Therapeutical Targets in Allergic Inflammation
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. On-Label and Off-Label Definitions
3. Mechanisms of Action: Targeting Allergic Inflammation
4. Severe Asthma
4.1. Omalizumab vs. Dupilumab in Severe Asthma
4.2. Other Biologics in Severe Asthma
5. Chronic Rhinosinusitis with Nasal Polyps
6. Urticaria and Atopic Dermatitis
7. Eosinophilic Esophagitis
8. Prevention of Allergy
9. Safety Concerns
10. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, H.; Pan, J.; Ye, L. Pediatric usage of Omalizumab: A promising one. World Allergy Organ. J. 2021, 14, 100614. [Google Scholar] [CrossRef]
- Cosmi, L.; Maggi, L.; Mazzoni, A.; Liotta, F.; Annunziato, F. Biologicals targeting type 2 immunity: Lessons learned from asthma, chronic urticaria and atopic dermatitis. Eur. J. Immunol. 2019, 49, 1334–1343. [Google Scholar] [CrossRef] [Green Version]
- Vatrella, A.; Fabozzi, I.; Calabrese, C.; Maselli, R.; Pelaia, G. Dupilumab: A novel treatment for asthma. J. Asthma Allergy 2014, 7, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.W. The pharmacological basis of anti-IgE therapy. Nat. Biotechnol. 2000, 18, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sutton, B.J.; Davies, A.M. Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol. Rev. 2015, 268, 222–235. [Google Scholar] [CrossRef] [PubMed]
- Belliveau, P.P. Omalizumab: A monoclonal anti-IgE antibody. Medscape Gen. Med. 2005, 7, 27. [Google Scholar]
- Hirano, T.; Koyanagi, A.; Kotoshiba, K.; Shinkai, Y.; Kasai, M.; Ando, T.; Kaitani, A.; Okumura, K.; Kitaura, J. The Fab fragment of anti-IgE Cε2 domain prevents allergic reactions through interacting with IgE-FcεRIα complex on rat mast cells. Sci. Rep. 2018, 8, 14237. [Google Scholar] [CrossRef] [Green Version]
- Presta, L.G.; Lahr, S.J.; Shields, R.L.; Porter, J.P.; Gorman, C.M.; Fendly, B.M.; Jardieu, P.M. Humanization of an antibody directed against IgE. J. Immunol. 1993, 151, 2623–2632. [Google Scholar]
- Kaplan, A.P.; Giménez-Arnau, A.M.; Saini, S.S. Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy 2017, 72, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Maggi, L.; Rossettini, B.; Montaini, G.; Matucci, A.; Vultaggio, A.; Mazzoni, A.; Palterer, B.; Parronchi, P.; Maggi, E.; Liotta, F.; et al. Omalizumab dampens type 2 inflammation in a group of long-term treated asthma patients and detaches IgE from FcεRI. Eur. J. Immunol. 2018, 48, 2005–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Candelas, E.; Martinez-Aranguren, R.; Valero, A.; Bartra, J.; Gastaminza, G.; Goikoetxea, M.J.; Martín, M.; Ferrer, M. Comparable actions of omalizumab on mast cells and basophils. Clin. Exp. Allergy 2016, 46, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Eggel, A.; Baravalle, G.; Hobi, G.; Kim, B.; Buschor, P.; Forrer, P.; Shin, J.-S.; Vogel, M.; Stadler, B.M.; Dahinden, C.A.; et al. Accelerated dissociation of IgE-FcεRI complexes by disruptive inhibitors actively desensitizes allergic effector cells. J. Allergy Clin. Immunol. 2014, 133, 1709–1719.e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelaia, C.; Calabrese, C.; Terracciano, R.; de Blasio, F.; Vatrella, A.; Pelaia, G. Omalizumab, the first available antibody for biological treatment of severe asthma: More than a decade of real-life effectiveness. Ther. Adv. Respir. Dis. 2018, 12, 1753466618810192. [Google Scholar] [CrossRef] [Green Version]
- Guntern, P.; Eggel, A. Past, present, and future of anti-IgE biologics. Allergy 2020, 75, 2491–2502. [Google Scholar] [CrossRef] [Green Version]
- Le Floc’H, A.; Allinne, J.; Nagashima, K.; Scott, G.; Birchard, D.; Asrat, S.; Bai, Y.; Lim, W.K.; Martin, J.; Huang, T.; et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy 2020, 75, 1188–1204. [Google Scholar] [CrossRef]
- Harb, H.; Chatila, T.A. Mechanisms of Dupilumab. Clin. Exp. Allergy 2020, 50, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Corren, J. Role of Interleukin-13 in Asthma. Curr. Allergy Asthma Rep. 2013, 13, 415–420. [Google Scholar] [CrossRef]
- Doran, E.; Cai, F.; Holweg, C.T.J.; Wong, K.; Brumm, J.; Arron, J.R. Interleukin-13 in Asthma and Other Eosinophilic Disorders. Front. Med. 2017, 4, 139. [Google Scholar] [CrossRef] [Green Version]
- Bieber, T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2019, 75, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Strunk, R.C.; Bloomberg, G.R. Omalizumab for Asthma. N. Engl. J. Med. 2006, 354, 2689–2695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; Fitzgerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef] [PubMed]
- Seys, S.F.; Long, M.B. The quest for biomarkers in asthma: Challenging the T2 versus non-T2 paradigm. Eur. Respir. J. 2022, 59, 2102669. [Google Scholar] [CrossRef] [PubMed]
- Buhl, R.; Bel, E.; Bourdin, A.; Dávila, I.; Douglass, J.A.; FitzGerald, J.M.; Jackson, D.J.; Lugogo, N.L.; Matucci, A.; Pavord, I.D.; et al. Effective Management of Severe Asthma with Biologic Medications in Adult Patients: A Literature Review and International Expert Opinion. J. Allergy Clin. Immunol. Pract. 2022, 10, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Agache, I.; Rocha, C.; Beltran, J.; Song, Y.; Posso, M.; Solà, I.; Alonso-Coello, P.; Akdis, C.; Akdis, M.; Canonica, G.W.; et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI Guidelines—Recommendations on the use of biologicals in severe asthma. Allergy 2020, 75, 1043–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayres, J.G.; Higgins, B.; Chilvers, E.; Ayre, G.; Blogg, M.; Fox, H. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with poorly controlled (moderate-to-severe) allergic asthma. Allergy 2004, 59, 701–708. [Google Scholar] [CrossRef]
- Bousquet, J.; Siergiejko, Z.; Świebocka, E.; Humbert, M.; Rabe, K.F.; Smith, N.; Leo, J.; Peckitt, C.; Maykut, R.; Peachey, G. Persistency of response to omalizumab therapy in severe allergic (IgE-mediated) asthma. Allergy 2011, 66, 671–678. [Google Scholar] [CrossRef]
