A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of the Research Question
2.2. Study Selection Process
2.3. Data Extraction
3. Results
4. From the Bench: AD Pathophysiology
4.1. Epidermal Barrier Dysfunction
4.2. Skin Microbiome
4.3. Immune Dysregulation
5. To the Bedside: New Molecular Targets
5.1. Cutaneous Microbiota
5.2. The Alarmins: TSLP, IL-25 and IL-33
5.2.1. TSLP
5.2.2. IL-33
5.3. Interleukin 1α (IL-1α)
5.4. The Epidermal Xenobiotic Receptor (AhR) (2)
5.5. Antigen Presentation OX40-OX40L
5.6. Phosphodiesterase 4 Inhibitors (PDE4)
5.7. Interleukin 22
5.8. Interleukin 17C
5.9. Histamine 4 Receptor Antagonists (H4R)
5.10. Interleukin 31
5.11. Substance P-NK-1R
5.12. P2X Purinoreceptors 3 (P2RX3)
5.13. Anti-IgE Therapy
5.14. IL-4 and IL-13
5.15. IL-5
5.16. JAK Inhibitors: New Beacons of Hope in the Treatment of Atopic Dermatitis
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbarot, S.; Auziere, S.; Gadkari, A.; Girolomoni, G.; Puig, L.; Simpson, E.L.; Margolis, D.J.; de Bruin-Weller, M.; Eckert, L. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy 2018, 73, 1284–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakharia, P.P.; Silverberg, J.I. Adult-Onset Atopic Dermatitis: Characteristics and Management. Am. J. Clin. Dermatol. 2019, 20, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Thomsen, S.F.; Ulrik, C.S.; Kyvik, K.O.; Hjelmborg, J.; Skadhauge, L.R.; Steffensen, I.; Backer, V. Importance of genetic factors in the etiology of atopic dermatitis: A twin study. Allergy Asthma Proc. 2007, 28, 535–539. [Google Scholar] [CrossRef]
- Chien, Y.H.; Hwu, W.L.; Chiang, B.L. The genetics of atopic dermatitis. Clin. Rev. Allergy Immunol. 2007, 33, 178–190. [Google Scholar] [CrossRef]
- Ali, S.M.; Yosipovitch, G. Skin pH: From basic science to basic skin care. Acta Derm. Venereol. 2013, 93, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.E.; Leung, D.Y. Epidermal barrier in atopic dermatitis. Allergy Asthma Immunol. Res. 2012, 4, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Rerknimitr, P.; Otsuka, A.; Nakashima, C.; Kabashima, K. The etiopathogenesis of atopic dermatitis: Barrier disruption, immunological derangement, and pruritus. Inflamm. Regen. 2017, 37, 14. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; Gallo, R.L. The role of the skin microbiome in atopic dermatitis. Curr. Allergy Asthma Rep. 2015, 15, 65. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Chen, T.H.; Two, A.M.; Chun, K.A.; Narala, S.; Geha, R.S.; Hata, T.R.; Gallo, R.L. Staphylococcus aureus Exploits Epidermal Barrier Defects in Atopic Dermatitis to Trigger Cytokine Expression. J. Invest. Dermatol. 2016, 136, 2192–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Lee, E.; Park, Y.M.; Hong, S.J. Microbiome in the Gut-Skin Axis in Atopic Dermatitis. Allergy Asthma Immunol. Res. 2018, 10, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chen, T.H.; Narala, S.; Chun, K.A.; Two, A.M.; Yun, T.; Shafiq, F.; Kotol, P.F.; Bouslimani, A.; Melnik, A.V.; et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017, 9, eaah4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, A.L.; Deming, C.; Cassidy, S.K.B.; Harrison, O.J.; Ng, W.I.; Conlan, S.; Belkaid, Y.; Segre, J.A.; Kong, H.H. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Sci. Transl. Med. 2017, 9, aal4651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myles, I.A.; Castillo, C.R.; Barbian, K.D.; Kanakabandi, K.; Virtaneva, K.; Fitzmeyer, E.; Paneru, M.; Otaizo-Carrasquero, F.; Myers, T.G.; Markowitz, T.E.; et al. Therapeutic responses to Roseomonas mucosa in atopic dermatitis may involve lipid-mediated TNF-related epithelial repair. Sci. Transl. Med. 2020, 12, aaz8631. [Google Scholar] [CrossRef]
- Weiss, A.; Delavenne, E.; Matias, C.; Lagler, H.; Simon, D.; Li, P.; Hansen, J.U.; Dos Santos, T.P.; Jana, B.; Priemel, P.; et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled Phase 2 trial. Clin. Transl. Med. 2022, 12, e790. [Google Scholar] [CrossRef]
- Han, H.; Roan, F.; Ziegler, S.F. The atopic march: Current insights into skin barrier dysfunction and epithelial cell-derived cytokines. Immunol. Rev. 2017, 278, 116–130. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity 2015, 43, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.R.; Thé, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.L.; Parnes, J.R.; She, D.; Crouch, S.; Rees, W.; Mo, M.; van der Merwe, R. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: A randomized phase 2a clinical trial. J. Am. Acad. Dermatol. 2019, 80, 1013–1021. [Google Scholar] [CrossRef]
- Chen, Y.L.; Gutowska-Owsiak, D.; Hardman, C.S.; Westmoreland, M.; MacKenzie, T.; Cifuentes, L.; Waithe, D.; Lloyd-Lavery, A.; Marquette, A.; Londei, M.; et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci. Transl. Med. 2019, 11, aax2945. [Google Scholar] [CrossRef] [PubMed]
- Archer, N.K.; Jo, J.H.; Lee, S.K.; Kim, D.; Smith, B.; Ortines, R.V.; Wang, Y.; Marchitto, M.C.; Ravipati, A.; Cai, S.S.; et al. Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. J. Allergy Clin. Immunol. 2019, 143, 1426–1443.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottlieb, A.; Natsis, N.E.; Kerdel, F.; Forman, S.; Gonzalez, E.; Jimenez, G.; Hernandez, L.; Kaffenberger, J.; Guido, G.; Lucas, K.; et al. A Phase II Open-Label Study of Bermekimab in Patients with Hidradenitis Suppurativa Shows Resolution of Inflammatory Lesions and Pain. J. Invest. Dermatol. 2020, 140, 1538–1545.e2. [Google Scholar] [CrossRef] [PubMed]
