Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Eosinophil Grouping Strategy
2.3. Statistical Methodology
3. Results
3.1. Patients’ Characteristics
3.2. Eosinophils Are Associated with PNS Involvement
3.3. ANCA Are Associated with PNS Involvement
3.4. EGPA Phenotypes: The “Only-Lung EGPA” Patients
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Guillevin, L. Eosinophilic Granulomatosis with Polyangiitis (Churg–Strauss). Semin. Respir. Crit. Care Med. 2018, 39, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Chaigne, B.; Terrier, B.; Thieblemont, N.; Witko-Sarsat, V.; Mouthon, L. Dividing the Janus vasculitis? Pathophysiology of eosinophilic granulomatosis with polyangitis. Autoimmun. Rev. 2016, 15, 139–145. [Google Scholar] [CrossRef]
- Lee, L.-Y.; Gu, Q.; Lin, A.-H.; Khosravi, M.; Gleich, G. Airway hypersensitivity induced by eosinophil granule-derived cationic proteins. Pulm. Pharmacol. Ther. 2019, 57, 101804. [Google Scholar] [CrossRef]
- Masi, A.T.; Hunder, G.G.; Lie, J.T.; Michel, B.A.; Bloch, D.A.; Arend, W.P.; Calabrese, L.H.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; et al. The American College of Rheumatology 1990 criteria for the classification of churg-strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 2010, 33, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Grayson, P.C.; Ponte, C.; Suppiah, R.; Robson, J.C.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Luqmani, R.A.; Watts, R.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology Classification Criteria for Eosinophilic Granulomatosis With Polyangiitis. Arthritis Rheumatol. 2022, 74, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.Y.; Hernandez, M.L.; Jannette, J.C.; Falk, R.J. Eosinophilic granulomatosis with polyangiitis: Clinical pathology conference and review. J. Allergy Clin. Immunol. Pract. 2018, 6, 1496–1504. [Google Scholar] [CrossRef]
- McBrian, C.N.; Menzies-Gow, A. The biology of eosinophils and their role in asthma. Front. Med. 2017, 4, 93. [Google Scholar] [CrossRef]
- Kiene, M.; Csernok, E.; Muller, A.; Metzler, C.; Trabandt, A. Elevated interleukin-4 and interleukin-13 production by T cell lines from patients with Churg-Strauss syndrome. Arthritis Rheum. 2001, 44, 469–473. [Google Scholar] [CrossRef]
- Jakiela, B.; Szczeklik, W.; Plutecka, H.; Sokolowska, B.; Mastalerz, L.; Sanak, M.; Bazan-Socha, S.; Szczeklik, A.; Musial, J. Increased production of IL-5 and dominant Th2-type response in airways of Churg-Strauss syndrome patients. Rheumatology 2012, 51, 1887–1893. [Google Scholar] [CrossRef]
- Kazuyuki, N.; Makoto, N. Possible Mechanisms of Eosinophil Accumulation in Eosinophilic Pneumonia. Biomolecules 2020, 10, 638–650. [Google Scholar]
- Polzer, K.; Karonitsch, T.; Neumann, T.; Eger, G.; Haberler, C.; Soleiman, A.; Hellmich, B.; Csernok, E.; Distler, J.; Manger, B.; et al. Eotaxin-3 is involved in Churg-Strauss syndrome--a serum marker closely correlating with disease activity. Rheumatology 2008, 47, 804–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosmi, L.; Liotta, F.; Maggi, L.; Annunziato, F. Role of type 2 innate lymphoid cells in allergic diseases. Curr. Allergy Asthma Rep. 2017, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.G.; Chen, R.; Kjarsgaard, M.; Huang, C.; Oliveria, J.P.; O’Byrne, P.M.; Gauvreau, G.M.; Boulet, L.P.; Lemiere, C.; Martin, J.; et al. Increased numbers of activated group 2 innate lymphoid cells in the airways of patients with severe asthma and persistent airway eosinophilia. J. Allergy Clin. Immunol. 2016, 137, 75–86.e8. [Google Scholar] [CrossRef] [Green Version]