- Hanania, N.A.; Alpan, O.; Hamilos, D.L.; Condemi, J.J.; Reyes-Rivera, I.; Zhu, J.; Rosen, K.E.; Eisner, M.D.; Wong, D.A.; Busse, W. Omalizumab in Severe Allergic Asthma Inadequately Controlled With Standard Therapy. Ann. Intern. Med. 2011, 154, 573–582. [Google Scholar] [CrossRef]
- Humbert, M.; Beasley, R.; Ayres, J.; Slavin, R.; Hébert, J.; Bousquet, J.; Beeh, K.-M.; Ramos, S.; Canonica, G.W.; Hedgecock, S.; et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 2005, 60, 309–316. [Google Scholar] [CrossRef]
- Niven, R.; Chung, K.; Panahloo, Z.; Blogg, M.; Ayre, G. Effectiveness of omalizumab in patients with inadequately controlled severe persistent allergic asthma: An open-label study. Respir. Med. 2008, 102, 1371–1378. [Google Scholar] [CrossRef] [Green Version]
- Lanier, B.; Bridges, T.; Kulus, M.; Taylor, A.F.; Berhane, I.; Vidaurre, C.F. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J. Allergy Clin. Immunol. 2009, 124, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Solèr, M.; Matz, J.; Townley, R.; Buhlz, R.; O’Brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur. Respir. J. 2001, 18, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Milgrom, H.; Berger, W.; Nayak, A.; Gupta, N.; Pollard, S.; McAlary, M.; Taylor, A.F.; Rohane, P. Treatment of Childhood Asthma With Anti-Immunoglobulin E Antibody (Omalizumab). Pediatrics 2001, 108, e36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanier, B.Q.; Corren, J.; Lumry, W.; Liu, J.; Fowler-Taylor, A.; Gupta, N. Omalizumab is effective in the long-term control of severe allergic asthma. Ann. Allergy Asthma Immunol. 2003, 91, 154–159. [Google Scholar] [CrossRef]
- Holgate, S.T.; Chuchalin, A.G.; Hébert, J.; Lötvall, J.; Persson, G.B.; Chung, K.F.; Bousquet, J.; Kerstjens, H.A.; Fox, H.; Thirlwell, J.; et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin. Exp. Allergy 2004, 34, 632–638. [Google Scholar] [CrossRef]
- Busse, W.W.; Morgan, W.J.; Gergen, P.J.; Mitchell, H.E.; Gern, J.E.; Liu, A.H.; Gruchalla, R.S.; Kattan, M.; Teach, S.J.; Pongracic, J.A.; et al. Randomized Trial of Omalizumab (Anti-IgE) for Asthma in Inner-City Children. N. Engl. J. Med. 2011, 364, 1005–1015. [Google Scholar] [CrossRef]
- Li, J.; Kang, J.; Wang, C.; Yang, J.; Wang, L.; Kottakis, I.; Humphries, M.; Zhong, N.; China Omalizumab Study Group. Omalizumab Improves Quality of Life and Asthma Control in Chinese Patients With Moderate to Severe Asthma: A Randomized Phase III Study. Allergy Asthma Immunol. Res. 2016, 8, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Ledford, D.; Busse, W.; Trzaskoma, B.; Omachi, T.A.; Rosén, K.; Chipps, B.E.; Luskin, A.T.; Solari, P.G. A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. J. Allergy Clin. Immunol. 2017, 140, 162–169.e2. [Google Scholar] [CrossRef] [Green Version]
- Bardelas, J.; Figliomeni, M.; Kianifard, F.; Meng, X. A 26-Week, Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Effect of Omalizumab on Asthma Control in Patients with Persistent Allergic Asthma. J. Asthma 2012, 49, 144–152. [Google Scholar] [CrossRef]
- Ohta, K.; Miyamoto, T.; Amagasaki, T.; Yamamoto, M. Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent asthma. Respirology 2009, 14, 1156–1165. [Google Scholar] [CrossRef]
- Prieto, L.; Gutiérrez, V.; Colás, C.; Tabar, A.; Pérez-Francés, C.; Bruno, L.; Uixera, S. Effect of Omalizumab on Adenosine 5′-Monophosphate Responsiveness in Subjects with Allergic Asthma. Int. Arch. Allergy Immunol. 2006, 139, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Rubin, A.; Souza-Machado, A.; Andradre-Lima, M.; Ferreira, F.; Honda, A.; Matozo, T.; On behalf of the QUALITX Study Investigators. Effect of Omalizumab as Add-On Therapy on Asthma-Related Quality of Life in Severe Allergic Asthma: A Brazilian Study (QUALITX). J. Asthma 2012, 49, 288–293. [Google Scholar] [CrossRef]
- Corren, J.; Castro, M.; O’Riordan, T.; Hanania, N.A.; Pavord, I.D.; Quirce, S.; Chipps, B.E.; Wenzel, S.E.; Thangavelu, K.; Rice, M.S.; et al. Dupilumab Efficacy in Patients with Uncontrolled, Moderate-to-Severe Allergic Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Menzella, F.; Fontana, M.; Contoli, M.; Ruggiero, P.; Galeone, C.; Capobelli, S.; Simonazzi, A.; Catellani, C.; Scelfo, C.; Castagnetti, C.; et al. Efficacy and Safety of Omalizumab Treatment Over a 16-Year Follow-Up: When a Clinical Trial Meets Real-Life. J. Asthma Allergy 2022, 15, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, K.M.; Kavati, A.; Ortiz, B.; Alhossan, A.; Lee, C.S.; Abraham, I. Short- and long-term real-world effectiveness of omalizumab in severe allergic asthma: Systematic review of 42 studies published 2008–2018. Expert Rev. Clin. Immunol. 2019, 15, 553–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wechsler, M.E.; Ford, L.B.; Maspero, J.F.; Pavord, I.D.; Papi, A.; Bourdin, A.; Watz, H.; Castro, M.; Nenasheva, N.M.; Tohda, Y.; et al. Long-term safety and efficacy of dupilumab in patients with moderate-to-severe asthma (TRAVERSE): An open-label extension study. Lancet Respir. Med. 2021, 10, 11–25. [Google Scholar] [CrossRef]
- Pfaller, B.; Yepes-Nuñez, J.J.; Agache, I.; Akdis, C.A.; Alsalamah, M.; Bavbek, S.; Bossios, A.; Boyman, O.; Chaker, A.; Chan, S.; et al. Biologicals in atopic disease in pregnancy: An EAACI position paper. Allergy 2020, 76, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Namazy, J.A.; Blais, L.; Andrews, E.B.; Scheuerle, A.E.; Cabana, M.D.; Thorp, J.M.; Umetsu, D.T.; Veith, J.H.; Sun, D.; Kaufman, D.G.; et al. Pregnancy outcomes in the omalizumab pregnancy registry and a disease-matched comparator cohort. J. Allergy Clin. Immunol. 2020, 145, 528–536.e1. [Google Scholar] [CrossRef] [Green Version]
- Levi-Schaffer, F.; Mankuta, D. Omalizumab safety in pregnancy. J. Allergy Clin. Immunol. 2020, 145, 481–483. [Google Scholar] [CrossRef] [Green Version]
- Clinical Trials NCT03727971. Treatment with the Anti-IgE Monoclonal Antibody Omalizumab in Women with Asthma Undergoing Fertility Treatment—A Proof of Concept Study (PRO_ART). Available online: https://clinicaltrials.gov/ct2/show/NCT03727971. (accessed on 1 August 2022).