- Van den Bogaard, E.H.; Bergboer, J.G.; Vonk-Bergers, M.; van Vlijmen-Willems, I.M.; Hato, S.V.; van der Valk, P.G.; Schröder, J.M.; Joosten, I.; Zeeuwen, P.L.; Schalkwijk, J. Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis. J. Clin. Invest. 2013, 123, 917–927. [Google Scholar] [CrossRef] [Green Version]
- Paller, A.S.; Stein Gold, L.; Soung, J.; Tallman, A.M.; Rubenstein, D.S.; Gooderham, M. Efficacy and patient-reported outcomes from a phase 2b, randomized clinical trial of tapinarof cream for the treatment of adolescents and adults with atopic dermatitis. J. Am. Acad. Dermatol. 2021, 84, 632–638. [Google Scholar] [CrossRef]
- Peppers, J.; Paller, A.S.; Maeda-Chubachi, T.; Wu, S.; Robbins, K.; Gallagher, K.; Kraus, J.E. A phase 2, randomized dose-finding study of tapinarof (GSK2894512 cream) for the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2019, 80, 89–98.e3. [Google Scholar] [CrossRef]
- Stein Gold, L.; Bhatia, N.; Tallman, A.M.; Rubenstein, D.S. A phase 2b, randomized clinical trial of tapinarof cream for the treatment of plaque psoriasis: Secondary efficacy and patient-reported outcomes. J. Am. Acad. Dermatol. 2021, 84, 624–631. [Google Scholar] [CrossRef]
- Furue, M.; Furue, M. OX40L-OX40 Signaling in Atopic Dermatitis. J. Clin. Med. 2021, 10, 2578. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Hanifin, J.M.; Boguniewicz, M.; Wollenberg, A.; Bissonnette, R.; Purohit, V.; Kilty, I.; Tallman, A.M.; Zielinski, M.A. The role of phosphodiesterase 4 in the pathophysiology of atopic dermatitis and the perspective for its inhibition. Exp. Dermatol. 2019, 28, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Gittler, J.K.; Shemer, A.; Suárez-Fariñas, M.; Fuentes-Duculan, J.; Gulewicz, K.J.; Wang, C.Q.; Mitsui, H.; Cardinale, I.; de Guzman Strong, C.; Krueger, J.G.; et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J. Allergy Clin. Immunol. 2012, 130, 1344–1354. [Google Scholar] [CrossRef]
- Bardazzi, F.; Magnano, M.; Campanati, A.; Loconsole, F.; Carpentieri, A.; Potenza, C.; Bernardini, N.; Di Lernia, V.; Carrera, C.; Raone, B.; et al. Biologic Therapies in HIV-infected Patients with Psoriasis: An Italian Experience. Acta Derm. Venereol. 2017, 97, 989–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.; Sullivan-Whalen, M.; et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J. Am. Acad. Dermatol. 2018, 78, 872–881.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappu, R.; Rutz, S.; Ouyang, W. Regulation of epithelial immunity by IL-17 family cytokines. Trends Immunol. 2012, 33, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Thurmond, R.L. The histamine H4 receptor: From orphan to the clinic. Front. Pharmacol. 2015, 6, 65. [Google Scholar] [CrossRef]
- Kiss, R.; Keseru, G.M. Novel histamine H4 receptor ligands and their potential therapeutic applications: An update. Expert Opin. Ther. Pat. 2014, 24, 1185–1197. [Google Scholar] [CrossRef]
- Hermanns, H.M. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. Cytokine Growth Factor Rev. 2015, 26, 545–558. [Google Scholar] [CrossRef]
- Nakashima, C.; Otsuka, A.; Kabashima, K. Interleukin-31 and interleukin-31 receptor: New therapeutic targets for atopic dermatitis. Exp. Dermatol. 2018, 27, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Azimi, E.; Reddy, V.B.; Shade, K.C.; Anthony, R.M.; Talbot, S.; Pereira, P.J.S.; Lerner, E.A. Dual action of neurokinin-1 antagonists on Mas-related GPCRs. JCI Insight 2016, 1, e89362. [Google Scholar] [CrossRef] [Green Version]
- Azimi, E.; Reddy, V.B.; Pereira, P.J.S.; Talbot, S.; Woolf, C.J.; Lerner, E.A. Substance P activates Mas-related G protein-coupled receptors to induce itch. J. Allergy Clin. Immunol. 2017, 140, 447–453.e3. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Tsuda, M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem. Pharmacol. 2021, 187, 114309. [Google Scholar] [CrossRef]
- Bieber, T.; de la Salle, H.; Wollenberg, A.; Hakimi, J.; Chizzonite, R.; Ring, J.; Hanau, D.; de la Salle, C. Human epidermal Langerhans cells express the high affinity receptor for immunoglobu- lin E (Fc epsilon RI). J. Exp. Med. 1992, 175, 1285–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wollenberg, A.; Wen, S.; Bieber, T. Phenotyp-ing of epidermal dendritic cells: Clinical applications of a flow cytometric micro-method. Cytometry 1999, 37, 147–155. [Google Scholar] [CrossRef]
- Wollenberg, A.; Wen, S.; Bieber, T. Langer-hans cell phenotyping: A new tool for dif-ferential diagnosis of inflammatory skindiseases. Lancet 1995, 346, 1626–1627. [Google Scholar] [CrossRef]
- Krathen, R.A.; Hsu, S. Failure of omalizumab for treatment of severe adult atopic dermatitis. J. Am. Acad. Dermatol. 2005, 53, 338–340. [Google Scholar] [CrossRef] [PubMed]
- Heil, P.M.; Maurer, D.; Klein, B.; Hultsch, T.; Stingl, G. Omalizumab therapy in atopic dermatitis: Depletion of IgE does not improve the clinical course—A randomized, placebo-controlled and double blind pilot study. J. Dtsch. Dermatol. Ges. 2010, 8, 990–998. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Thomsen, S.F.; Lacour, J.P.; Jaumont, X.; Lazarewicz, S. Targeting immunoglobulin E in atopic dermatitis: A review of the existing evidence. World Allergy Organ. J. 2021, 14, 100519. [Google Scholar] [CrossRef]
- Howell, M.D.; Fairchild, H.R.; Kim, B.E.; Bin, L.; Boguniewicz, M.; Redzic, J.S.; Hansen, K.C.; Leung, D.Y. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J. Invest. Dermatol. 2008, 128, 2248–2258. [Google Scholar] [CrossRef] [Green Version]
