Carroll, M.D.; Flegal, K.M. The epidemiology of obesity. Gastroenterology 2007, 132, 2087–2102. [Google Scholar] [CrossRef]
- English, W.J.; DeMaria, E.J.; Hutter, M.M.; Kothari, S.N.; Mattar, S.G.; Brethauer, S.A.; Morton, J.M. American Society for Metabolic and Bariatric Surgery 2018 estimate of metabolic and bariatric procedures performed in the United States. Surg. Obes. Relat. Dis. 2020, 16, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.L.; Carroll, M.E. The role of impulsive behavior in drug abuse. Psychopharmacology 2008, 200, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Patte, K.; Levitan, R.; Reid, C.; Tweed, S.; Curtis, C. From motivation to behaviour: A model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite 2007, 48, 12–19. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Telang, F. Overlapping neuronal circuits in addiction and obesity: Evidence of systems pathology. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Rapaka, R.; Schnur, P.; Shurtleff, D. Obesity and addiction: Common neurological mechanisms and drug development. Physiol. Behav. 2008, 95, 2–9. [Google Scholar] [CrossRef]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef]
- Haloul, M.; Vinjamuri, S.J.; Naquiallah, D.; Mirza, M.I.; Qureshi, M.; Hassan, C.; Masrur, M.; Bianco, F.M.; Frederick, P.; Cristoforo, G.P.; et al. Hyperhomocysteinemia and Low Folate and Vitamin B12 Are Associated with Vascular Dysfunction and Impaired Nitric Oxide Sensitivity in Morbidly Obese Patients. Nutrients 2020, 12, 2014. [Google Scholar] [CrossRef]
- Cahalan, D.; Cisin, I.H. Drinking Behavior and Drinking Problems in the United States. In Social Aspects of Alcoholism; Kissin, B., Begleiter, H., Eds.; Springer: Boston, MA, USA, 1976; pp. 77–115. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Naquiallah, D.; Qureshi, M.; Mirza, M.I.; Hassan, C.; Masrur, M.; Bianco, F.M.; Frederick, P.; Cristoforo, G.P.; Gangemi, A.; et al. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2021, 17, 93–109. [Google Scholar] [CrossRef]
- Ali, M.M.; Hassan, C.; Masrur, M.; Bianco, F.M.; Naquiallah, D.; Mirza, I.; Frederick, P.; Fernandes, E.T.; Giulianotti, C.P.; Gangemi, A.; et al. Adipose Tissue Hypoxia Correlates with Adipokine Hypomethylation and Vascular Dysfunction. Biomedicines 2021, 9, 1034. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Szczurek, M.R.; Blackburn, B.K.; Mey, J.T.; Chen, Z.; Robinson, A.T.; Bian, J.T.; Unterman, T.G.; Minshall, R.D.; Brown, M.D.; et al. Hyperinsulinemia augments endothelin-1 protein expression and impairs vasodilation of human skeletal muscle arterioles. Physiol. Rep. 2016, 4, e12895. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Szczurek, M.; Hassan, C.; Masrur, M.; Gangemi, A.; Phillips, S.A. Vitamin D Improves Nitric Oxide-Dependent Vasodilation in Adipose Tissue Arterioles from Bariatric Surgery Patients. Nutrients 2019, 11, 2521. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Hwang, C.L.; Szczurek, M.R.; Bian, J.T.; Ranieri, C.; Gutterman, D.D.; Phillips, S.A. Low-Fat Diet Designed for Weight Loss But Not Weight Maintenance Improves Nitric Oxide-Dependent Arteriolar Vasodilation in Obese Adults. Nutrients 2019, 11, 1339. [Google Scholar] [CrossRef]