- Clinical Trials NCT04173442. Post-Authorization Safety Study in North America to Monitor Pregnancy and Infant Outcomes Following Administration of Dupilumab during Planned or Unexpected Pregnancy. Available online: https://clinicaltrials.gov/ct2/show/NCT04173442. (accessed on 1 August 2022).
- Beltagy, A.; Aghamajidi, A.; Trespidi, L.; Ossola, W.; Meroni, P.L. Biologics During Pregnancy and Breastfeeding Among Women With Rheumatic Diseases: Safety Clinical Evidence on the Road. Front. Pharmacol. 2021, 12, 621247. [Google Scholar] [CrossRef]
- Saito, J.; Yakuwa, N.; Sandaiji, N.; Uno, C.; Yagishita, S.; Suzuki, T.; Ozawa, K.; Kamura, S.; Yamatani, A.; Wada, S.; et al. Omalizumab concentrations in pregnancy and lactation: A case study. J. Allergy Clin. Immunol. Pract. 2020, 8, 3603–3604. [Google Scholar] [CrossRef] [PubMed]
- Chipps, B.E.; Lanier, B.; Milgrom, H.; Deschildre, A.; Hedlin, G.; Szefler, S.J.; Kattan, M.; Kianifard, F.; Ortiz, B.; Haselkorn, T.; et al. Omalizumab in children with uncontrolled allergic asthma: Review of clinical trial and real-world experience. J. Allergy Clin. Immunol. 2017, 139, 1431–1444. [Google Scholar] [CrossRef] [PubMed]
- Bacharier, L.B.; Maspero, J.F.; Katelaris, C.H.; Fiocchi, A.G.; Gagnon, R.; de Mir, I.; Jain, N.; Sher, L.D.; Mao, X.; Liu, D.; et al. Dupilumab in Children with Uncontrolled Moderate-to-Severe Asthma. N. Engl. J. Med. 2021, 385, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- Prætorius, K.; Henriksen, D.P.; Schmid, J.M.; Printzlau, P.; Pedersen, L.; Madsen, H.; Andersson, E.A.; Madsen, L.K.; Chawes, B.L. Indirect comparison of efficacy of dupilumab versus mepolizumab and omalizumab for severe type 2 asthma. ERJ Open Res. 2021, 7, 00306–2021. [Google Scholar] [CrossRef]
- Kavanagh, J.E.; Hearn, A.P.; Jackson, D.J. A pragmatic guide to choosing biologic therapies in severe asthma. Breathe 2021, 17, 210144. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Kuo, C.R.; Lipworth, B. Pragmatic Clinical Perspective on Biologics for Severe Refractory Type 2 Asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3363–3370. [Google Scholar] [CrossRef]
- Licari, A.; Manti, S.; Castagnoli, R.; Leonardi, S.; Marseglia, G.L. Measuring inflammation in paediatric severe asthma: Biomarkers in clinical practice. Breathe 2020, 16, 190301. [Google Scholar] [CrossRef]
- Lowe, P.J.; Georgiou, P.; Canvin, J. Revision of omalizumab dosing table for dosing every 4 instead of 2 weeks for specific ranges of bodyweight and baseline IgE. Regul. Toxicol. Pharmacol. 2015, 71, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Pavord, I.D.; Hanania, N.A.; Corren, J. Controversies in Allergy: Choosing a Biologic for Patients with Severe Asthma. J. Allergy Clin. Immunol. Pract. 2022, 10, 410–419. [Google Scholar] [CrossRef]
- Delgado, J.; on behalf of the Severe Asthma Group (SEAIC); Dávila, I.; Domínguez-Ortega, J. Clinical Recommendations for the Management of Biological Treatments in Severe Asthma Patients: A Consensus Statement. J. Investig. Allergy Clin. Immunol. 2021, 31, 36–43. [Google Scholar] [CrossRef]
- Agache, I.; Akdis, C.A.; Akdis, M.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Chu, D.K.; Del Giacco, S.; Eiwegger, T.; et al. EAACI Biologicals Guidelines—Recommendations for severe asthma. Allergy 2020, 76, 14–44. [Google Scholar] [CrossRef] [PubMed]
- Pavord, I.D.; Korn, S.; Howarth, P.; Bleecker, E.R.; Buhl, R.; Keene, O.N.; Ortega, H.; Chanez, P. Mepolizumab for severe eosinophilic asthma (DREAM): A multicentre, double-blind, placebo-controlled trial. Lancet 2012, 380, 651–659. [Google Scholar] [CrossRef]
- Ortega, H.G.; Liu, M.C.; Pavord, I.D.; Brusselle, G.G.; Fitzgerald, J.M.; Chetta, A.; Humbert, M.; Katz, L.E.; Keene, O.N.; Yancey, S.W.; et al. Mepolizumab Treatment in Patients with Severe Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1198–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral Glucocorticoid-Sparing Effect of Mepolizumab in Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Zangrilli, J.E.; Wechsler, M.E.; Bateman, E.D.; Brusselle, G.G.; Bardin, P.; Murphy, K.; Maspero, J.F.; O’Brien, C.; Korn, S. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: Results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir. Med. 2015, 3, 355–366. [Google Scholar] [CrossRef]
- Bernstein, J.A.; Virchow, J.C.; Murphy, K.; Maspero, J.F.; Jacobs, J.; Adir, Y.; Humbert, M.; Castro, M.; Marsteller, D.A.; McElhattan, J.; et al. Effect of fixed-dose subcutaneous reslizumab on asthma exacerbations in patients with severe uncontrolled asthma and corticosteroid sparing in patients with oral corticosteroid-dependent asthma: Results from two phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 2020, 8, 461–4744. [Google Scholar] [CrossRef] [Green Version]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor α monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef]