- Le Floc’h, A.; Allinne, J.; Nagashima, K.; Scott, G.; Birchard, D.; Asrat, S.; Bai, Y.; Lim, W.K.; Martin, J.; Huang, T.; et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy 2020, 75, 1188–1204. [Google Scholar] [CrossRef]
- Chiricozzi, A.; Maurelli, M.; Peris, K.; Girolomoni, G. Targeting IL-4 for the Treatment of Atopic Dermatitis. Immunotargets Ther. 2020, 9, 151–156. [Google Scholar] [CrossRef]
- Harb, H.; Chatila, T.A. Mechanisms of dupilumab. Clin. Exp. Allergy 2020, 50, 5–14. [Google Scholar] [CrossRef]
- Oldhoff, J.M.; Darsow, U.; Werfel, T.; Katzer, K.; Wulf, A.; Laifaoui, J.; Hijnen, D.J.; Plötz, S.; Knol, E.F.; Kapp, A.; et al. Anti-IL-5 recombinant humanized monoclonal antibody (mepolizumab) for the treatment of atopic dermatitis. Allergy 2005, 60, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Pham, D.N. Spontaneous resolution of atopic dermatitis incidental to participation in benralizumab clinical trial for severe, uncontrolled asthma: A case report. J. Med. Case Rep. 2021, 15, 103. [Google Scholar] [CrossRef] [PubMed]
- Ghoreschi, K.; Laurence, A.; O’Shea, J.J. Janus kinases in immune cell signaling. Immunol. Rev. 2009, 228, 273–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darnell, J.E., Jr.; Kerr, I.M.; Stark, G.R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994, 264, 1415–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarino, A.V.; Kanno, Y.; O’Shea, J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol. 2017, 18, 374–384. [Google Scholar] [CrossRef]
- Wu, N.L.; Huang, D.Y.; Tsou, H.N.; Lin, Y.C.; Lin, W.W. Syk mediates IL-17-induced CCL20 expression by targeting Act1-dependent K63-linked ubiquitination of TRAF6. J. Invest. Dermatol. 2015, 135, 490–498. [Google Scholar] [CrossRef] [Green Version]
- Montilla, A.M.; Gómez-García, F.; Gómez-Arias, P.J.; Gay-Mimbrera, J.; Hernández-Parada, J.; Isla-Tejera, B.; Ruano, J. Scoping Review on the Use of Drugs Targeting JAK/STAT Pathway in Atopic Dermatitis, Vitiligo, and Alopecia Areata. Dermatol. Ther. (Heidelb.) 2019, 9, 655–683. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target Ther. 2021, 6, 402. [Google Scholar] [CrossRef]
- Cartron, A.M.; Nguyen, T.H.; Roh, Y.S.; Kwatra, M.M.; Kwatra, S.G. Janus kinase inhibitors for atopic dermatitis: A promising treatment modality. Clin. Exp. Dermatol. 2021, 46, 820–824. [Google Scholar] [CrossRef]
- Simpson, E.L.; Sinclair, R.; Forman, S.; Wollenberg, A.; Aschoff, R.; Cork, M.; Bieber, T.; Thyssen, J.P.; Yosipovitch, G.; Flohr, C.; et al. Efficacy and safety of abrocitinib in adults and adolescents with moderate-to-severe atopic dermatitis (JADE MONO-1): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet 2020, 396, 255–266. [Google Scholar] [CrossRef]
- Bieber, T.; Simpson, E.L.; Silverberg, J.I.; Thaçi, D.; Paul, C.; Pink, A.E.; Kataoka, Y.; Chu, C.Y.; DiBonaventura, M.; Rojo, R.; et al. Abrocitinib versus Placebo or Dupilumab for Atopic Dermatitis. N. Engl. J. Med. 2021, 384, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Teixeira, H.D.; Simpson, E.L.; Papp, K.A.; Pangan, A.L.; Blauvelt, A.; Thaçi, D.; Chu, C.Y.; Hong, H.C.; Katoh, N.; et al. Once-daily upadacitinib versus placebo in adolescents and adults with moderate-to-severe atopic dermatitis (Measure Up 1 and Measure Up 2): Results from two replicate double-blind, randomised controlled phase 3 trials. Lancet 2021, 397, 2151–2168. [Google Scholar] [CrossRef]
- Reich, K.; Teixeira, H.D.; de Bruin-Weller, M.; Bieber, T.; Soong, W.; Kabashima, K.; Werfel, T.; Zeng, J.; Huang, X.; Hu, X.; et al. Safety and efficacy of upadacitinib in combination with topical corticosteroids in adolescents and adults with moderate-to-severe atopic dermatitis (AD Up): Results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2021, 397, 2169–2181. [Google Scholar] [CrossRef]
- Blauvelt, A.; Teixeira, H.D.; Simpson, E.L.; Costanzo, A.; De Bruin-Weller, M.; Barbarot, S.; Prajapati, V.H.; Lio, P.; Hu, X.; Wu, T.; et al. Efficacy and Safety of Upadacitinib vs Dupilumab in Adults With Moderate-to-Severe Atopic Dermatitis: A Randomized Clinical Trial. JAMA Dermatol. 2021, 157, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Lacour, J.P.; Spelman, L.; Galimberti, R.; Eichenfield, L.F.; Bissonnette, R.; King, B.A.; Thyssen, J.P.; Silverberg, J.I.; Bieber, T.; et al. Baricitinib in patients with moderate-to-severe atopic dermatitis and inadequate response to topical corticosteroids: Results from two randomized monotherapy phase III trials. Br. J. Dermatol. 2020, 183, 242–255. [Google Scholar] [CrossRef]
- Papp, K.; Szepietowski, J.C.; Kircik, L.; Toth, D.; Eichenfield, L.F.; Leung, D.Y.M.; Forman, S.B.; Venturanza, M.E.; Sun, K.; Kuligowski, M.E.; et al. Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: Results from 2 phase 3, randomized, double-blind studies. J. Am. Acad. Dermatol. 2021, 85, 863–872. [Google Scholar] [CrossRef]
- Bissonnette, R.; Papp, K.A.; Poulin, Y.; Gooderham, M.; Raman, M.; Mallbris, L.; Wang, C.; Purohit, V.; Mamolo, C.; Papacharalambous, J.; et al. Topical tofacitinib for atopic dermatitis: A phase IIa randomized trial. Br. J. Dermatol. 2016, 175, 902–911. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nemoto, O.; Igarashi, A.; Saeki, H.; Kabashima, K.; Oda, M.; Nagata, T. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J. Am. Acad. Dermatol. 2021, 85, 854–862. [Google Scholar] [CrossRef]
