Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer’s Disease-like Pathology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Analysis of Maternal Behavior
2.3. Behavioral Analysis of the Pups
2.4. Statistics
3. Results
3.1. Maternal Behavior
3.2. Physical Development of the Pups
3.3. Development of the Quadruped Stance and Motion Coordination
3.4. Development of Neonatal Reflexes in the Pups
3.5. Locomotor and Exploratory Activities of the Pups
3.5.1. Locomotor Activity
3.5.2. Exploratory Activity
3.6. Jumping Abilities of the Pups
3.7. Abilities to Climb Up and Down
3.7.1. The Ability to Climb Down
3.7.2. The Ability to Climb
3.8. Recognition Memory in the Pups
3.9. The Forced Swim Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, N. Nutrition and cognitive function. Brain Dev. 1997, 19, 165–170. [Google Scholar] [CrossRef]
- Brumley, M.R.; Kauer, S.D.; Swann, H.E. Developmental plasticity of coordinated action patterns in the perinatal rat. Dev. Psychobiol. 2015, 57, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Helmbrecht, M.S.; Soellner, H.; Castiblanco-Urbina, M.A.; Winzeck, S.; Sundermeier, J.; Theis, F.J.; Fouad, K.; Huber, A.B. A critical period for postnatal adaptive plasticity in a model of motor axon miswiring. PLoS ONE 2015, 10, e0123643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, S.; Sharma, V.; Kumar, V.; Nag, T.C.; Wadhwa, S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev. 2016, 38, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.A.; Li, L.M.; Santos, S.L.M.; Zanardi, V.A.; Honorato, D.C.; Guerreiro, C.A.M.; Cendes, F. Early development destructive brain lesions and their relationship to epilepsy and hippocampal damage. Brain Dev. 2003, 25, 560–570. [Google Scholar] [CrossRef]
- Bale, T.L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 2015, 16, 332–344. [Google Scholar] [CrossRef]
- Yoshihara, T.; Yawaka, Y. Repeated immobilization stress in the early postnatal period increases stress response in adult rats. Physiol. Behav. 2008, 93, 322–326. [Google Scholar] [CrossRef]
- Hane, A.A.; Philbrook, L.E. Beyond Licking and Grooming: Maternal Regulation of Infant Stress in the Context of Routine Care. Parent Sci. Pract. 2012, 12, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Ishio, Y.; Ishida, Y.; Mogi, K.; Kikusui, T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp. Anim. 2021, 70, 13–21. [Google Scholar] [CrossRef]
- Caldji, C.; Tannenbaum, B.; Sharma, S.; Francis, D.; Plotsky, P.M.; Meaney, M.J. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc. Natl. Acad. Sci. USA 1998, 95, 5335–5340. [Google Scholar] [CrossRef]
- Liu, D.; Diorio, J.; Day, J.C.; Francis, D.D.; Meaney, M.J. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat. Neurosci. 2000, 3, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Champagne, D.L.; Bagot, R.C.; van Hasselt, F.; Ramakers, G.; Meaney, M.J.; de Kloet, E.R.; Joels, M.; Krugers, H. Maternal care and hippocampal plasticity: Evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci. 2008, 28, 6037–6045. [Google Scholar] [CrossRef] [Green Version]
- Bagot, R.C.; van Hasselt, F.N.; Champagne, D.L.; Meaney, M.J.; Krugers, H.J.; Joels, M. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol. Learn Mem. 2009, 92, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Claessens, S.E.; Daskalakis, N.P.; van der Veen, R.; Oitzl, M.S.; de Kloet, E.R.; Champagne, D.L. Development of individual differences in stress responsiveness: An overview of factors mediating the outcome of early life experiences. Psychopharmacology 2011, 214, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Nasu, M.; Abe, Y.; Matsushima, A.; Yamanaka, M.; Kozuki, N.; Ueda, S. Deficient maternal behavior in multiparous Pou3f2⊿ mice is associated with an impaired exploratory activity. Behav. Brain Res. 2022, 427, 113846. [Google Scholar] [CrossRef]
- Lesuis, S.L.; van Hoek, B.A.C.E.; Lucassen, P.J.; Krugers, H.J. Early postnatal handling reduces hippocampal amyloid plaque formation and enhances cognitive performance in APPswe/PS1dE9 mice at middle age. Neurobiol. Learn Mem. 2017, 144, 27–35. [Google Scholar] [CrossRef]
- Desplats, P.; Gutierrez, A.M.; Antonelli, M.C.; Frasch, M.G. Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neurosci. Biobehav. Rev. 2020, 117, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Bagot, R.C.; Tse, Y.C.; Nguyen, H.B.; Wong, A.S.; Meaney, M.J.; Wong, T.P. Maternal care influences hippocampal N-methyl-D-aspartate receptor function and dynamic regulation by corticosterone in adulthood. Biol. Psychiatry 2012, 72, 491–498. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.E.; Alderdice, F.A.; Holmes, V.A.; Johnston, L. Early childhood development of late-preterm infants: A systematic review. Pediatrics 2011, 127, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Rudnitskaya, E.A.; Kozlova, T.A.; Burnyasheva, A.O.; Kolosova, N.G.; Stefanova, N.A. Alterations of hippocampal neurogenesis during development of Alzheimer’s disease-like pathology in OXYS rats. Exp. Gerontol. 2019, 115, 32–45. [Google Scholar] [CrossRef]