- Ali, M.M.; Naquiallah, D.; Hassan, C.; Masrur, M.; Bianco, F.M.; Frederick, P.; Cristoforo, G.; Gangemi, A.; Phillips, S.A.; Mahmoud, A.M. Obesity-associated Hypoxia Contributes to Aberrant Methylation of Genes Implicated in Inflammation and vascular Function. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Solomon, T.P.J.; Phillips, S.A.; Kirwan, J.P.; Haus, J.M. Aerobic Exercise Reduces NOX2 in Skeletal Muscle of Obese Insulin-resistant Adults via Interfering with RAGE/p-IkB-α Axis. FASEB J. 2016, 30, lb762. [Google Scholar] [CrossRef]
- Sharun, K.; Pawde, A.M.; Kumar, R.; Kalaiselvan, E.; Kinjavdekar, P.; Dhama, K.; Pal, A. Standardization and characterization of adipose-derived stromal vascular fraction from New Zealand white rabbits for bone tissue engineering. Vet. World 2021, 14, 508–514. [Google Scholar] [CrossRef]
- Carswell, K.A.; Lee, M.J.; Fried, S.K. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol. Biol. 2012, 806, 203–214. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Halsted, C.H.; Villanueva, J.A.; Devlin, A.M.; Chandler, C.J. Metabolic interactions of alcohol and folate. J. Nutr. 2002, 132, 2367S–2372S. [Google Scholar] [CrossRef]
- Gibson, A.; Woodside, J.V.; Young, I.S.; Sharpe, P.C.; Mercer, C.; Patterson, C.C.; McKinley, M.C.; Kluijtmans, L.A.; Whitehead, A.S.; Evans, A. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers--a randomized, crossover intervention study. QJM 2008, 101, 881–887. [Google Scholar] [CrossRef]
- Bleich, S.; Bleich, K.; Kropp, S.; Bittermann, H.J.; Degner, D.; Sperling, W.; Ruther, E.; Kornhuber, J. Moderate alcohol consumption in social drinkers raises plasma homocysteine levels: A contradiction to the ’French Paradox’? Alcohol Alcohol. 2001, 36, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Alegria-Torres, J.A.; Baccarelli, A.; Bollati, V. Epigenetics and lifestyle. Epigenomics 2011, 3, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Perrier, F.; Viallon, V.; Ambatipudi, S.; Ghantous, A.; Cuenin, C.; Hernandez-Vargas, H.; Chajes, V.; Baglietto, L.; Matejcic, M.; Moreno-Macias, H.; et al. Association of leukocyte DNA methylation changes with dietary folate and alcohol intake in the EPIC study. Clin. Epigenetics 2019, 11, 57. [Google Scholar] [CrossRef]