- Bissonnette, R.; Maari, C.; Forman, S.; Bhatia, N.; Lee, M.; Fowler, J.; Tyring, S.; Pariser, D.; Sofen, H.; Dhawan, S.; et al. The oral Janus kinase/spleen tyrosine kinase inhibitor ASN002 demonstrates efficacy and improves associated systemic inflammation in patients with moderate-to-severe atopic dermatitis: Results from a randomized double-blind placebo-controlled study. Br. J. Dermatol. 2019, 181, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Campanati, A.; Bianchelli, T.; Gesuita, R.; Foti, C.; Malara, G.; Micali, G.; Amerio, P.; Rongioletti, F.; Corazza, M.; Patrizi, A.; et al. Comorbidities and treatment patterns in adult patients with atopic dermatitis: Results from a nationwide multicenter study. Arch. Dermatol. Res. 2022, 314, 593–603. [Google Scholar] [CrossRef]
- Campanati, A.; Di Vincenzo, M.; Radi, G.; Rizzetto, G.; Carnevale, G.; Marchi, S.; Orciani, M.; Offidani, A. The less-known face of dupilumab: Its role in mesenchymal stem cells by interleukin-13 modulation. Br. J. Dermatol. 2021, 185, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Orciani, M.; Marani, A.; Di Vincenzo, M.; Magi, S.; Gregoriou, S.; Diotallevi, F.; Martina, E.; Radi, G.; Offidani, A. Mesenchymal Stem Cells Profile in Adult Atopic Dermatitis and Effect of IL4-IL13 Inflammatory Pathway Inhibition In Vivo: Prospective Case-Control Study. J. Clin. Med. 2022, 11, 4759. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Margolis, D.J. Filaggrin gene mutations with special reference to atopic dermatitis. Curr. Treat. Options Allergy 2020, 7, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Furue, M. Regulation of Filaggrin, Loricrin, and Involucrin by IL-4, IL-13, IL-17A, IL-22, AHR, and NRF2: Pathogenic Implications in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 5382. [Google Scholar] [CrossRef]
- Gregoriou, S.; Szepietowski, J.C. Atopic Dermatitis: Sailing beyond the Sunset with a Multitude of Novel Treatments. J. Clin. Med. 2022, 11, 3475. [Google Scholar] [CrossRef]
- Silverberg, N.B.; Silverberg, J.I. Inside out or outside in: Does atopic dermatitis disrupt barrier function or does disruption of barrier function trigger atopic dermatitis? Cutis 2015, 96, 359–361. [Google Scholar]
- Mandlik, D.S.; Mandlik, S.K. Atopic dermatitis: New insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol. Immunotoxicol. 2021, 43, 105–125. [Google Scholar] [CrossRef]
- Yoshida, T.; Beck, L.A.; De Benedetto, A. Skin barrier defects in atopic dermatitis: From old idea to new opportunity. Allergol. Int. 2022, 71, 3–13. [Google Scholar] [CrossRef]
- Hrestak, D.; Matijašić, M.; Čipčić Paljetak, H.; Ledić Drvar, D.; Ljubojević Hadžavdić, S.; Perić, M. Skin Microbiota in Atopic Dermatitis. Int. J. Mol. Sci. 2022, 23, 3503. [Google Scholar] [CrossRef]
- Naeimifar, A.; Ahmad Nasrollahi, S.; Samadi, A.; Aryanian, Z.; Akbari Javar, H.; Rouini, M.; Nassiri Kashani, M.; Firooz, A. Evaluation of tolerability and efficacy of a topical emulgel containing nanoliposomal ruxolitinib phosphate in the treatment of mild atopic dermatitis: A before-after single group pilot study. J. Dermatolog. Treat. 2022, 1–5. [Google Scholar] [CrossRef]
- Keam, S.J. Tapinarof Cream 1%: First Approval. Drugs 2022, 82, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Saeki, H.; Imamura, T.; Yokota, D.; Tsubouchi, H. Difamilast Ointment in Japanese Adult and Pediatric Patients with Atopic Dermatitis: A Phase III, Long-Term, Open-Label Study. Dermatol. Ther. (Heidelb.) 2022, 12, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.; Gooderham, M.; Torres, T. New Topical Therapies in Development for Atopic Dermatitis. Drugs 2022, 82, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Haddad, E.B.; Cyr, S.L.; Arima, K.; McDonald, R.A.; Levit, N.A.; Nestle, F.O. Current and Emerging Strategies to Inhibit Type 2 Inflammation in Atopic Dermatitis. Dermatol. Ther. (Heidelb.) 2022, 12, 1501–1533. [Google Scholar] [CrossRef] [PubMed]
- Molinelli, E.; Campanati, A.; Ganzetti, G.; Offidani, A. Biologic Therapy in Immune Mediated Inflammatory Disease: Basic Science and Clinical Concepts. Curr. Drug Saf. 2016, 11, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Pastore, S.; Mascia, F.; Gulinelli, S.; Forchap, S.; Dattilo, C.; Adinolfi, E.; Girolomoni, G.; Di Virgilio, F.; Ferrari, D. Stimulation of purinergic receptors modulates chemokine expression in human keratinocytes. J. Invest. Dermatol. 2007, 127, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, S.E.; Xiao, C.; Kaden, A.R.; Brzezynski, J.L.; Mohrman, M.A.; Wang, J.; Smieszek, S.P.; Przychodzen, B.; Ständer, S.; Polymeropoulos, C.; et al. Neurokinin-1 receptor antagonist tradipitant has mixed effects on itch in atopic dermatitis: Results from EPIONE, a randomized clinical trial. J. Eur. Acad. Dermatol. Venereol. 2021, 35, e338–e340. [Google Scholar] [CrossRef]
- Misery, L.; Huet, F.; Gouin, O.; Ständer, S.; Deleuran, M. Current pharmaceutical developments in atopic dermatitis. Curr. Opin. Pharmacol. 2019, 46, 7–13. [Google Scholar] [CrossRef]
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
Microbiome | |||
Topical bacterial strains | |||
Targeted Microbiome Transplant Lotion (TMT) | NCT03151148 | Phase I/II for AD | Completed |
Autologous Microbial Transplant | NCT03158012 | Phase I for AD | Completed |
Autologous Microbial Transplant | NCT01959113 | Phase I for AD | Completed |
Three strains of Roseomonas mucosa FB-401 | NCT04504279 | Phase II for AD | Completed |
Three strains of Roseomonas mucosa FB-401 | NCT04936113 | Phase II for AD | Terminated (Failure of the Phase II study (protocol FB401-01) to meet its endpoint)) |