- Ghazi, A.; Trikha, A.; Calhoun, W.J. Benralizumab—A humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity—A novel approach for the treatment of asthma. Expert Opin. Biol. Ther. 2012, 12, 113–118. [Google Scholar] [CrossRef]
- Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 2017, 377, 936–946. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Maggi, L.; Annunziato, F.; Cosmi, L. Thymic stromal lymphopoietin and alarmins as possible therapeutical targets for asthma. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Fokkens, W.J.; Lund, V.; Bachert, C.; Mullol, J.; Bjermer, L.; Bousquet, J.; Canonica, G.W.; Deneyer, L.; Desrosiers, M.; Diamant, Z.; et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy 2019, 74, 2312–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scadding, G.K.; Scadding, G.W. Biologics for chronic rhinosinusitis with nasal polyps (CRSwNP). J. Allergy Clin. Immunol. 2022, 149, 895–897. [Google Scholar] [CrossRef]
- Porsbjerg, C.; Menzies-Gow, A. Co-morbidities in severe asthma: Clinical impact and management. Respirology 2017, 22, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Canonica, G.W.; Malvezzi, L.; Blasi, F.; Paggiaro, P.; Mantero, M.; Senna, G.; Heffler, E.; Bonavia, M.; Caiaffa, P.; Calabrese, C.; et al. Chronic rhinosinusitis with nasal polyps impact in severe asthma patients: Evidences from the Severe Asthma Network Italy (SANI) registry. Respir. Med. 2020, 166, 105947. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 2020, 58, 1–464. [Google Scholar] [CrossRef]
- Kato, A.; Schleimer, R.P.; Bleier, B.S. Mechanisms and pathogenesis of chronic rhinosinusitis. J. Allergy Clin. Immunol. 2022, 149, 1491–1503. [Google Scholar] [CrossRef]
- Takeda, K.; Sakakibara, S.; Yamashita, K.; Motooka, D.; Nakamura, S.; El Hussien, M.A.; Katayama, J.; Maeda, Y.; Nakata, M.; Hamada, S.; et al. Allergic conversion of protective mucosal immunity against nasal bacteria in patients with chronic rhinosinusitis with nasal polyposis. J. Allergy Clin. Immunol. 2019, 143, 1163–1175.e15. [Google Scholar] [CrossRef]
- Gevaert, P.; Omachi, T.A.; Corren, J.; Mullol, J.; Han, J.; Lee, S.E.; Kaufman, D.; Ligueros-Saylan, M.; Howard, M.; Zhu, R.; et al. Efficacy and safety of omalizumab in nasal polyposis: 2 randomized phase 3 trials. J. Allergy Clin. Immunol. 2020, 146, 595–605. [Google Scholar] [CrossRef]
- Damask, C.; Chen, M.; Holweg, C.T.J.; Yoo, B.; Millette, L.A.; Franzese, C. Defining the Efficacy of Omalizumab in Nasal Polyposis: A POLYP 1 and POLYP 2 Subgroup Analysis. Am. J. Rhinol. Allergy 2022, 36, 135–141. [Google Scholar] [CrossRef]
- Gevaert, P.; Saenz, R.; Corren, J.; Han, J.K.; Mullol, J.; Lee, S.E.; Ow, R.A.; Zhao, R.; Howard, M.; Wong, K.; et al. Long-term efficacy and safety of omalizumab for nasal polyposis in an open-label extension study. J. Allergy Clin. Immunol. 2022, 149, 957–965.e3. [Google Scholar] [CrossRef]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef] [Green Version]
- Stevens, W.W. A new treatment for chronic rhinosinusitis with nasal polyps. Lancet 2019, 394, 1595–1597. [Google Scholar] [CrossRef]
- Fujieda, S.; Matsune, S.; Takeno, S.; Ohta, N.; Asako, M.; Bachert, C.; Inoue, T.; Takahashi, Y.; Fujita, H.; Deniz, Y.; et al. Dupilumab efficacy in chronic rhinosinusitis with nasal polyps from SINUS-52 is unaffected by eosinophilic status. Allergy 2022, 77, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Lipworth, B.; Chan, R.; Kuo, C.R. Omalizumab or dupilumab for chronic rhinosinusitis with nasal polyposis. J. Allergy Clin. Immunol. 2021, 147, 413. [Google Scholar] [CrossRef] [PubMed]
- Oykhman, P.; Paramo, F.A.; Bousquet, J.; Kennedy, D.W.; Brignardello-Petersen, R.; Chu, D.K. Comparative efficacy and safety of monoclonal antibodies and aspirin desensitization for chronic rhinosinusitis with nasal polyposis: A systematic review and network meta-analysis. J. Allergy Clin. Immunol. 2022, 149, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Xu, S.; Lou, H.; Zhang, L. Comparison of Different Biologics for Treating Chronic Rhinosinusitis With Nasal Polyps: A Network Analysis. J. Allergy Clin. Immunol. Pract. 2022, 10, 1876–1886.e7. [Google Scholar] [CrossRef] [PubMed]
- De Corso, E.; Bellocchi, G.; De Benedetto, M.; Lombardo, N.; Macchi, A.; Malvezzi, L.; Motta, G.; Pagella, F.; Vicini, C.; Passali, D. Biologics for severe uncontrolled chronic rhinosinusitis with nasal polyps: A change management approach. Consensus of the Joint Committee of Italian Society of Otorhinolaryngology on biologics in rhinology. Acta Otorhinolaryngol. Ital. 2022, 42, 1–16. [Google Scholar] [CrossRef]
- Zuberbier, T.; Latiff, A.H.A.; Abuzakouk, M.; Aquilina, S.; Asero, R.; Baker, D.; Ballmer-Weber, B.; Bangert, C.; Ben-Shoshan, M.; Bernstein, J.A.; et al. The international EAACI/GA²LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy 2021, 77, 734–766. [Google Scholar] [CrossRef]