- Dugue, P.A.; Wilson, R.; Lehne, B.; Jayasekara, H.; Wang, X.; Jung, C.H.; Joo, J.E.; Makalic, E.; Schmidt, D.F.; Baglietto, L.; et al. Alcohol consumption is associated with widespread changes in blood DNA methylation: Analysis of cross-sectional and longitudinal data. Addict. Biol. 2021, 26, e12855. [Google Scholar] [CrossRef]
- Zhang, H.; Gelernter, J. Review: DNA methylation and alcohol use disorders: Progress and challenges. Am. J. Addict. 2017, 26, 502–515. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Zhao, F.; Gao, C.; Zhang, N.; Bao, J.; Li, K.; Zhang, X.; Lu, X.; Ruan, Y.; et al. Hypermethylation of the OPRM1 and ALDH2 promoter regions in Chinese Han males with alcohol use disorder in Yunnan Province. Am. J. Drug Alcohol Abus. 2021, 47, 694–703. [Google Scholar] [CrossRef]
- Longley, M.J.; Lee, J.; Jung, J.; Lohoff, F.W. Epigenetics of alcohol use disorder-A review of recent advances in DNA methylation profiling. Addict. Biol. 2021, 26, e13006. [Google Scholar] [CrossRef]
- Klatsky, A.L. Alcohol and cardiovascular diseases: Where do we stand today? J. Intern. Med. 2015, 278, 238–250. [Google Scholar] [CrossRef]
- Klatsky, A.L.; Friedman, G.D.; Armstrong, M.A. The relationships between alcoholic beverage use and other traits to blood pressure: A new Kaiser Permanente study. Circulation 1986, 73, 628–636. [Google Scholar] [CrossRef]
- Fuchs, F.D.; Chambless, L.E.; Whelton, P.K.; Nieto, F.J.; Heiss, G. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension 2001, 37, 1242–1250. [Google Scholar] [CrossRef]
- Sesso, H.D.; Cook, N.R.; Buring, J.E.; Manson, J.E.; Gaziano, J.M. Alcohol consumption and the risk of hypertension in women and men. Hypertension 2008, 51, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Corrao, G.; Bagnardi, V.; Zambon, A.; La Vecchia, C. A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev. Med. 2004, 38, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Klop, B.; do Rego, A.T.; Cabezas, M.C. Alcohol and plasma triglycerides. Curr. Opin. Lipidol. 2013, 24, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, K. Association of alcohol consumption with lipid profile in hypertensive men. Alcohol Alcohol. 2012, 47, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Kim, S.E.; Park, B.J.; Bae, J.W.; Kang, H.T. High-risk drinking is associated with dyslipidemia in a different way, based on the 2010–2012 KNHANES. Clin. Chim. Acta 2016, 456, 170–175. [Google Scholar] [CrossRef]
- Capurso, N.A.; Petrakis, I. Dyslipidemia associated with heavy alcohol use. Am. J. Addict. 2016, 25, 188–190. [Google Scholar] [CrossRef]
- Waskiewicz, A.; Sygnowska, E. Alcohol intake and cardiovascular risk factor profile in men participating in the WOBASZ study. Kardiol. Pol. 2013, 71, 359–365. [Google Scholar] [CrossRef]
- Brien, S.E.; Ronksley, P.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Effect of alcohol consumption on biological markers associated with risk of coronary heart disease: Systematic review and meta-analysis of interventional studies. BMJ 2011, 342, d636. [Google Scholar] [CrossRef]