Lyophilized strain of Staphylococcus hominis A9 (ShA9) (ADRN-UCSD-001) | NCT05177328 | Phase I for AD | Recruiting |
Nitrosomonas eutropha spray (B244) | NCT04490109 | Phase II for AD | Completed |
Topical small molecule | |||
Topical niclosamide 2% (ATx201) | NCT04339985 | Phase II for AD | Completed |
Topical niclosamide 2% (ATx201) | NCT03304470 | Phase II for AD | Completed |
Synthetic antimicrobial cationic peptide Omiganan (CLS001) | NCT02456480 | Phase II for AD | Completed |
Synthetic antimicrobial cationic peptide Omiganan (CLS001) | NCT03091426 | Phase II for AD | Completed |
Oral bacterial strains | |||
EDP1815 | NCT05121480 | Phase II for AD | Recruiting |
STMC-103H | NCT05003804 | Phase I-II for AD | Recruiting |
KBL697 | NCT04056130 | Phase I for AD | Completed |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
TSLP | |||
Anti-TSLP antibody Tezepelumab (AMG-157/MEDI9929) | NCT02525094 | Phase IIa for AD | Completed |
IL-33 | |||
Anti-IL-33 antibody Etokimab (ANB020) | NCT03533751 | Phase IIa for AD | Recruitment status unknown |
Anti-IL-33 antibody Itepekimab (REGN3500) | NCT03738423 | Phase IIb for AD | Terminated (Lack of efficacy) |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
Interleukin 1α | |||
Anti-Interleukin 1α antibody Bermekimab (MABp1) | NCT03496974 | Phase II for AD | Completed |
Anti-Interleukin 1α antibody bermekimab (JNJ-77474462) | NCT04791319 | Phase IIb for AD | Terminated (Premature Termination due to Interim Analysis (100 patients at Week 16) meeting futility) |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
AhR | |||
AhR agonist, tapinarof 1% topical small molecule | NCT05186805 | Phase II for AD | Recruiting |
AhR agonist, tapinarof 1% topical small molecule | NCT05142774 | Phase III for AD | Recruiting |
AhR agonist, tapinarof 1% topical small molecule | NCT05014568 | Phase III for AD | Recruiting |
AhR agonist, tapinarof 1% topical small molecule | NCT05032859 | Phase III for AD | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
OX40 | |||
Anti-OX40 antibody KHK4083 | NCT03703102 | Phase II for AD | Completed |
Anti-OX40 antibody ISB 830 | NCT03568162 | Phase II for AD | Completed |
OX40L | |||
Anti-OX40L antibody KY1005 | NCT03754309 | Phase II for AD | Completed |
Anti-OX40L antibody | NCT05131477 | Phase II for AD | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
PDE4 | |||
PDE4 inhibitor, Crisaborole 2% topical small molecule | NCT04023084 | Phase IV | Completed |
PDE4 inhibitor, Crisaborole 2% topical small molecule | NCT04214197 | Phase IV | Active, not recruiting |
PDE4 inhibitor, Crisaborole 2% topical small molecule | NCT04800185 | Early Phase I | Active, not recruiting |
PDE4 inhibitor, Crisaborole 2% topical small molecule | NCT03233529 | Phase II | Completed |
PDE4 inhibitor, Roflumilast 0.15% ARQ-151 Active topical small molecule INTEGUMENT-I | NCT04773587 | Phase III | Recruiting |
PDE4 inhibitor, Roflumilast 0.15% ARQ-151 Active topical small molecule INTEGUMENT-II | NCT04773600 | Phase III | Recruiting |
PDE4 inhibitor, Roflumilast 0.05% ARQ-151 Active topical small molecule INTEGUMENT-PED | NCT04845620 | Phase III | Recruiting |
PDE4 inhibitor, Roflumilast 0.05–0.15% ARQ-151 Active topical small molecule INTEGUMENT-OLE | NCT04804605 | Phase III | Recruiting |
PDE4 inhibitor, Roflumilast 0.05% topical small molecule | NCT01856764 | Phase II | Completed |
PDE4 inhibitor, Hemay808 1%/3%/7% topical small molecule | NCT04352595 | Phase II | Unknown |
PDE4 inhibitor, GW842470X 3% Topical small molecule | NCT00354510 | Phase II | Completed |
PDE4 inhibitor, GW842470X 3% topical small molecule | NCT00356642 | Phase I | Completed |
PDE4 inhibitor, Apremilast 20 mg oral small molecule | NCT00931242 | Phase II | Completed |
PDE4 subtype with high PD4 affinity | |||
PDE4 inhibitor, Orismilast 20 mg, 30 mg, or 40 mg oral small molecule | NCT05469464 | Phase II | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IL-22 | |||
Anti-IL-22 antibody Fezakinumab (ILV-094) | NCT01941537 | Phase II | Completed |
IL-22R1 | |||
Anti-IL-22R1 antibody LEO 138559 | NCT04922021 | Phase II for AD | Active, not recruiting |
Anti-IL-22R1 antibody LEO 138559 | NCT03514511 | Phase I | Completed |
Anti-IL-22R1 antibody LEO 138559 | NCT05099133 | Phase I | Completed |
Anti-IL-22R1 antibody LEO 138559 | NCT05470114 | Phase II | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IL-17c | |||
Anti-Interleukin 17c antibody (MOR 106) | NCT03568071 | Phase II for AD | Terminated (MOR106 clinical development in atopic dermatitis was stopped for futility) |
Anti-Interleukin 17c antibody (MOR 106) | NCT03689829 | Phase I for AD | Terminated (MOR106 clinical development in atopic dermatitis was stopped for futility) |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
Histamine 4 receptor H4R | |||
H4R antagonist Oral small molecule 30 mg 50 mg (ZPL389) adriforant | NCT03948334 | Phase II for AD | Terminated (Core terminated due to lack of efficacy) |
H4R antagonist Oral small molecule 3 mg, 10 mg, 30 mg or 50 mg (ZPL389) adriforant | NCT03517566 | Phase II for AD | Terminated (Lack of efficacy) |
H4R antagonist oral small molecule (LEO 152020) | NCT05117060 | Phase II for AD | Recruiting |
H4R antagonist oral small molecule 100 mg, 300 mg (JNJ 39758979) | NCT01497119 | Phase II for AD | Terminated (This study was terminated prematurely due to two cases of agranulocytosis.) |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IL-31 | |||