- Maurer, M.; Rosén, K.; Hsieh, H.-J.; Saini, S.; Grattan, C.; Gimenéz-Arnau, A.; Agarwal, S.; Doyle, R.; Canvin, J.; Kaplan, A.; et al. Omalizumab for the Treatment of Chronic Idiopathic or Spontaneous Urticaria. N. Engl. J. Med. 2013, 368, 924–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, A.; Ledford, D.; Ashby, M.; Canvin, J.; Zazzali, J.L.; Conner, E.; Veith, J.; Kamath, N.; Staubach, P.; Jakob, T.; et al. Omalizumab in patients with symptomatic chronic idiopathic/spontaneous urticaria despite standard combination therapy. J. Allergy Clin. Immunol. 2013, 132, 101–109. [Google Scholar] [CrossRef]
- Saini, S.S.; Bindslev-Jensen, C.; Maurer, M.; Grob, J.-J.; Baskan, E.B.; Bradley, M.S.; Canvin, J.; Rahmaoui, A.; Georgiou, P.; Alpan, O.; et al. Efficacy and Safety of Omalizumab in Patients with Chronic Idiopathic/Spontaneous Urticaria Who Remain Symptomatic on H 1 Antihistamines: A Randomized, Placebo-Controlled Study. J. Investig. Dermatol. 2015, 135, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.-T.; Ji, C.-M.; Yu, W.-J.; Meng, L.; Hawro, T.; Wei, J.-F.; Maurer, M. Omalizumab for the treatment of chronic spontaneous urticaria: A meta-analysis of randomized clinical trials. J. Allergy Clin. Immunol. 2016, 137, 1742–1750.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Agosta, E.; Salvati, L.; Corazza, M.; Baiardini, I.; Ambrogio, F.; Angileri, L.; Antonelli, E.; Belluzzo, F.; Bonamonte, D.; Bonzano, L.; et al. Quality of life in patients with allergic and immunologic skin diseases: In the eye of the beholder. Clin. Mol. Allergy 2021, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Matucci, A.; Nencini, F.; Rossi, O.; Pratesi, S.; Parronchi, P.; Maggi, E.; Vultaggio, A. The percentage of patients achieving complete remission of urticaria increases with repeated courses of treatment. J. Allergy Clin. Immunol. Pract. 2019, 7, 339–340. [Google Scholar] [CrossRef]
- Tonacci, A.; Nettis, E.; Asero, R.; Rossi, O.; Tontini, C.; Gangemi, S. Omalizumab retreatment in patients with chronic spontaneous urticaria:a systematic review of published evidence. Eur. Ann. Allergy Clin. Immunol. 2020, 52, 74–103. [Google Scholar] [CrossRef] [Green Version]
- Clinical Trials NCT04426890. To Compare Efficacy and Safety of CT-P39 and EU-Approved Xolair in Patients with Chronic Spontaneous Urticaria (Omalizumab). Available online: https://clinicaltrials.gov/ct2/show/NCT04426890. (accessed on 4 September 2022).
- Maurer, M.; Giménez-Arnau, A.M.; Sussman, G.; Metz, M.; Baker, D.R.; Bauer, A.; Bernstein, J.A.; Brehler, R.; Chu, C.-Y.; Chung, W.-H.; et al. Ligelizumab for Chronic Spontaneous Urticaria. N. Engl. J. Med. 2019, 381, 1321–1332. [Google Scholar] [CrossRef] [Green Version]
- Arm, J.P.; Bottoli, I.; Skerjanec, A.; Floch, D.; Groenewegen, A.; Maahs, S.; Owen, C.E.; Jones, I.; Lowe, P.J. Pharmacokinetics, pharmacodynamics and safety ofQGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin. Exp. Allergy 2014, 44, 1371–1385. [Google Scholar] [CrossRef] [Green Version]
- Novartis. Press Release: Novartis Provides an Update on Phase III Ligelizumab (QGE031) Studies in Chronic Spontaneous Urticaria (CSU). Available online: https://www.novartis.com/news/media-releases/novartis-provides-update-phase-iii-ligelizumab-qge031-studies-chronic-spontaneous-urticaria-csu. (accessed on 4 September 2022).
- Gooderham, M.J.; Hong, H.C.-H.; Eshtiaghi, P.; Papp, K.A. Dupilumab: A review of its use in the treatment of atopic dermatitis. J. Am. Acad. Dermatol. 2018, 78, S28–S36. [Google Scholar] [CrossRef]
- Simpson, E.L.; Paller, A.S.; Siegfried, E.C.; Boguniewicz, M.; Sher, L.; Gooderham, M.J.; Beck, L.A.; Guttman-Yassky, E.; Pariser, D.; Blauvelt, A.; et al. Efficacy and Safety of Dupilumab in Adolescents With Uncontrolled Moderate to Severe Atopic Dermatitis. JAMA Dermatol. 2020, 156, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paller, A.S.; Siegfried, E.C.; Thaçi, D.; Wollenberg, A.; Cork, M.J.; Arkwright, P.D.; Gooderham, M.; Beck, L.A.; Boguniewicz, M.; Sher, L.; et al. Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: A randomized, double-blinded, placebo-controlled phase 3 trial. J. Am. Acad. Dermatol. 2020, 83, 1282–1293. [Google Scholar] [CrossRef] [PubMed]
- Salvati, L.; Cosmi, L.; Annunziato, F. From Emollients to Biologicals: Targeting Atopic Dermatitis. Int. J. Mol. Sci. 2021, 22, 10381. [Google Scholar] [CrossRef] [PubMed]
- Czarnowicki, T.; He, H.; Krueger, J.G.; Guttman-Yassky, E. Atopic dermatitis endotypes and implications for targeted therapeutics. J. Allergy Clin. Immunol. 2019, 143, 1–11. [Google Scholar] [CrossRef]
- Sanofi. Press Release: FDA Approves Dupilumab as First Biologic Medicine for Children Aged 6 Months to 5 Years with Moderate-to-Severe Atopic Dermatitis. Available online: https://www.sanofi.com/en/media-room/press-releases/2022/2022-06-07-20-45-00-2458243. (accessed on 2 August 2022).