- Hansel, B.; Thomas, F.; Pannier, B.; Bean, K.; Kontush, A.; Chapman, M.J.; Guize, L.; Bruckert, E. Relationship between alcohol intake, health and social status and cardiovascular risk factors in the Urban Paris-Ile-de-France Cohort: Is the cardioprotective action of alcohol a myth? Eur. J. Clin. Nutr. 2010, 64, 561–568. [Google Scholar] [CrossRef]
- Lindschou Hansen, J.; Tolstrup, J.S.; Jensen, M.K.; Gronbaek, M.; Tjonneland, A.; Schmidt, E.B.; Overvad, K. Alcohol intake and risk of acute coronary syndrome and mortality in men and women with and without hypertension. Eur. J. Epidemiol. 2011, 26, 439–447. [Google Scholar] [CrossRef]
- Naimi, T.S.; Brown, D.W.; Brewer, R.D.; Giles, W.H.; Mensah, G.; Serdula, M.K.; Mokdad, A.H.; Hungerford, D.W.; Lando, J.; Naimi, S.; et al. Cardiovascular risk factors and confounders among nondrinking and moderate-drinking U.S. adults. Am. J. Prev. Med. 2005, 28, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Sakuta, H.; Suzuki, T. Alcohol consumption and plasma homocysteine. Alcohol 2005, 37, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.; Mensink, G.; Bronstrup, A.; Thierfelder, W.; Pietrzik, K. Alcohol consumption and its relation to cardiovascular risk factors in Germany. Eur. J. Clin. Nutr. 2004, 58, 605–614. [Google Scholar] [CrossRef]
- Wood, A.M.; Kaptoge, S.; Butterworth, A.S.; Willeit, P.; Warnakula, S.; Bolton, T.; Paige, E.; Paul, D.S.; Sweeting, M.; Burgess, S.; et al. Risk thresholds for alcohol consumption: Combined analysis of individual-participant data for 599 912 current drinkers in 83 prospective studies. Lancet 2018, 391, 1513–1523. [Google Scholar] [CrossRef]
- GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef]
- Smyth, A.; Teo, K.K.; Rangarajan, S.; O’Donnell, M.; Zhang, X.; Rana, P.; Leong, D.P.; Dagenais, G.; Seron, P.; Rosengren, A.; et al. Alcohol consumption and cardiovascular disease, cancer, injury, admission to hospital, and mortality: A prospective cohort study. Lancet 2015, 386, 1945–1954. [Google Scholar] [CrossRef]
- Knott, C.S.; Coombs, N.; Stamatakis, E.; Biddulph, J.P. All cause mortality and the case for age specific alcohol consumption guidelines: Pooled analyses of up to 10 population based cohorts. BMJ 2015, 350, h384. [Google Scholar] [CrossRef]
- Stockwell, T.; Zhao, J.; Panwar, S.; Roemer, A.; Naimi, T.; Chikritzhs, T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality. J. Stud. Alcohol Drugs 2016, 77, 185–198. [Google Scholar] [CrossRef]
- Mahmoud, A.M.; Ali, M.M. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019, 11, 608. [Google Scholar] [CrossRef]