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04921345 | Phase II for AD | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04562116 | Phase II for AD | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03921411 | Phase II for AD | Completed |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03985943 | Phase III for AD | Active, not recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03989349 | Phase III for AD | Active, not recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03989206 | Phase III for AD | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03100344 | Phase II for AD | Completed |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04365387 | Phase II for AD | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT01986933 | Phase II for AD | Completed |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04204616 | Phase III for PN | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04501679 | Phase III for PN | Completed |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT05052983 | Phase III for PN | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT04501666 | Phase III for PN | Recruiting |
Anti-IL-31Rα monoclonal antibody Nemolizumab | NCT03181503 | Phase II for PN | Completed |
Interleukin 31 and oncostatin-M (OSM) | |||
Anti-OSMRβ monoclonal antibody Vixarelimab (KPL-716) | NCT03816891 | Phase II for PN | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
Substance P-NK-1R | |||
Neurokinin-1 Receptor Antagonist Oral small molecule Tradipitant (VLY-686) | NCT04140695 | Phase III for AD | Completed |
Neurokinin-1 Receptor Antagonist Oral small molecule Tradipitant (VLY-686) | NCT03568331 | Phase III for AD | Completed |
Neurokinin-1 Receptor Antagonist Oral small molecule Serlopitant 1 g or 5 mg (VPD-737) | NCT02975206 | Phase II for AD | Completed |
Neurokinin-1 Receptor Antagonist Oral small molecule Serlopitant 5 mg (VPD-737) | NCT02196324 | Phase II for PN | Completed |
Neurokinin-1 Receptor Antagonist Oral small molecule Serlopitant 5 mg (VPD-737) | NCT03540160 | Phase III for Pruritus | Terminated (No longer pursuing the development of serlopitant) |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
P2X3 receptor | |||
P2X3 antagonist Oral small molecule (BLU- 5937), | NCT04693195 | Phase II for AD | Completed |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IgE | |||
Anti-IgE monoclonal antibody Omalizumab | NCT01179529 | Phase II for AD | Completed |
Anti-IgE monoclonal antibody Omalizumab | NCT01678092 | Phase I for AD | Completed |
Anti-IgE monoclonal antibody Omalizumab | NCT00822783 | Phase IV for AD | Completed |
Anti-IgE monoclonal antibody Omalizumab | NCT02300701 | Phase IV for AD | Completed |
Anti-IgE monoclonal antibody Omalizumab | NCT00367016 | Phase IV for AD, allergic rhinitis, asthma | Completed |
CεmX domain of membrane-bound IgE | |||
Anti-CεmX monoclonal antibody FB825 | NCT04413942 | Phase II For AD | Active, not recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IL-4Rα | |||
Anti-IL-4α monoclonal antibody Dupilumab | FDA approval for AD March 2017 | ||
Anti-IL-4α monoclonal antibody CBP-201 | NCT04444752 | Phase II for AD | Completed |
Anti-IL-4α monoclonal antibody CBP-201 | NCT05017480 | Phase II for AD | Recruiting |
Anti-IL-4α monoclonal antibody AK120 (Akesobio) | NCT04256174 | Phase Ib for AD | Completed |
Anti-IL-4α monoclonal antibody AK120 (Akesobio) | NCT05048056 | Phase II for AD | Recruiting |
IL-13Rα1 | |||
Anti-IL-13Rα1 monoclonal antibodyASLAN004 (ASLAN) | NCT04090229 | Phase Ib for AD, | Completed |
Anti-IL-13Rα1 monoclonal antibodyASLAN004 (ASLAN) | NCT05158023 | Phase II for AD | Recruiting |
IL-13 | |||
Anti-IL-13 monoclonal antibody Tralokinumab | FDA approval for AD December 2021 | ||
Anti-IL-13 monoclonal antibody Lebrikizumab | NCT03443024 | Phase II for AD | Completed |
Anti-IL-13 monoclonal antibody Lebrikizumab | NCT04178967 | Phase III for AD | Completed |
Anti-IL-13 monoclonal antibody Lebrikizumab | NCT04146363 | Phase III for AD | Completed |
Anti-IL-13 monoclonal antibody Lebrikizumab | NCT04250337 | Phase III for AD | Completed |
Anti-IL-13 monoclonal antibody Lebrikizumab | NCT04392154 | Phase III for AD | Recruiting |
Target Molecule | Clin Trial Gov | Type of Study | Status |
---|---|---|---|
IL-5 | |||
Anti-IL-5 monoclonal antibody mepolizumab | NCT03055195 | Phase II for AD | Terminated (This study reached the pre-determined futility criteria following interim analysis. No safety concerns were noted) |
IL-5Rα | |||
Benralizumab Monoclonal antibody anti-IL-5Rα | NCT03563066 | Phase II for AD | Completed |
Benralizumab Monoclonal antibody anti-IL-5Rα | NCT04605094 | Phase II for AD | Active, not recruiting |
JAK Inhibitor (Administration) | Phase 1 | Approved for AD | JAK1 | JAK2 | JAK3 | TYK2 | SYK |
---|---|---|---|---|---|---|---|
Abrocitinib (oral) | 3 | Yes (FDA and EMA) | Yes | - | - | - | - |
Upadacitinib (oral) | 3 | Yes (FDA and EMA) | Yes | - | - | - | - |
Baricitinib (oral) | 3 | Yes (FDA and EMA) | Yes | Yes | - | - | - |
Ruxolitinib (topical) | 3 | Yes (FDA) | Yes | Yes | - | - | - |
Tofacitinib (topical) | 2a | No | Yes | Yes | Yes | - | - |
Delgocitinib (topical) | 3 2 | No 2 | Yes | Yes | Yes | Yes | - |
Gusacitinib (oral) | 2b | No | Yes | Yes | Yes | Yes | Yes |
Systemic Molecule | Results |
---|---|
TSLP | |