- Tsurikisawa, N.; Oshikata, C.; Watanabe, M.; Tsuburai, T.; Kaneko, T.; Saito, H. Innate immune response reflects disease activity in eosinophilic granulomatosis with polyangiitis. Clin. Exp. Allergy 2018, 48, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Jakiela, B.; Sanak, M.; Szczeklik, W.; Sokolowska, B.; Plutecka, H.; Mastalerz, L.; Musial, J.; Szczeklik, A. Both Th2 and Th17 responses are involved in the pathogenesis of Churg-Strauss syndrome. Clin. Exp. Rheumatol. 2011, 29 (Suppl. 64), S23–S34. [Google Scholar]
- Tsurikisawa, N.; Saito, H.; Oshikata, C.; Tsuburai, T.; Akiyama, K. Decreases in the numbers of peripheral blood regulatory T cells, and increases in the levels of memory and activated B cells, in patients with active eosinophilic granulomatosis and polyangiitis. J. Clin. Immunol. 2013, 33, 965–976. [Google Scholar] [CrossRef]
- Matucci, A.; Nencini, F.; Maggi, E.; Vultaggio, A. Systemic hypereosinophilic syndromes: When autoimmunity is Th2 mediated. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 175–18019. [Google Scholar] [CrossRef]
- Mukherjee, M.; Thomas, S.R.; Radford, K.; Dvorkin-Gheva, A.; Davydchenko, S.; Kjarsgaard, M.; Svenningsen, S.; Almas, S.; Felix, L.C.; Stearns, J.; et al. Sputum Antineutrophil Cytoplasmic Antibodies in Serum Antineutrophil Cytoplasmic Antibody-Negative Eosinophilic Granulomatosis with Polyangiitis. Am. J. Respir. Crit. Care Med. 2019, 199, 158–170. [Google Scholar] [CrossRef]
- Sablé-Fourtassou, R.; Cohen, P.; Mahr, A.; Pagnoux, C.; Mouthon, L.; Jayne, D.; Blockmans, D.; Cordier, J.F.; Delaval, P.; Puechal, X.; et al. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Ann. Intern. Med. 2005, 143, 632–638. [Google Scholar] [CrossRef] [PubMed]
- McKinney, E.F.; Willcocks, L.C.; Broecker, V.; Smith, K.G.C. The immunopathology of ANCA-associated vasculitis. Semin. Immunopathol. 2014, 36, 461–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.K.; Dong, J.; Lam, C.W. Molecular mechanisms regulating the synergism between IL32 gamma and NOD for the activation of eosinophils. J. Leukoc. Biol. 2014, 95, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Comarmond, C.; Pagnoux, C.; Khellaf, M.; Cordier, J.F.; Hamidou, M.; Viallard, J.F.; Maurier, F.; Jouneau, S.; Bienvenu, B.; Puéchal, X.; et al. Eosinophilic granulomatosis with polyangiitis (Churg–Strauss): Clinical characteristics and long-term follow-up of the 383 patients enrolled in the French Vasculitis Study Group cohort. Arthritis Rheum. 2013, 65, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Nair, P. Autoimmune Responses in Severe Asthma. Allergy Asthma Immunol. Res. 2018, 10, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Kitching, A.R.; Anders, H.J.; Basu, N.; Brouwer, E.; Gordon, J.; Jayne, D.R.; Kullman, J.; Lyons, P.A.; Merkel, P.A.; Savage, C.O.; et al. ANCA-associated vasculitis. Nat. Rev. Dis. Prim. 2020, 6, 71. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Akuthota, P.; Jayne, D.; Khoury, P.; Klion, A.; Langford, C.A.; Merkel, P.A.; Moosig, F.; Specks, U.; Cid, M.C.; et al. Mepolizumab or Placebo for Eosinophilic Granulomatosis with Polyangiitis. N. Engl. J. Med. 2017, 376, 1921–1932. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, J.; Bradford, E.S.; Brown, J.; Mallett, S.; Yancey, S.W.; Akuthota, P.; Cid, M.C.; Gleich, G.J.; Jayne, D.; Khoury, P.; et al. Evaluation of clinical benefit from treatment with mepolizumab for patients with eosinophilic granulomatosis with polyangiitis. J. Allergy Clin. Immunol. 2019, 143, 2170–2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schleich, F.; Brusselle, G.; Louis, R.; Vandenplas, O.; Michils, A.; Pilette, C.; Peche, R.; Manise, M.; Joos, G. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir. Med. 2014, 108, 1723–1732. [Google Scholar] [CrossRef] [Green Version]
