Gender Difference in Lithium-Induced Sodium Current Dysregulation and Ventricular Arrhythmogenesis in Right Ventricular Outflow Tract Cardiomyocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animal Preparations and ECG Recordings
2.3. Isolation of Single RV Epicardial Cardiomyocytes and Patch-Clamp Technique
2.4. Statistical Analysis
3. Results
3.1. ECG Findings and Cardiac Arrhythmias in LiCl-Treated Rabbits
3.2. Effects of LiCl on AP Morphology and Ionic Currents in RVOT Cardiomyocytes
3.3. Effect of Ranolazine on the QRS Duration, QT Interval, and Electrical Activity in Male Rabbits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, N.; Vannozzi, R. Lithium-induced electrocardiographic changes: A complete review. Clin. Cardiol. 2017, 40, 1363–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, I.; Rotenberg, D. Mechanisms of lithium action. N. Engl. J. Med. 1973, 289, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Laske, C.; Soekadar, S.R.; Laszlo, R.; Plewnia, C. Brugada syndrome in a patient treated with lithium. Am. J. Psychiatry 2007, 164, 1440–1441. [Google Scholar] [CrossRef]
- Ravi, V.; Serafini, N.J.; Pulipati, P.; Trohman, R.; Sharma, P.S. Lithium-Induced Brugada Pattern: A Case Report and Review of Literature. Cureus 2020, 12, e9351. [Google Scholar] [CrossRef] [PubMed]
- Pirotte, M.J.; Mueller, J.G.; Poprawski, T. A case report of Brugada-type electrocardiographic changes in a patient taking lithium. Am. J. Emerg. Med. 2008, 26, 113.e1–113.e3. [Google Scholar] [CrossRef] [PubMed]
- Darbar, D.; Yang, T.; Churchwell, K.; Wilde, A.A.; Roden, D.M. Unmasking of brugada syndrome by lithium. Circulation 2005, 112, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Sieira, J.; Ciconte, G.; Conte, G.; de Asmundis, C.; Chierchia, G.B.; Baltogiannis, G.; Di Giovanni, G.; Saitoh, Y.; Arroyo, R.C.; Juliá, J.; et al. Long-term prognosis of drug-induced Brugada syndrome. Heart Rhythm 2017, 14, 1427–1433. [Google Scholar] [CrossRef]
- Milman, A.; Gourraud, J.B.; Andorin, A.; Postema, P.G.; Sacher, F.; Mabo, P.; Conte, G.; Giustetto, C.; Sarquella-Brugada, G.; Hochstadt, A.; et al. Gender differences in patients with Brugada syndrome and arrhythmic events: Data from a survey on arrhythmic events in 678 patients. Heart Rhythm 2018, 15, 1457–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priori, S.G.; Blomstrom-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Europace 2015, 17, 1601–1687. [Google Scholar] [PubMed]
- Antzelevitch, C.; Yan, G.X.; Ackerman, M.J.; Borggrefe, M.; Corrado, D.; Guo, J.; Gussak, I.; Hasdemir, C.; Horie, M.; Huikuri, H.; et al. J-Wave syndromes expert consensus conference report: Emerging concepts and gaps in knowledge. Europace 2017, 19, 665–694. [Google Scholar] [PubMed]
- Brugada, J.; Campuzano, O.; Arbelo, E.; Sarquella-Brugada, G.; Brugada, R. Present Status of Brugada Syndrome: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- van Dam, P.M.; Locati, E.T.; Ciconte, G.; Borrelli, V.; Heilbron, F.; Santinelli, V.; Vicedomini, G.; Monasky, M.M.; Micaglio, E.; Giannell, L.; et al. Novel CineECG derived from standard 12-Lead ECG enables right ventricle outflow tract localization of electrical substrate in patients with brugada syndrome. Circ. Arrhythmia Electrophysiol. 2020, 13, e008524. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.Y.; Chung, F.P.; Chen, Y.C.; Tsai, C.F.; Kao, Y.H.; Chao, T.F.; Huang, J.H.; Chen, S.A.; Chen, Y.J. Distinctive electrophysiological characteristics of right ventricular out-flow tract cardiomyocytes. J. Cell. Mol. Med. 2014, 18, 1540–1548. [Google Scholar] [CrossRef] [PubMed]