Anti-TSLP antibody Tezepelumab (AMG-157/MEDI9929) Phase IIa for AD | A numerically greater percentage of tezepelumab plus TCS-treated patients achieved EASI50 (64.7%) versus the placebo plus TCS (48.2%; P = 0.091). Not statistically significant, numerical improvements over the placebo for all week 12 endpoints were demonstrated, with greater week 16 responses. |
IL-1α | |
Anti-Interleukin 1α antibody Bermekimab (MABp1) Phase II for AD | Acceptable safety profile. Efficacy results for the highest dose indicated that 39% of patients reached the status of clear or almost clear (IGA 0/1). Reduction in itching, with a 68% improvement in the pruritus numerical rating scale (NRS). |
OX40 | |
Anti-OX40 antibody KHK4083 Phase II for AD | Efficacy results: 74% reduction in EASI score; IGA 0/1 was reached in 35% of patients. |
Anti-OX40 antibody ISB 830 Phase II for AD | Well tolerated. Efficacy results showed that EASI50 was reached in 78% of patients who received the antibody, compared with 38% in the placebo group. |
OX40L | |
Anti-OX40L antibody KY1005 Phase II for AD | Change in EASI from the baseline of 80.1% versus 49.4% in the placebo group. IGA 0/1 was reached in 44% of those who received KY1005 versus 8% in the placebo group. |
IL-22 | |
Anti-IL-22 antibody Fezakinumab (ILV-094) Phase II | No significant difference in the change in SCORAD compared with the baseline. |
IL-17c | |
Anti-Interleukin 17c antibody (MOR 106) Phase II For AD | Terminated (MOR106 clinical development in atopic dermatitis was stopped for futility). Adverse events primarily included acneiform lesions in some patients. |
Histamine 4 receptor H4R | |
H4R antagonist Oral small molecule 30 mg 50 mg (ZPL389) adriforant Phase II | Terminated (Core terminated due to a lack of efficacy). |
H4R antagonist oral small molecule 100 mg, 300 mg (JNJ 39758979) Phase II | Terminated. (This study was terminated prematurely due to two cases of agranulocytosis.) |
IL-31 | |
Anti-IL-31Rα monoclonal antibody Nemolizumab Phase II | Significant decrease in the pruritus sensation measured by a decrease in PP-NRS (69% in the treatment arm versus 34% in the placebo group). IGA 0/1 was reached in 33% of the patients versus 12% in the placebo group at week 16. |
Substance P- NK-1R | |
Neurokinin-1 Receptor Antagonist Oral small molecule Tradipitant (VLY-686) | A reduction of 50% in SCORAD from the baseline was noticed in mild forms of AD. |
Neurokinin-1 Receptor Antagonist Oral small molecule Serlopitant 1,g or 5 mg (VPD-737) | Missed the primary endpoint of change in the worst itch NRS from the baseline. |
P2X3 receptor | |
P2X3 antagonist Oral small molecule (BLU-5937), | No results posted. |
IgE | |
Anti-IgE monoclonal antibody Omalizumab Phase IV | Clinical improvement was shown in a small series of patients. The best results in terms of efficacy on eczema have been recorded in patients with total IgE serum levels not exceeding 700 IU/mL. |
IL-5 | |
Anti-IL-5 monoclonal antibody Mepolizumab Phase II | Terminated. (This study reached its pre-determined futility criteria following interim analysis. No safety concerns were noted.) |
IL-5Rα | |
Benralizumab Monoclonal antibody anti-IL-5Rα Phase II | No results posted. |
IL-4Rα | |
Anti-IL-4α monoclonal antibody CBP-201 | Efficacy results: It seemed to have a faster onset of action. After 4 weeks of therapy, IGA 0/1 was seen in up to 50% of patients receiving CBP-201 versus 13% in the placebo group. The mean reduction in EASI from the baseline was 74% versus 33% in the placebo group. |
Anti-IL-4α monoclonal antibody AK120 (Akesobio) | No results posted. |
IL-13Rα1 | |
Anti-IL-13Rα1 monoclonal antibody ASLAN004 (ASLAN) Phase Ib | Interim data analysis showed that the compound was well tolerated and provided promising efficacy data, with 67% of the patients achieving EASI75 versus 0% in the placebo group. |
IL-13 | |
Anti-IL-13 monoclonal antibody Lebrikizumab Phase IIb | Efficacy results of monotherapy: Dose-dependent improvement in the EASI percentage change from the baseline to week 16 compared to the placebo (125 mg every 4 weeks: −62%; 250 mg every 4 weeks: −69%; 250 mg every 2 weeks: −72%). Lebrikizumab was well tolerated, with a low risk of AEs, including injection-site reactions, herpesvirus infection and conjunctivitis |
JAK inhibitors | |
JAK 1 inhibitor Abrocitinib Oral small molecule Phase III | Efficacy results at W12: More patients in the abrocitinib 100 and 200 mg groups than in the placebo group achieved an IGA of clear or near-clear (24%, 44% and 8%, respectively) and an EASI 75 response (40%, 63% and 12%, respectively). Safety results: Adverse events, including the exacerbation of atopic dermatitis, nasopharyngitis, nausea and headaches, were reported in 69 and 78% of patients in the 100 and 200 mg abrocitinib groups, respectively, and in 57% of patients in the placebo group. |
JAK 1 inhibitor Upadacitinib Oral small molecule Phase III trials | Efficacy results at W16 in monotherapy: More patients in the upadacitinib groups than in the placebo groups achieved the primary endpoint of EASI 75 (60% and 70% in the 15 mg groups and 73% and 80% in the 30 mg groups compared with 47% and 46% in the placebo groups, respectively). Efficacy results at W16 in association with moderate-potency topical corticosteroids: More patients in the upadacitinib 15 and 30 mg plus topical corticosteroid groups than in the placebo plus topical corticosteroid group achieved EASI 75 (65%, 77% and 26%, respectively). Safety results: The most frequently reported adverse events were acne upper respiratory tract infections, nasopharyngitis, headaches, creatine phosphokinase elevation and worsening atopic dermatitis. |