- Van Hulst, G.; Bureau, F.; Desmet, C.J. Eosinophils as drivers of severe eosinophilic asthma: Endotypes or plasticity? Int. J. Mol. Sci. 2021, 22, 10150–10167. [Google Scholar] [CrossRef]
- Greco, A.; Rizzo, M.I.; De Virgilio, A.; Gallo, A.; Fusconi, M.; Ruoppolo, G.; Altissimi, G.; De Vincentiis, M. Churg-Strauss syndrome. Review Autoimmun. Rev. 2015, 14, 341–348. [Google Scholar] [CrossRef]
- Ryoji, N.; Haruki Ken, O.; Yuki Shohei, I.; Yuichi, K.; Masahiro, I.; Masahisa, K.; Gen, S. Differential clinicopathologic features of EGPA-associated neuropathy with and without ANCA. Neurology 2020, 94, e1726–e1737. [Google Scholar]
- Guilpain, P.; Guillevin, L.; Mouthon, L. Eosinophil granule cationic proteins: Eosinophil activation markers. Rev. Med. Interne 2006, 27, 406–480. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Tsurikisawa, N.; Tsuburai, T.; Oshikata, C.; Akiyama, K. Cytokine production profile of CD4+ T cells from patients with active Churg-Strauss syndrome tends toward Th17. Int. Arch. Allergy Immunol. 2009, 149 (Suppl. 1), 61–65. [Google Scholar] [CrossRef] [PubMed]
Demographic, Clinical and Laboratory Features | All Patients (n = 167) |
---|---|
Female | 100/167 (60) |
Age at diagnosis (y) | 49.93 ± 12.92 |
Age at symptoms onset (y) | 46.27 ± 13.6 |
Diagnostic delay (y) | 1.61 ± 2.32 |
Atopy | 67/167 (40) |
Asthma | 167/167 (100) |
Lung opacities | 144/167 (86.2) |
CRSwNP | 157/167 (94) |
PNS involvement | 90/167 (53.9) |
Serositis | 18/167 (10.8) |
Skin involvement | 41/165 (24.8) |
Arthralgia/arthritis | 36/165 (21.6) |
Heart involvement | 10/167 (6) |
Glomerulonephritis | 10/167 (6) |
CNS involvement | 1/167 (0.5) |
Constitutional symptoms | 43/167 (25.7) |
Baseline FEV1 | 69.52% ± 21.98 |
Blood eosinophils (cells/μL) | 5422 ± 5002 |
Blood eosinophils (%) | 33.1 ± 15.4 |
ECP (μg/L) | 75.7 ± 98.2 |
Total IgE (kU/L) | 509.4 ± 669.4 |
ANCA+ | 64/167 (38.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matucci, A.; Vivarelli, E.; Perlato, M.; Mecheri, V.; Accinno, M.; Cosmi, L.; Parronchi, P.; Rossi, O.; Vultaggio, A. Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience. Biomedicines 2022, 10, 2688. https://doi.org/10.3390/biomedicines10112688
Matucci A, Vivarelli E, Perlato M, Mecheri V, Accinno M, Cosmi L, Parronchi P, Rossi O, Vultaggio A. Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience. Biomedicines. 2022; 10(11):2688. https://doi.org/10.3390/biomedicines10112688
Chicago/Turabian StyleMatucci, Andrea, Emanuele Vivarelli, Margherita Perlato, Valentina Mecheri, Matteo Accinno, Lorenzo Cosmi, Paola Parronchi, Oliviero Rossi, and Alessandra Vultaggio. 2022. "Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience" Biomedicines 10, no. 11: 2688. https://doi.org/10.3390/biomedicines10112688
APA StyleMatucci, A., Vivarelli, E., Perlato, M., Mecheri, V., Accinno, M., Cosmi, L., Parronchi, P., Rossi, O., & Vultaggio, A. (2022). Baseline Eosinophil Count as a Potential Clinical Biomarker for Clinical Complexity in EGPA: A Real-Life Experience. Biomedicines, 10(11), 2688. https://doi.org/10.3390/biomedicines10112688