- Globits, S.; Kreiner, G.; Frank, H.; Heinz, G.; Klaar, U.; Frey, B.; Gössinger, H. Significance of morphological abnormalities detected by MRI in patients undergoing successful ablation of right ventricular outflow tract tachycardia. Circulation 1997, 96, 2633–2640. [Google Scholar] [CrossRef] [PubMed]
- Bhar-Amato, J.; Finlay, M.; Santos, D.; Orini, M.; Chaubey, S.; Vyas, V.; Taggart, P.; Grace, A.A.; Huang, C.L.-H.; Simon, R.B.; et al. Pharmacological Modulation of Right Ventricular Endocardial-Epicardial Gradients in Brugada Syndrome. Circ. Arrhythmia Electrophysiol. 2018, 11, e006330. [Google Scholar] [CrossRef] [PubMed]
- Brugada, J.; Pappone, C.; Berruezo, A.; Vicedomini, G.; Manguso, F.; Ciconte, G.; Giannelli, L.; Santinelli, V. Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation. Circ. Arrhythmia Electrophysiol. 2015, 8, 1373–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittnar, O. Selected sex related differences in pathophysiology of cardiovascular system. Physiol. Res. 2020, 69, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Di Diego, J.M.; Cordeiro, J.M.; Goodrow, R.J.; Fish, J.M.; Zygmunt, A.C.; Pérez, G.J.; Scornik, F.S.; Antzelevitch, C. Ionic and cellular basis for the predominance of the Brugada syndrome phenotype in males. Circulation 2002, 106, 2004–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, J.S.; Stroud, D.M.; Yang, T.; Hall, L.; Atack, T.C.; Roden, D.M. Increased late sodium current contributes to long QT-related arrhythmia susceptibility in female mice. Cardiovasc. Res. 2012, 95, 300–307. [Google Scholar] [CrossRef] [Green Version]
- Tsai, W.C.; Lu, Y.Y.; Chen, Y.C.; Chang, C.J.; Kao, Y.H.; Lin, Y.K.; Chen, Y.H.; Chen, S.A.; Yang, L.Y.; Chen, Y.J. Ablation of androgen receptor gene triggers right ventricular outflow tract ventricular tachycardia. Int. J. Cardiol. 2015, 189, 172–181. [Google Scholar] [CrossRef]
- Lord, B.; Boswood, A.; Petrie, A. Electrocardiography of the normal domestic pet rabbit. Vet. Rec. 2010, 167, 961–965. [Google Scholar] [CrossRef]
- Bazett, H.C. The time relations of the blood-pressure changes after excision of the adrenal glands, with some observations on blood volume changes. J. Physiol. 1920, 53, 320–339. [Google Scholar] [CrossRef]
- Zhao, G.; Walsh, E.; Shryock, J.C.; Messina, E.; Wu, Y.; Zeng, D.; Xu, X.; Ochoa, M.; Baker, S.P.; Hintze, T.H.; et al. Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs. J. Cardiovasc. Pharmacol. 2011, 57, 639–647. [Google Scholar] [CrossRef]
- Sieira, J.; Brugada, P. The definition of the Brugada syndrome. Eur. Heart J. 2017, 38, 3029–3034. [Google Scholar] [CrossRef]
- Chen, Y.C.; Kao, Y.H.; Huang, C.F.; Cheng, C.C.; Chen, Y.J.; Chen, S.A. Heat stress responses modulate calcium regulations and electrophysiological characteristics in atrial myocytes. J. Mol. Cell. Cardiol. 2010, 48, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.K.; Chen, Y.C.; Chen, J.H.; Chen, S.A.; Chen, Y.J. Adipocytes modulate the electrophysiology of atrial myocytes: Implications in obesity-induced atrial fibrillation. Basic Res. Cardiol. 2012, 107, 293. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Salehian, O. Brugada-type electrocardiographic changes induced by long-term lithium use. Circulation 2010, 122, e418–e419. [Google Scholar] [CrossRef] [Green Version]