- Wilson, L.E.; Xu, Z.; Harlid, S.; White, A.J.; Troester, M.A.; Sandler, D.P.; Taylor, J.A. Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. Am. J. Epidemiol. 2019, 188, 1055–1065. [Google Scholar] [CrossRef]
- Liu, C.; Marioni, R.E.; Hedman, A.K.; Pfeiffer, L.; Tsai, P.C.; Reynolds, L.M.; Just, A.C.; Duan, Q.; Boer, C.G.; Tanaka, T.; et al. A DNA methylation biomarker of alcohol consumption. Mol. Psychiatry 2018, 23, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Palou-Marquez, G.; Subirana, I.; Nonell, L.; Fernandez-Sanles, A.; Elosua, R. DNA methylation and gene expression integration in cardiovascular disease. Clin. Epigenetics 2021, 13, 75. [Google Scholar] [CrossRef] [PubMed]
- De Leon, J.; Rendon, D.M.; Baca-Garcia, E.; Aizpuru, F.; Gonzalez-Pinto, A.; Anitua, C.; Diaz, F.J. Association between smoking and alcohol use in the general population: Stable and unstable odds ratios across two years in two different countries. Alcohol Alcohol. 2007, 42, 252–257. [Google Scholar] [CrossRef] [PubMed]
Variable | No/Mild (n = 33) | Moderate (n = 27) | Heavy (n = 20) | p-Value |
---|---|---|---|---|
Age, y | 37 ± 7 | 36 ± 8 | 33 ± 8 | 0.2714 |
Gender (♀) | 19 | 18 | 13 | 0.7427 ¥ |
Race/ethnicity (AA) | 16 | 13 | 9 | 0.1261 |
Anthropometric DEXA measurements | ||||
Weight, kg | 105.7 ± 31.9 | 121.3 ± 32.9 | 143.9 ± 29.3 * | 0.0003 |
WC, cm | 112.2 ± 21.1 | 131.6 ± 14.8 * | 139.3 ± 44.9 * | 0.0015 |
BMI, kg/m2 | 37.5 ± 11.3 | 43.3 ± 11.5 | 46.7 ± 7.7 * | 0.0082 |
Fat % | 45.6 ± 11.2 | 51.6 ± 2.5 * | 58.1 ± 2.8 *† | <0.0001 |
Lean % | 52.8 ± 10.5 | 47.2 ± 2.4 * | 41.0 ± 2.9 *† | <0.0001 |
Trunk fat % | 48.2 ± 11.8 | 55.8 ± 3.8 * | 60.2 ± 3.8 * | 0.0158 |
VAT mass, kg | 1.4 ± 0.2 | 1.6 ± 0.2 * | 2.6 ± 0.2 *† | <0.0001 |
Metabolic and cardiovascular measurements | ||||
FPI, µU/mL | 12.7 ± 4.5 | 14.81 ± 4.5 | 16.04 ± 2.3 * | 0.0127 |
FPG, mg/dL | 96.7 ± 12.3 | 99.18 ± 9.7 | 112.35 ± 15.9 *† | 0.0001 |
HOMA-IR | 3.2 ± 1.8 | 3.8 ± 1.8 | 5.4 ± 0.8 *† | 0.0001 |
HbA1c, % | 5.4 ± 0.2 | 5.8 ± 0.3 | 5.9 ± 1.3 * | 0.0203 |
Chol, mg/dL | 166.5 ± 29.0 | 163.3 ± 28.3 | 186.8 ± 22.0 *† | 0.0097 |
LDL, mg/dL | 97.1 ± 17.0 | 97.4 ± 27.3 | 13.5 ± 21.9 *† | 0.0203 |
HDL, mg/dL | 45.0 ± 11.7 | 44.8 ± 13.5 | 37.0 ± 6.7 * | 0.0305 |
Trig, mg/dL | 105.7 ± 25.7 | 111.6 ± 19.8 | 141.0 ± 16.7 *† | <0.0001 |
HR, bpm | 78 ± 14 | 77 ± 9 | 83 ± 6 | 0.1484 |
SBP, mmHg | 124 ± 16 | 127 ± 17 | 140± 16 *† | 0.0036 |
DBP, mmHg | 78 ± 9 | 78 ± 10 | 87 ± 11 *† | 0.0035 |
Brachial FMD, % | 10.9 ± 4.1 | 8.2 ± 2.0 * | 5.9 ± 2.7 *† | <0.0001 |
PWV, ms-1 | 9.5 ± 1.1 | 10.3 ± 1.2 * | 12.4 ± 0.8 *† | <0.0001 |
Baseline FID, % | 48.7 ± 19.8 | 36.9 ± 16.1 * | 23.8 ± 1.6 *† | <0.0001 |
L-NAME ∆ FID, % | 80.7 ± 25.8 | 53.1 ± 19.1 * | 25.9 ± 10.2 *† | <0.0001 |
Serum NO, µmol/L | 5.5 ± 0.7 | 4.5 ± 1.2 * | 3.6 ± 1.0 *† | <0.0001 |
Circulating biomarkers of inflammation | ||||