- Bieber, T. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2021, 21, 21–40. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. FDA Approves First Treatment for Eosinophilic Esophagitis, a Chronic Immune Disorder. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-eosinophilic-esophagitis-chronic-immune-disorder (accessed on 2 August 2022).
- Hirano, I.; Dellon, E.S.; Hamilton, J.D.; Collins, M.H.; Peterson, K.; Chehade, M.; Schoepfer, A.M.; Safroneeva, E.; Rothenberg, M.E.; Falk, G.W.; et al. Efficacy of Dupilumab in a Phase 2 Randomized Trial of Adults With Active Eosinophilic Esophagitis. Gastroenterology 2020, 158, 111–122.e10. [Google Scholar] [CrossRef] [Green Version]
- Clinical Trials NCT03633617. Study to Determine the Efficacy and Safety of Dupilumab in Adult and Adolescent Patients with Eosinophilic Esophagitis (EoE). Available online: https://clinicaltrials.gov/ct2/show/NCT03633617. (accessed on 2 August 2022).
- Greuter, T.; Hirano, I.; Dellon, E.S. Emerging therapies for eosinophilic esophagitis. J. Allergy Clin. Immunol. 2019, 145, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Spergel, B.L.; Ruffner, M.A.; Godwin, B.C.; Liacouras, C.A.; Cianferoni, A.; Gober, L.; Hill, D.A.; Brown-Whitehorn, T.F.; Chaiboonma, K.; Aceves, S.A.; et al. Improvement in eosinophilic esophagitis when using dupilumab for other indications or compassionate use. Ann. Allergy, Asthma Immunol. 2022, 128, 589–593. [Google Scholar] [CrossRef]
- Furuta, G.T.; Katzka, D.A. Eosinophilic Esophagitis. N. Engl. J. Med. 2015, 373, 1640–1648. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.; Stucke, E.M.; Burwinkel, K.; Caldwell, J.M.; Collins, M.H.; Ahrens, A.; Buckmeier, B.K.; Jameson, S.C.; Greenberg, A.; Kaul, A.; et al. Coordinate Interaction between IL-13 and Epithelial Differentiation Cluster Genes in Eosinophilic Esophagitis. J. Immunol. 2010, 184, 4033–4041. [Google Scholar] [CrossRef] [Green Version]
- Ruffner, M.A.; Cianferoni, A. Phenotypes and endotypes in eosinophilic esophagitis. Ann. Allergy Asthma Immunol. 2019, 124, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chehade, M.; Falk, G.W.; Aceves, S.; Lee, J.K.; Mehta, V.; Leung, J.; Shumel, B.; Jacob-Nara, J.A.; Deniz, Y.; Rowe, P.J.; et al. Examining the Role of Type 2 Inflammation in Eosinophilic Esophagitis. Gastro Hep Adv. 2022, 1, 720–732. [Google Scholar] [CrossRef]
- Racca, F.; Pellegatta, G.; Cataldo, G.; Vespa, E.; Carlani, E.; Pelaia, C.; Paoletti, G.; Messina, M.R.; Nappi, E.; Canonica, G.W.; et al. Type 2 Inflammation in Eosinophilic Esophagitis: From Pathophysiology to Therapeutic Targets. Front. Physiol. 2022, 12, 815842. [Google Scholar] [CrossRef] [PubMed]
- Casale, T.B.; Busse, W.W.; Kline, J.; Ballas, Z.; Moss, M.H.; Townley, R.G.; Mokhtarani, M.; Seyfert-Margolis, V.; Asare, A.; Bateman, K. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J. Allergy Clin. Immunol. 2006, 117, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Matheu, V.; Franco, A.; Perez, E.; Hernández, M.; Barrios, Y. Omalizumab for drug allergy. J. Allergy Clin. Immunol. 2007, 120, 1471–1472, author reply 1472-3. [Google Scholar] [CrossRef]
- Fernandez, J.; Ruano-Zaragoza, M.; Blanca-Lopez, N. Omalizumab and other biologics in drug desensitization. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 333–337. [Google Scholar] [CrossRef]
- Dantzer, J.A.; Wood, R.A. The use of omalizumab in allergen immunotherapy. Clin. Exp. Allergy 2018, 48, 232–240. [Google Scholar] [CrossRef]
- Dantzer, J.A.; Wood, R.A. Update on omalizumab in allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 559–568. [Google Scholar] [CrossRef]
- MacGinnitie, A.J.; Rachid, R.; Gragg, H.; Little, S.; Lakin, P.; Cianferoni, A.; Heimall, J.; Makhija, M.; Robison, R.; Chinthrajah, S.; et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J. Allergy Clin. Immunol. 2017, 139, 873–881.e8. [Google Scholar] [CrossRef] [Green Version]
- Stretz, E.; Oppel, E.M.; Räwer, H.-C.; Chatelain, R.; Mastnik, S.; Przybilla, B.; Ruëff, F. Overcoming severe adverse reactions to venom immunotherapy using anti-IgE antibodies in combination with a high maintenance dose. Clin. Exp. Allergy 2017, 47, 1631–1639. [Google Scholar] [CrossRef]
- Lang, D.M.; Aronica, M.A.; Maierson, E.S.; Wang, X.-F.; Vasas, D.C.; Hazen, S.L. Omalizumab can inhibit respiratory reaction during aspirin desensitization. Ann. Allergy Asthma Immunol. 2018, 121, 98–104. [Google Scholar] [CrossRef]
- Ojaimi, S.; Harnett, P.R.; Fulcher, D.A. Successful carboplatin desensitization by using omalizumab and paradoxical diminution of total IgE levels. J. Allergy Clin. Immunol. Pract. 2013, 2, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Elberink, H.N.G.O.; Jalving, M.; Dijkstra, H.; Van De Ven, A.A.J.M. Modified protocol of omalizumab treatment to prevent carboplatin-induced drug hypersensitivity reactions: A case study. Clin. Transl. Allergy 2020, 10, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.; Dooley, K.; Uboha, N.V.; Hochster, H.S. A Pilot Study of Omalizumab to Treat Oxaliplatin-Induced Hypersensitivity Reaction. Oncology 2022, 36, 414–419. [Google Scholar] [CrossRef]