JAK (1-2) inhibitor Baricitinib Oral small molecule Phase III trials monotherapy (BREEZE-AD1 and BREEZE-AD2) | Efficacy results at W16: More patients treated with baricitinib 2 mg and 4 mg daily as a monotherapy achieved a validated IGA score of 0/1 (clear or near clear) than the placebo (11.4%, 16.8% and 4.8%, respectively, in BREEZE-AD1; 10.6%, 13.8% and 4.5%, respectively, in BREEZE-AD2). Adverse events occurred in about 60% of patients in all groups; the most frequent adverse events reported in the baricitinib groups were nasopharyngitis and headaches. |
SYK-JAK inhibitor Oral small molecule Gusacitinib ASN002 Phase II | Efficacy results: Percentage of patients achieving EASI 50 at different dosages vs. placebo: 20 mg 20%, P = 0.93; 40 mg 100%, P = 0.003; 80 mg 83%, P = 0.03; placebo 22%. Percentage of patients achieving EASI 75 at different dosages vs. placebo 20 mg 0%, P = 0.27; 40 mg 71%, P = 0.06; 80 mg 33%, P = 0.65; placebo 22%. Change from the baseline in itching at different dosages vs. placebo: 20 mg −1–3 ± 2–1, P = 0.81; 40 mg −3–1 ± 2–7, P = 0.27; 80 mg −4–7 ± 2–1, P = 0.01; placebo −1–6 ± 1–8. Safety results: Gusacitinib was well tolerated at all dosages. Adverse events were generally mild to moderate and of short duration. The most common forms of treatment were for upper respiratory tract infections, headaches, nausea and nasopharyngitis. Two AE meet the stopping rule, i.e., mild hypertension and low lymphocyte counts. The event of mild hypertension was reported in a patient receiving 80 mg and was classified as a possibly related TEAE. The event of lymphopenia was reported in a patient who had predose lymphocyte levels of 0·67 × 103 μL−1 at day 1 and 0·56 × 103 μL−1 at day 8. No thromboembolic events or opportunistic infections were reported. |
Topical Molecule | Results |
---|---|
Cutaneous microbiota | |
Three strains of Roseomonas mucosa FB-401 Phase II for AD | Of the adult patients, 60% showed a 50% reduction in the Scoring of Atopic Dermatitis (SCORAD), 90% of the paediatric patients achieved Eczema Area Severity Index (EASI) 50 and 30% achieved EASI 90. Failure of the Phase II study (protocol FB401-01) to meet its endpoint. |
AhR | |
AhR agonist, tapinarof 1% topical small molecule Phase II for AD | Efficacy results showed that 53% of the patients reached the primary endpoint of Investigator Global Assessment (IGA) 0/1 versus 28% in the placebo group. |
PDE4 | |
PDE4 inhibitor, Crisaborole 2% topical small molecule Phase III AD-301:NCT02118766; AD-302: NCT02118792; | Efficacy results: IGA score of clear or almost clear (AD-301: 51.7% vs. 40.6%, P = 0.005; AD-302: 48.5% vs. 29.7%, P < 0.001). Sustained relief from pruritus. Crisaborole 2% ointment resulted in a clinically meaningful improvement in the QoL of patients and their families. |
PDE4 inhibitor, Roflumilast 0.05% topical small molecule Phase II | Failed to reach the primary endpoint (change in EASI from the baseline). More Phase III studies are ongoing, but the results are not available. |
JAK inhibitors | |
JAK1 and 2 inhibitor Ruxolitinib Phase III | Efficacy results at W8: A higher percentage of patients treated with ruxolitinib 0.75% cream or ruxolitinib 1.5% cream achieved the primary endpoint of an IGA score of 1 or 2 (clear or near clear) in both studies compared to the placebo (50% and 39%, respectively, in the 0.75 percent cream groups; 54% and 51%, respectively, in the 1.5 percent cream groups; and 15 and 8 percent, respectively, in the vehicle group). More patients in both ruxolitinib groups than in the vehicle group achieved a 75% reduction in Eczema Area and Severity Index (EASI 75) and a clinically relevant reduction in pruritus. Safety results: Burning and itching at the application site, upper respiratory tract infection and headaches were the most common adverse events. No adverse events were suggestive of systemic JAK1/JAK2 kinase inhibition. |
JAK1,2 and 3 inhibitor Tofacitinib Phase IIa | Efficacy results at W4: The mean percent change from the baseline in the EASI score was significantly greater in patients treated with topical tofacitinib 2% than in those treated with placebo (−82% and −30%, respectively). Safety results: Adverse effects, including infection, increased blood creatine phosphokinase and contact dermatitis, were mild and occurred in 31% of patients treated with tofacitinib and 60% of those treated with the placebo. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radi, G.; Campanti, A.; Diotallevi, F.; Martina, E.; Marani, A.; Offidani, A. A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside. Biomedicines 2022, 10, 2700. https://doi.org/10.3390/biomedicines10112700
Radi G, Campanti A, Diotallevi F, Martina E, Marani A, Offidani A. A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside. Biomedicines. 2022; 10(11):2700. https://doi.org/10.3390/biomedicines10112700
Chicago/Turabian StyleRadi, Giulia, Anna Campanti, Federico Diotallevi, Emanuela Martina, Andrea Marani, and Annamaria Offidani. 2022. "A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside" Biomedicines 10, no. 11: 2700. https://doi.org/10.3390/biomedicines10112700
APA StyleRadi, G., Campanti, A., Diotallevi, F., Martina, E., Marani, A., & Offidani, A. (2022). A Systematic Review of Atopic Dermatitis: The Intriguing Journey Starting from Physiopathology to Treatment, from Laboratory Bench to Bedside. Biomedicines, 10(11), 2700. https://doi.org/10.3390/biomedicines10112700