CRP, mg/dL | 2.3 ± 1.7 | 3.1 ± 1.8 | 4.8 ± 1.4 *† | <0.0001 |
IL6, pg/mL | 13.4 ± 6.1 | 13.3 ± 12.9 | 27.1 ± 11.9 *† | <0.0001 |
Variable | No/Mild (n = 33) | Moderate (n = 27) | Heavy (n = 20) | p-Value |
---|---|---|---|---|
One-carbon metabolism factors | ||||
Folate, ng/mL | 22.5 ± 4.8 | 17.2 ± 4.9 * | 13.4 ± 6.2 *† | <0.0001 |
Vit B12, ng/L | 488.7 ± 181.8 | 308.2 ± 150.9 * | 294.2 ± 168.1 * | <0.0001 |
Vit B6, μg/L | 40.1 ± 7.9 | 33.1 ± 8.7 * | 36.1 ± 6.3 | 0.0037 |
Methionine, µmol/L | 37.7 ± 9.1 | 33.9 ± 10.2 | 34.8 ± 11.5 | 0.3210 |
Hcy, µmol/L | 10.3 ± 4.2 | 13.3 ± 6.3 | 21.5 ± 9.2 *† | <0.0001 |
DNA methylation of inflammatory genes in VAT (%) | ||||
CXCL1 | 57.5 ± 40.8 | 9.2 ± 20.0 * | 9.8 ± 14.8 * | <0.0001 |
CXCR2 | 55.4 ± 25.5 | 45.3 ± 11.6 | 29.5 ± 11.1 *† | <0.0001 |
HDAC5 | 85.9 ± 17.6 | 68.8 ± 14.9 * | 15.5 ± 3.8 *† | <0.0001 |
IGFBP3 | 93.9 ± 34.1 | 89.1 ± 22.8 | 48.9 ± 13.8 *† | <0.0001 |
IL12RB2 | 84.4 ± 15.7 | 22.3 ± 9.5 * | 17.2 ± 11.5 * | <0.0001 |
IL1R1 | 88.3 ± 18.9 | 52.3 ± 19.1 * | 33.4 ± 17.4 *† | <0.0001 |
IL7 | 93.0 ± 19.5 | 86.3 ± 18.7 | 22.8 ± 8.1 *† | <0.0001 |
IL12A | 41.9 ± 44.7 | 14.5 ± 8.9 * | 10.5 ± 12.1 * | 0.0002 |
IL17RA | 37.3 ± 35.9 | 12.8 ± 3.5 * | 9.2 ± 6.3 * | 0.0001 |
MYD88 | 69.5 ± 33.4 | 25.4 ± 11.6 * | 25.5 ± 5.5 * | <0.0001 |
NFATC3 | 47.4 ± 13.8 | 44.7 ± 16.5 | 32.1 ± 10.7*† | 0.0005 |
NFκB | 94.5 ± 14.1 | 53.7 ± 27.2 * | 55.9 ± 19.5 * | <0.0001 |
NFKBIB | 54.8 ± 41.9 | 20.0 ± 12.4 * | 12.7 ± 21.4 * | <0.0001 |
SMAD3 | 95.2 ± 15.2 | 69.1 ± 11.5 * | 57.5 ± 19.1 *† | <0.0001 |
TGFBR2 | 94.9 ± 24.4 | 26.8 ± 19.6 * | 16.7 ± 11.5 * | <0.0001 |
TLR5 | 35.7 ± 16.6 | 17.9 ± 7.6 * | 5.6 ± 4.1 *† | <0.0001 |
TNFRSF8 | 31.1 ± 9.3 | 25.1 ± 7.5 * | 22.6 ± 5.3 * | 0.0005 |
TRAF6 | 80.0 ± 25.2 | 81.5 ± 17.5 | 50.5 ± 22.3 *† | <0.0001 |
Differentially expressed inflammatory genes in VAT (fold change ‡) | ||||
CXCL1 | 1.0 ± 0.4 | 1.7 ± 0.2 * | 1.9 ± 0.3 * | <0.0001 |
CXCR2 | 1.0 ± 0.2 | 1.6 ± 0.1 * | 2.3 ± 0.2 *† | <0.0001 |
HDAC5 | 1.0 ± 0.1 | 1.4 ± 0.1 * | 1.8 ± 0.3 *† | <0.0001 |
IGFBP3 | 1.0 ± 0.1 | 1.3 ± 0.3 * | 2.4 ± 0.1 *† | <0.0001 |
IL12RB2 | 1.0 ± 0.3 | 1.9 ± 0.1 * | 2.0 ± 0.1 * | <0.0001 |
IL17RA | 1.0 ± 0.1 | 1.1 ± 0.3 | 1.3 ± 0.4 *† | 0.0004 |
NFATC3 | 1.0 ± 0.1 | 0.9 ± 0.2 | 1.8 ± 0.2 *† | <0.0001 |
NFκB | 1.0 ± 0.3 | 1.7 ± 0.1 * | 1.5 ± 0.4 * | <0.0001 |
TGFBR2 | 1.0 ± 0.3 | 2.7 ± 0.4 * | 3.0 ± 0.6 * | <0.0001 |
TNFRSF8 | 1.0 ± 0.2 | 2.0 ± 0.4 * | 2.2 ± 0.2 * | <0.0001 |
Variable | No/Mild (n = 33) | Moderate (n = 27) | Sig | Heavy (n = 20) | p-Value |
---|---|---|---|---|---|
Hypertension | |||||
Model 1 | 1 | 1.37 (1.08−1.62) | 0.0024 | 1.49 (1.20−1.64) | <0.0001 |
Model 2 | 1 | 1.20 (0.95−1.35) | 0.0416 | 1.33 (1.12−1.56) | 0.0008 |
Diabetes | |||||
Model 1 | 1 | 1.11 (0.93−1.19) | 0.0967 | 1.32 (1.13−1.47) | <0.0001 |