- Penella, J.; Quan, P.; Carvallo, A.; Chopitea, A.; Sala, P.; Barrio, M.A.G.D.; Gastaminza, G.; Goikoetxea, M.J. Successful Desensitization to Oxaliplatin After a Single Initial Dose of Omalizumab in a Patient With Elevated IgE Levels. J. Investig. Allergy Clin. Immunol. 2020, 30, 293–295. [Google Scholar] [CrossRef]
- Bumbacea, R.S.; Ali, S.; Corcea, S.L.; Spiru, L.; Nitipir, C.; Strambu, V.; Bumbacea, D. Omalizumab for successful chemotherapy desensitisation: What we know so far. Clin. Transl. Allergy 2021, 11, e12086. [Google Scholar] [CrossRef]
- Vultaggio, A.; Petrella, M.C.; Tomao, F.; Nencini, F.; Mecheri, V.; Marini, A.; Perlato, M.; Vivarelli, E.; De Angelis, C.; Ferrarini, I.; et al. The anti-IgE monoclonal antibody omalizumab as adjuvant treatment in desensitization to carboplatin in patients with ovarian cancer. Gynecol. Oncol. Rep. 2021, 38, 100880. [Google Scholar] [CrossRef]
- Sánchez-Morillas, L.; Herráez, A.C.; Rubio-Perez, M.; Echarren, T.R.; Gutiérrez, M.L.G.; Cimarra, M.; Cortés, S.V.; Cerecedo, I.; Fernández-Rivas, M. Usefulness of Omalizumab in Rapid Drug Desensitization in Patients With Severe Anaphylaxis Induced by Carboplatin: Open Questions. J. Investig. Allergy Clin. Immunol. 2020, 30, 298–300. [Google Scholar] [CrossRef]
- Karaaslan, H.B.G.; Yilmaz, E.K.; Gulmez, R.; Canpolat, N.; Kiykim, A.; Cokugras, H.C. Omalizumab may facilitate drug desensitization in patients failing standard protocols. Pediatr. Allergy Immunol. 2022, 33, e13783. [Google Scholar] [CrossRef]
- Perlato, M.; Mecheri, V.; Accinno, M.; Vivarelli, E.; Matucci, A.; Vultaggio, A. Rituximab and infliximab desensitization with anti-IgE monoclonal antibody omalizumab as adjuvant therapy: A case series. J. Allergy Clin. Immunol. Pract. 2022; in press. [Google Scholar] [CrossRef]
- Corren, J.; Saini, S.S.; Gagnon, R.; Moss, M.H.; Sussman, G.; Jacobs, J.; Laws, E.; Chung, E.S.; Constant, T.; Sun, Y.; et al. Short-Term Subcutaneous Allergy Immunotherapy and Dupilumab are Well Tolerated in Allergic Rhinitis: A Randomized Trial. J. Asthma Allergy 2021, 14, 1045–1063. [Google Scholar] [CrossRef]
- Rial, M.J.; Barroso, B.; Sastre, J. Dupilumab for treatment of food allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Macdougall, J.D.; Burks, A.W.; Kim, E.H. Current Insights into Immunotherapy Approaches for Food Allergy. ImmunoTargets Ther. 2021, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, P.L.; Jones, I.; Rajwanshi, R.; Rosén, K.; Umetsu, D.T. Anaphylaxis associated with omalizumab administration: Risk factors and patient characteristics. J. Allergy Clin. Immunol. 2017, 140, 1734–1736.e4. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.G.; MacRae, M.; Karsh, J.; Santucci, S.; Yang, W.H. Anaphylaxis and serum sickness in patients receiving omalizumab: Reviewing the data in light of clinical experience. Ann. Allergy Asthma Immunol. 2015, 115, 77–78. [Google Scholar] [CrossRef]
- Sleeping with Sleepees can become a habit. React. Wkly. 2007, 1141, 4. [CrossRef]
- Cox, L.; Platts-Mills, T.A.; Finegold, I.; Schwartz, L.B.; Simons, F.E.R.; Wallace, D.V. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis. J. Allergy Clin. Immunol. 2007, 120, 1373–1377. [Google Scholar] [CrossRef]
- Cox, L.; Lieberman, P.; Wallace, D.; Simons, F.E.R.; Finegold, I.; Platts-Mills, T.; Schwartz, L. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma & Immunology Omalizumab-Associated Anaphylaxis Joint Task Force follow-up report. J. Allergy Clin. Immunol. 2011, 128, 210–212. [Google Scholar] [CrossRef]
- Weiss, S.L.; Smith, D.M. A Case of Serum Sickness-Like Reaction in an Adult Treated with Omalizumab. Mil. Med. 2020, 185, e912–e913. [Google Scholar] [CrossRef] [Green Version]
- Pilette, C.; Coppens, N.; Houssiau, F.A.; Rodenstein, D.O. Severe serum sickness–like syndrome after omalizumab therapy for asthma. J. Allergy Clin. Immunol. 2007, 120, 972–973. [Google Scholar] [CrossRef]
- Eapen, A.; Kloepfer, K.M. Serum sickness-like reaction in a pediatric patient using omalizumab for chronic spontaneous urticaria. Pediatr. Allergy Immunol. 2018, 29, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Agnihotri, G.; Shi, K.; Lio, P.A. A Clinician’s Guide to the Recognition and Management of Dupilumab-Associated Conjunctivitis. Drugs 2019, 19, 311–318. [Google Scholar] [CrossRef]
- Nettis, E.; Di Gioacchino, M.; Bonzano, L.; Patella, V.; Detoraki, A.; Trerotoli, P.; Lombardo, C. Dupilumab-Associated Conjunctivitis in Patients With Atopic Dermatitis: A Multicenter Real-Life Experience. J. Investig. Allergy Clin. Immunol. 2020, 30, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bansal, A.; Simpson, E.L.; Paller, A.S.; Siegfried, E.C.; Blauvelt, A.; de Bruin-Weller, M.; Corren, J.; Sher, L.; Guttman-Yassky, E.; Chen, Z.; et al. Conjunctivitis in Dupilumab Clinical Trials for Adolescents with Atopic Dermatitis or Asthma. Am. J. Clin. Dermatol. 2021, 22, 101–115. [Google Scholar] [CrossRef]
