Photodynamic Therapy
- Review of General Arguments
- Research Articles of Specific Topics
- Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Szeimies, R.M.; Drager, J.; Abels, C.; Landthaler, M. History of photodynamic therapy in dermatology. In Photodynamic Therapy and Fluorescence Diagnosis in Therapy; Calzavara-Pinton, P., Rolf-Markus, S., Ortel, B., Eds.; Elsevier Science: Amsterdam, the Netherlands, 2001. [Google Scholar]
- Kim, H.S.; Lee, D.Y. Nanomedicine in clinical photodynamic therapy for the treatment of brain tumors. Biomedicines 2022, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Yamada, M.; Sato, M.; Sato, K. Near-infrared photoimmunotherapy for thoracic cancers: A translational perspective. Biomedicines 2022, 10, 1662. [Google Scholar] [CrossRef] [PubMed]
- Balhaddad, A.A.; Mokeem, L.; Khajotia, S.S.; Florez, F.L.E.; Melo, M.A.S. Perspectives on light-based disinfection to reduce the risk of COVID-19 transmission during dental care. BioMed 2022, 2, 27–36. [Google Scholar] [CrossRef]
- Grandi, V.; Corsi, A.; Pimpinelli, N.; Bacci, S. Cellular mechanisms in acute and chronic wounds after PDT therapy: An update. Biomedicines 2022, 10, 1624. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Tsai, C.-S.; Huang, C.-Y.; Tsai, Y.-T.; Shih, C.-M.; Lin, S.-J.; Li, C.-Y.; Lin, C.-Y.; Sung, S.-Y.; Lin, F.-Y. Far-infrared therapy decreases orthotopic allograft transplantation vasculopathy. Biomedicines 2022, 10, 1089. [Google Scholar] [CrossRef]
- Solarte, D.L.G.; Rau, S.J.; Hellwig, E.; Vach, K.; Al-Ahmad, A. Antimicrobial behavior and cytotoxicity of indocyanine green in combination with visible light and water-filtered infrared a radiation against periodontal bacteria and subgingival biofilm. Biomedicines 2022, 10, 956. [Google Scholar] [CrossRef]
- Tisler, C.E.; Chifor, R.; Badea, M.E.; Moldovan, M.; Prodan, D.; Carpa, R.; Cuc, S.; Chifor, I.; Badea, A.F. Photodynamic Therapy (PDT) in prosthodontics: Disinfection of human teeth exposed to Streptococcus mutans and the effect on the adhesion of full ceramic veneers, crowns, and inlays: An in vitro study. Biomedicines 2022, 10, 144. [Google Scholar] [CrossRef]
- Cacaccio, J.C.; Durrani, F.A.; Missert, J.R.; Pandey, R.K. Photodynamic therapy in combination with doxorubicin is superior to monotherapy for the treatment of lung cancer. Biomedicines 2022, 10, 857. [Google Scholar] [CrossRef]
- Lamy, L.; Thomas, J.; Leroux, A.; Bisson, J.-F.; Myren, K.; Godal, A.; Stensrud, G.; Bezdetnaya, L. Antitumor effect and induced immune response following exposure of hexaminolevulinate and blue light in combination with checkpoint inhibitor in an orthotopic model of rat bladder cancer. Biomedicines 2022, 10, 548. [Google Scholar] [CrossRef]
- Klimenko, A.; Rodina, E.E.; Silachev, D.; Begun, M.; Babenko, V.A.; Benditkis, A.S.; Kozlov, A.S.; Krasnovsky, A.A.; Khotimchenko, Y.S.; Katanaev, V.L. Chlorin endogenous to the North Pacific brittle star Ophiura sarsii for photodynamic therapy applications in breast cancer and glioblastoma models. Biomedicines 2022, 10, 134. [Google Scholar] [CrossRef]