- Guillem, M.S.; Climent, A.M.; Millet, J.; Berne, P.; Ramos, R.; Brugada, J.; Brugada, R. Conduction abnormalities in the right ventricular outflow tract in Brugada syndrome detected body surface potential mapping. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina, 31 August–4 September 2010; Volume 2010, pp. 2537–2540. [Google Scholar]
- Yoon, N.; Jeong, H.K.; Lee, K.H.; Park, H.W.; Cho, J.G. Right Ventricular Longitudinal Conduction Delay in Patients with Brugada Syndrome. J. Korean Med. Sci. 2021, 36, e75. [Google Scholar] [CrossRef]
- Coronel, R.; Casini, S.; Koopmann, T.T.; Wilms-Schopman, F.J.; Verkerk, A.O.; de Groot, J.R.; Bhuiyan, Z.; Bezzina, C.R.; Veldkamp, M.W.; Linnenbank, A.C.; et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: A combined electrophysiological, genetic, histopathologic, and computational study. Circulation 2005, 112, 2769–2777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, U.; De Cori, D.; Aguglia, A.; Barbaro, F.; Lanfranco, F.; Bogetto, F.; Maina, G. Lithium-associated hyperparathyroidism and hypercalcaemia: A case-control cross-sectional study. J. Affect. Disord. 2013, 151, 786–790. [Google Scholar] [CrossRef]
- Barajas-Martinez, H.; Haufe, V.; Chamberland, C.; Roy, M.J.; Fecteau, M.H.; Cordeiro, J.M.; Dumaine, R. Larger dispersion of INa in female dog ventricle as a mechanism for gender-specific incidence of cardiac arrhythmias. Cardiovasc. Res. 2009, 81, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvath, B.; Bers, D.M. The late sodium current in heart failure: Pathophysiology and clinical relevance. ESC Heart Fail. 2014, 1, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.L.; Bezzina, C.R.; Smits, J.P.; Verkerk, A.O.; Wilde, A.A. Genetic control of sodium channel function. Cardiovasc. Res. 2003, 57, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Sibarov, D.A.; Abushik, P.A.; Poguzhelskaya, E.E.; Bolshakov, K.V.; Antonov, S.M. Inhibition of Plasma Membrane Na/Ca-Exchanger by KB-R7943 or Lithium Reveals Its Role in Ca-Dependent N-methyl-d-aspartate Receptor Inactivation. J. Pharmacol. Exp. Ther. 2015, 355, 484–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucht, G.; Smigan, L.; Wahlin, A.; Eriksson, P. ECG changes during lithium therapy. A prospective study. Acta Med. Scand. 1984, 216, 101–104. [Google Scholar] [CrossRef]
- Reilly, J.G.; Ayis, S.A.; Ferrier, I.N.; Jones, S.J.; Thomas, S.H. QTc-interval abnormalities and psychotropic drug therapy in psychiatric patients. Lancet 2000, 355, 1048–1052. [Google Scholar] [CrossRef]
- Antzelevitch, C.; Belardinelli, L.; Zygmunt, A.C.; Burashnikov, A.; Di Diego, J.M.; Fish, J.M.; Cordeiro, J.M.; Thomas, G. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 2004, 110, 904–910. [Google Scholar] [CrossRef]
- Yanagita, T.; Maruta, T.; Nemoto, T.; Uezono, Y.; Matsuo, K.; Satoh, S.; Yoshikawa, N.; Kanai, T.; Kobayashi, H.; Wada, A. Chronic lithium treatment up-regulates cell surface NaV1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: Enhancement of Na+ influx, Ca2+ influx and catecholamine secretion after lithium withdrawal. Neuropharmacology 2009, 57, 311–321. [Google Scholar] [CrossRef]