- Akinlade, B.; Guttman-Yassky, E.; De Bruin-Weller, M.; Simpson, E.; Blauvelt, A.; Cork, M.; Prens, E.; Asbell, P.; Akpek, E.; Corren, J.; et al. Conjunctivitis in dupilumab clinical trials. Br. J. Dermatol. 2019, 181, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Popiela, M.Z.; Barbara, R.; Turnbull, A.M.J.; Corden, E.; Martinez-Falero, B.S.; O’Driscoll, D.; Ardern-Jones, M.R.; Hossain, P.N. Dupilumab-associated ocular surface disease: Presentation, management and long-term sequelae. Eye 2021, 35, 3277–3284. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Klion, A.D.; Paggiaro, P.; Nair, P.; Staumont-Salle, D.; Radwan, A.; Johnson, R.R.; Kapoor, U.; Khokhar, F.A.; Daizadeh, N.; et al. Effect of Dupilumab on Blood Eosinophil Counts in Patients With Asthma, Chronic Rhinosinusitis With Nasal Polyps, Atopic Dermatitis, or Eosinophilic Esophagitis. J. Allergy Clin. Immunol. Pract. 2022, 10, 2695–2709. [Google Scholar] [CrossRef]
- Caminati, M.; Olivieri, B.; Dama, A.; Micheletto, C.; Paggiaro, P.; Pinter, P.; Senna, G.; Schiappoli, M. Dupilumab-induced hypereosinophilia: Review of the literature and algorithm proposal for clinical management. Expert Rev. Respir. Med. 2022, 23, 1–9. [Google Scholar] [CrossRef]
- Olaguibel, J.; Sastre, J.; Rodríguez, J.; del Pozo, V. Eosinophilia Induced by Blocking the IL-4/IL-13 Pathway: Potential Mechanisms and Clinical Outcomes. J. Investig. Allergy Clin. Immunol. 2022, 32, 165–180. [Google Scholar] [CrossRef]
- Nazir, S.; Tachamo, N.; Fareedy, S.B.; Khan, M.S.; Lohani, S. Omalizumab-associated eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome). Ann. Allergy Asthma Immunol. 2017, 118, 372–374.e1. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Wong, D.A.; Miller, M.K.; Lawrence-Miyasaki, L. Churg-Strauss Syndrome in Patients Treated With Omalizumab. Chest 2009, 136, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Eger, K.; Pet, L.; Weersink, E.J.; Bel, E.H. Complications of switching from anti–IL-5 or anti–IL-5R to dupilumab in corticosteroid-dependent severe asthma. J. Allergy Clin. Immunol. Pract. 2021, 9, 2913–2915. [Google Scholar] [CrossRef] [PubMed]
- Murag, S.; Melehani, J.; Filsoof, D.; Nadeau, K.; Chinthrajah, R.S. Dupilumab unmasks eosinophilic granulomatosis with polyangiitis. Chest 2021, 160, A8–A9. [Google Scholar] [CrossRef]
- Vaglio, A.; Buzio, C.; Zwerina, J. Eosinophilic granulomatosis with polyangiitis (Churg-Strauss): State of the art. Allergy 2013, 68, 261–273. [Google Scholar] [CrossRef]
- Menzella, F.; Montanari, G.; Patricelli, G.; Cavazza, A.; Galeone, C.; Ruggiero, P.; Bagnasco, D.; Facciolongo, N. A case of chronic eosinophilic pneumonia in a patient treated with dupilumab. Ther. Clin. Risk Manag. 2019, 15, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.A.; Lima, F.; Sarinho, E.; Ayre, G.; Martin, C.; Fox, H.; Cooper, P.J. Safety of anti-immunoglobulin E therapy with omalizumab in allergic patients at risk of geohelminth infection. Clin. Exp. Allergy 2007, 37, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Cooper, P.J.; Ayre, G.; Martin, C.; Rizzo, J.A.; Ponte, E.V.; Cruz, A.A. Geohelminth infections: A review of the role of IgE and assessment of potential risks of anti-IgE treatment. Allergy 2008, 63, 409–417. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; Bieber, T.; Beck, L.A.; Simpson, E.L.; Thaçi, D.; de Bruin-Weller, M.; Deleuran, M.; Silverberg, J.I.; Ferrandiz, C.; Fölster-Holst, R.; et al. Infections in Dupilumab Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis. Am. J. Clin. Dermatol. 2019, 20, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Paller, A.S.; Beck, L.A.; Blauvelt, A.; Siegfried, E.C.; Cork, M.J.; Wollenberg, A.; Chen, Z.; Khokhar, F.A.; Vakil, J.; Zhang, A.; et al. Infections in children and adolescents treated with dupilumab in pediatric clinical trials for atopic dermatitis—A pooled analysis of trial data. Pediatr. Dermatol. 2022, 39, 187–196. [Google Scholar] [CrossRef]
- Clinical Trials NCT04998604. EValuating trEatment RESponses of Dupilumab versus Omalizumab in Type 2 Patients (EVEREST). Available online: https://clinicaltrials.gov/ct2/show/NCT04998604. (accessed on 1 August 2022).
- Gomez, L.D.P.; Khan, A.H.; Peters, A.T.; Bachert, C.; Wagenmann, M.; Heffler, E.; Hopkins, C.; Hellings, P.W.; Zhang, M.; Xing, J.; et al. Efficacy and Safety of Dupilumab Versus Omalizumab in Chronic Rhinosinusitis With Nasal Polyps and Asthma: EVEREST Trial Design. Am. J. Rhinol. Allergy 2022, 15, 19458924221112211. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvati, L.; Liotta, F.; Annunziato, F.; Cosmi, L. Therapeutical Targets in Allergic Inflammation. Biomedicines 2022, 10, 2874. https://doi.org/10.3390/biomedicines10112874
Salvati L, Liotta F, Annunziato F, Cosmi L. Therapeutical Targets in Allergic Inflammation. Biomedicines. 2022; 10(11):2874. https://doi.org/10.3390/biomedicines10112874
Chicago/Turabian StyleSalvati, Lorenzo, Francesco Liotta, Francesco Annunziato, and Lorenzo Cosmi. 2022. "Therapeutical Targets in Allergic Inflammation" Biomedicines 10, no. 11: 2874. https://doi.org/10.3390/biomedicines10112874
APA StyleSalvati, L., Liotta, F., Annunziato, F., & Cosmi, L. (2022). Therapeutical Targets in Allergic Inflammation. Biomedicines, 10(11), 2874. https://doi.org/10.3390/biomedicines10112874