- Pevna, V.; Wagnières, G.; Huntosova, V. Autophagy and apoptosis induced in U87 MG glioblastoma cells by hypericin-mediated photodynamic therapy can be photobiomodulated with 808 nm light. Biomedicines 2021, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- Vasilev, A.; Sofi, R.; Smith, S.J.; Rahman, R.; Teschemacher, A.G.; Kasparov, S. Feasibility of photodynamic therapy for glioblastoma with the Mitochondria-Targeted Photosensitizer Tetramethylrhodamine Methyl Ester (TMRM). Biomedicines 2021, 9, 1453. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.-C.; Li, P.-T.; Lee, M.-J.; Chen, C.-T. DNA hypermethylation involves in the down-regulation of Chloride Intracellular Channel 4 (CLIC4) induced by photodynamic therapy. Biomedicines 2021, 9, 927. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, C.M.; González-Berdullas, P.; Duarte, D.; Correia, A.S.; Rodríguez-Borges, J.E.; Vale, N.; Esteves da Silva, J.C.G.; Pinto da Silva, L. Target-oriented synthesis of marine coelenterazine derivatives with anticancer activity by applying the heavy-atom effect. Biomedicines 2021, 9, 1199. [Google Scholar] [CrossRef] [PubMed]
- Desgranges, S.; Juzenas, P.; Vasovic, V.; Gederaas, O.A.; Lindgren, M.; Warloe, T.; Peng, Q.; Contino-Pépin, C. Amphiphilic protoporphyrin IX derivatives as new photosensitizing agents for the improvement of photodynamic therapy. Biomedicines 2022, 10, 423. [Google Scholar] [CrossRef]
- Mantareva, V.N.; Kussovski, V.; Orozova, P.; Dimitrova, L.; Kulu, I.; Angelov, I.; Durmus, M.; Najdenski, H. Photodynamic inactivation of antibiotic-resistant and sensitive Aeromonas hydrophila with Peripheral Pd(II)- vs. Zn(II)-Phthalocyanines. Biomedicines 2022, 10, 384. [Google Scholar] [CrossRef]
- Ramachandran, P.; Khor, B.-K.; Lee, C.Y.; Doong, R.-A.; Oon, C.E.; Thanh, N.T.K.; Lee, H.L. N-doped graphene quantum dots/titanium dioxide nanocomposites: A study of ROS-forming mechanisms, cytotoxicity and photodynamic therapy. Biomedicines 2022, 10, 421. [Google Scholar] [CrossRef]
- Fang, J.; Gao, S.; Islam, R.; Nema, H.; Yanagibashi, R.; Yoneda, N.; Watanabe, N.; Yasuda, Y.; Nuita, N.; Zhou, J.-R.; et al. Styrene maleic acid copolymer-based micellar formation of temoporfin (SMA@ mTHPC) behaves as a nanoprobe for tumor-targeted photodynamic therapy with a superior safety. Biomedicines 2021, 9, 1493. [Google Scholar] [CrossRef]
- Polat, E.; Kang, K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021, 9, 584. [Google Scholar] [CrossRef]
- Alam, S.T.; Hwang, H.; Son, J.D.; Nguyen, U.T.T.; Park, J.S.; Kwon, H.C.; Kwon, J.; Kang, K. Natural photosensitizers from Tripterygium wilfordii and their antimicrobial photodynamic therapeutic effects in a Caenorhabditis elegans model. J. Photochem. Photobiol. B 2021, 218, 112184. [Google Scholar] [CrossRef]
- Espeland, K.; Kleinauskas, A.; Juzenas, P.; Brech, A.; Darvekar, S.; Vasovic, V.; Warloe, T.; Christensen, E.; Jahnsen, J.; Peng, Q. Photodynamic effects with 5-aminolevulinic acid on cytokines and exosomes in human peripheral blood mononuclear cells. Biomedicines 2022, 10, 232. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.; Bacci, S. Photodynamic Therapy. Biomedicines 2022, 10, 2701. https://doi.org/10.3390/biomedicines10112701
Kang K, Bacci S. Photodynamic Therapy. Biomedicines. 2022; 10(11):2701. https://doi.org/10.3390/biomedicines10112701
Chicago/Turabian StyleKang, Kyungsu, and Stefano Bacci. 2022. "Photodynamic Therapy" Biomedicines 10, no. 11: 2701. https://doi.org/10.3390/biomedicines10112701
APA StyleKang, K., & Bacci, S. (2022). Photodynamic Therapy. Biomedicines, 10(11), 2701. https://doi.org/10.3390/biomedicines10112701