- Gong, R.; Wang, P.; Dworkin, L. What we need to know about the effect of lithium on the kidney. Am. J. Physiol. Ren. Physiol. 2016, 311, F1168–F1171. [Google Scholar] [CrossRef]
ECG Parameters | Baseline | 1.0 mmol/kg | 3.0 mmol/kg | 10.0 mmol/kg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | p Value | Male | Female | p Value | Male | Female | p Value | Male | Female | p Value | |
n = 9 | n = 7 | n = 9 | n = 7 | n = 9 | n = 7 | n = 9 | n = 7 | |||||
HR (Hz) | 3.1 ± 0.4 | 2.8 ± 0.4 | 0.247 | 3.0 ± 0.2 | 2.6 ± 0.3 | 0.272 | 3.1 ± 0.3 | 2.9 ± 0.7 | 0.392 | 3.6 ± 0.6 | 3.5 ± 0.9 | 0.810 |
P-R interval (ms) | 69.4 ± 6.5 | 71.1 ± 9.4 | 0.691 | 60.0 ± 0.1 | 78.2 ± 15.6 | 0.181 | 68.6 ± 10.3 | 67.9 ± 8.6 | 0.909 | 59.8 ± 17.0 | 65.8 ± 24.3 | 0.614 |
QRS duration (ms) | 48.3 ± 16.1 | 41.7 ± 6.1 | 0.284 | 30.0 ± 14.1 | 39.6 ± 11.3 | 0.513 | 40.9 ± 10.3 | 36.5 ± 13.4 | 0.604 | 74.7 ± 33.9 | 40.7 ± 7.0 * | 0.023 |
R wave amplitude (mV) | 0.22 ± 0.14 | 0.23 ± 0.16 | 0.896 | 0.33 ± 0.25 | 0.35 ± 0.12 | 0.900 | 0.21 ± 0.16 | 0.26 ± 0.12 | 0.616 | 0.11 ± 0.12 | 0.16 ± 0.08 | 0.368 |
QT interval (ms) | 176.7 ± 11.2 | 176.8 ± 22.9 | 0.993 | 184.0 ± 17.0 | 180.9 ± 30.6 | 0.893 | 174.6 ± 43.1 | 185.2 ± 45.4 | 0.733 | 167.4 ± 26.8 | 175.2 ± 50.4 | 0.728 |
QTc (ms) | 311.7 ± 34.5 | 296.6 ± 38.3 | 0.430 | 318.0 ± 42.4 | 290.7 ± 28.9 | 0.525 | 306.4 ± 61.8 | 307.3 ± 53.1 | 0.983 | 314.1 ± 48.4 | 315.0 ± 59.1 | 0.977 |
T wave amplitude (mV) | 0.08 ± 0.05 | 0.11 ± 0.05 | 0.186 | 0.10 ± 0.01 | 0.12 ± 0.07 | 0.617 | 0.08 ± 0.03 | 0.11 ± 0.06 | 0.359 | 0.08 ± 0.06 | 0.10 ± 0.09 | 0.579 |
Baseline Parameters | Provokable | Non-Provokable | p-Value |
---|---|---|---|
(n = 6) | (n = 3) | ||
HR (Hz) | 3.3 ± 0.2 | 2.8 ± 0.2 | 0.151 |
P-R interval (ms) | 67.0 ± 2.5 | 74.1 ± 3.0 | 0.130 |
QRS duration (ms) | 51.5 ± 16.8 | 41.8 ± 9.0 | 0.429 |
R wave amplitude (mV) | 0.19 ± 0.03 | 0.27 ± 0.15 | 0.662 |
R+S amplitude (mV) | 0.26 ± 0.04 | 0.33 ± 0.14 | 0.541 |
QT interval (ms) | 178.4 ± 5.4 | 173.3 ± 3.4 | 0.561 |
QTc (ms) | 322.2 ± 13.9 | 290.7 ± 16.9 | 0.217 |
T wave amplitude (mV) | 0.07 ± 0.01 | 0.11 ± 0.04 | 0.231 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.-H.; Chen, Y.-C.; Lu, Y.-Y.; Lin, Y.-K.; Higa, S.; Chen, S.-A.; Chen, Y.-J. Gender Difference in Lithium-Induced Sodium Current Dysregulation and Ventricular Arrhythmogenesis in Right Ventricular Outflow Tract Cardiomyocytes. Biomedicines 2022, 10, 2727. https://doi.org/10.3390/biomedicines10112727
Liu C-H, Chen Y-C, Lu Y-Y, Lin Y-K, Higa S, Chen S-A, Chen Y-J. Gender Difference in Lithium-Induced Sodium Current Dysregulation and Ventricular Arrhythmogenesis in Right Ventricular Outflow Tract Cardiomyocytes. Biomedicines. 2022; 10(11):2727. https://doi.org/10.3390/biomedicines10112727
Chicago/Turabian StyleLiu, Ching-Han, Yao-Chang Chen, Yen-Yu Lu, Yung-Kuo Lin, Satoshi Higa, Shih-Ann Chen, and Yi-Jen Chen. 2022. "Gender Difference in Lithium-Induced Sodium Current Dysregulation and Ventricular Arrhythmogenesis in Right Ventricular Outflow Tract Cardiomyocytes" Biomedicines 10, no. 11: 2727. https://doi.org/10.3390/biomedicines10112727
APA StyleLiu, C. -H., Chen, Y. -C., Lu, Y. -Y., Lin, Y. -K., Higa, S., Chen, S. -A., & Chen, Y. -J. (2022). Gender Difference in Lithium-Induced Sodium Current Dysregulation and Ventricular Arrhythmogenesis in Right Ventricular Outflow Tract Cardiomyocytes. Biomedicines, 10(11), 2727. https://doi.org/10.3390/biomedicines10112727