Model 2 | 1 | 1.01 (0.93−1.09) | 0.8177 | 1.07 (0.91−1.25) | 0.4109 |
Dyslipidemia | |||||
Model 1 | 1 | 1.22 (1.03−1.48) | 0.0313 | 1.42 (1.15−1.67) | 0.0002 |
Model 2 | 1 | 1.05 (0.96−1.08) | 0.1042 | 1.29 (1.09−1.53) | 0.0033 |
Homocysteinemia | |||||
Model 1 | 1 | 1.34 (1.17−1.72) | 0.0003 | 1.61 (1.22−1.81) | <0.0001 |
Model 2 | 1 | 1.16 (1.01−1.37) | 0.0559 | 1.67(1.09−1.88) | 0.0002 |
Systemic inflammation | |||||
Model 1 | 1 | 1.27 (0.98−1.43) | 0.0131 | 1.39 (1.16−1.55) | <0.0001 |
Model 2 | 1 | 1.19 (1.01−1.33) | 0.0132 | 1.31 (1.01−1.51) | 0.0085 |
Arterial FMD | |||||
Model 1 | 1 | 1.29 (1.09−1.64) | 0.0145 | 1.54 (1.22−1.84) | <0.0001 |
Model 2 | 1 | 1.11 (1.08−1.26) | 0.0079 | 1.41 (1.18−1.77) | 0.0009 |
Arterial stiffness | |||||
Model 1 | 1 | 1.17 (0.97−1.35) | 0.0622 | 1.19 (0.96−1.34) | 0.0405 |
Model 2 | 1 | 1.09 (1.01−1.29) | 0.1682 | 1.16 (0.92−1.23) | 0.0448 |
Arteriolar FID | |||||
Model 1 | 1 | 1.67 (1.37−1.91) | <0.0001 | 1.75 (1.62−1.95) | <0.0001 |
Model 2 | 1 | 1.45 (1.24−1.75) | <0.0001 | 1.73 (1.52−1.93) | <0.0001 |
One-Carbon metabolism factors | |||||
Model 1 | 1 | 1.22 (1.03−1.44) | 0.0198 | 1.78 (1.27−1.90) | <0.0001 |
Model 2 | 1 | 1.18 (1.08−1.36) | 0.0049 | 1.81 (1.51−1.95) | <0.0001 |
Inflammatory gene methylation score | |||||
Model 1 | 1 | 1.29 (1.20−1.57) | <0.0001 | 1.34 (0.99−1.52) | 0.0197 |
Model 2 | 1 | 1.60 (1.31−1.82) | <0.0001 | 1.68 (1.27−1.84) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirza, I.; Naquiallah, D.; Mohamed, A.; Abdulbaseer, U.; Hassan, C.; Masrur, M.; Ali, M.M.; Phillips, S.A.; Mahmoud, A.M. DNA Hypomethylation as a Potential Link between Excessive Alcohol Intake and Cardiometabolic Dysfunction in Morbidly Obese Adults. Biomedicines 2022, 10, 1954. https://doi.org/10.3390/biomedicines10081954
Mirza I, Naquiallah D, Mohamed A, Abdulbaseer U, Hassan C, Masrur M, Ali MM, Phillips SA, Mahmoud AM. DNA Hypomethylation as a Potential Link between Excessive Alcohol Intake and Cardiometabolic Dysfunction in Morbidly Obese Adults. Biomedicines. 2022; 10(8):1954. https://doi.org/10.3390/biomedicines10081954
Chicago/Turabian StyleMirza, Imaduddin, Dina Naquiallah, Ariej Mohamed, Uzma Abdulbaseer, Chandra Hassan, Mario Masrur, Mohamed M. Ali, Shane A. Phillips, and Abeer M. Mahmoud. 2022. "DNA Hypomethylation as a Potential Link between Excessive Alcohol Intake and Cardiometabolic Dysfunction in Morbidly Obese Adults" Biomedicines 10, no. 8: 1954. https://doi.org/10.3390/biomedicines10081954
APA StyleMirza, I., Naquiallah, D., Mohamed, A., Abdulbaseer, U., Hassan, C., Masrur, M., Ali, M. M., Phillips, S. A., & Mahmoud, A. M. (2022). DNA Hypomethylation as a Potential Link between Excessive Alcohol Intake and Cardiometabolic Dysfunction in Morbidly Obese Adults. Biomedicines, 10(8), 1954. https://doi.org/10.3390/biomedicines10081954