- Rudnitskaya, E.A.; Kozlova, T.A.; Burnyasheva, A.O.; Stefanova, N.A.; Kolosova, N.G. Glia Not Neurons: Uncovering Brain Dysmaturation in a Rat Model of Alzheimer’s Disease. Biomedicines 2021, 9, 823. [Google Scholar] [CrossRef] [PubMed]
- Igonina, T.N.; Ragaeva, D.S.; Tikhonova, M.A.; Petrova, O.M.; Herbeck, Y.E.; Rozhkova, I.N.; Amstislavskaya, T.G.; Amstislavsky, S.Y. Neurodevelopment and behavior in neonatal OXYS rats with genetically determined accelerated senescence. Brain Res. 2018, 1681, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Igonina, T.N.; Voronkova, O.M.; Ragaeva, D.S.; Brusentsev, E.Y.; Rozhkova, I.N.; Kolosova, N.G.; Amstislavsky, S.Y. [Influence of maternal environment on early postnatal development of OXYS rats]. Zh. Vyssh. Nerv. Deiat. IP Pavlova 2022, 72, 421–434. (In Russian) [Google Scholar]
- Shimomura, C.; Ohta, H. Behavioral abnormalities and seizure susceptibility in rat after neonatal anoxia. Brain Dev. 1988, 10, 160–163. [Google Scholar] [CrossRef]
- Altman, J.; Sudarshan, K. Postnatal development of locomotion in the laboratory rat. Anim. Behav. 1975, 23, 896–920. [Google Scholar] [CrossRef]
- Krüger, H.S.; Brockmann, M.D.; Salamon, J.; Ittrich, H.; Hanganu-Opatz, I.L. Neonatal hippocampal lesion alters the functional maturation of the prefrontal cortex and the early cognitive development in pre-juvenile rats. Neurobiol. Learn Mem. 2012, 97, 470–481. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp. 2015, 97, 52587. [Google Scholar] [CrossRef] [Green Version]
- Sandini, T.M.; Udo, M.S.B.; Reis-Silva, T.M.; Bernardi, M.M.; de S. Spinosa, H. Prenatal exposure to integerrimine N-oxide impaired the maternal care and the physical and behavioral development of offspring rats. Int. J. Dev. Neurosci. 2014, 36, 53–63. [Google Scholar] [CrossRef]
- Kaffman, A.; Meaney, M.J. Neurodevelopmental sequelae of postnatal maternal care in rodents: Clinical and research implications of molecular insights. J. Child Psychol. Psychiatry 2007, 48, 224–244. [Google Scholar] [CrossRef]
- Rodriguez, I.; Araki, K.; Khatib, K.; Martinou, J.C.; Vassalli, P. Mouse vaginal opening is an apoptosis-dependent process which can be prevented by the overexpression of Bcl2. Dev. Biol. 1997, 184, 115–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharov, A.A.; Weiner, L.; Sharova, T.Y.; Siebenhaar, F.; Atoyan, R.; Reginato, A.M.; McNamara, C.A.; Funa, K.; Gilchrest, B.A.; Brissette, J.L.; et al. Noggin overexpression inhibits eyelid opening by altering epidermal apoptosis and differentiation. EMBO J. 2003, 22, 2992–3003. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Armstrong, E.A.; Yager, J.Y. Neurodevelopmental Reflex Testing in Neonatal Rat Pups. J. Vis. Exp. 2017, 122, 55261. [Google Scholar] [CrossRef] [PubMed]
- Roberto, M.E.; Brumley, M.R. Prematurely Delivered Rats Show Improved Motor Coordination During Sensory-evoked Motor Responses Compared to Age-matched Controls. Physiol. Behav. 2015, 130, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Rudnitskaya, E.A.; Kozlova, T.A.; Burnyasheva, A.O.; Tarasova, A.E.; Pankova, T.M.; Starostina, M.V.; Stefanova, N.A.; Kolosova, N.G. Features of Postnatal Hippocampal Development in a Rat Model of Sporadic Alzheimer’s Disease. Front. Neurosci. 2020, 14, 533. [Google Scholar] [CrossRef] [PubMed]
- Oakley, D.A.; Plotkin, H.C. Ontogeny of spontaneous locomotor activity in rabbit, rat, and guinea pig. J. Comp. Physiol. Psychol. 1975, 89, 267–273. [Google Scholar] [CrossRef]
- Amiri, S.; Amini-Khoei, H.; Mohammadi-Asl, A.; Alijanpour, S.; Haj-Mirzaian, A.; Rahimi-Balaei, M.; Razmi, A.; Olson, C.O.; Rastegar, M.; Mehdizadeh, M.; et al. Involvement of D1 and D2 dopamine receptors in the antidepressant-like effects of selegiline in maternal separation model of mouse. Physiol. Behav. 2016, 163, 107–114. [Google Scholar] [CrossRef]
- Deng, D.; Cui, Y.; Gan, S.; Xie, Z.; Cui, S.; Cao, K.; Wang, S.; Shi, G.; Yang, L.; Bai, S.; et al. Sinisan alleviates depression-like behaviors by regulating mitochondrial function and synaptic plasticity in maternal separation rats. Phytomedicine 2022, 106, 154395. [Google Scholar] [CrossRef]
Rat Strain | Sex | Age | Number of Animals | Measured Parameters |
---|---|---|---|---|
Wistar OXYS | Female | 3 months | n = 8 | Maternal behavior |
Wistar OXYS | Male Female | PND1-PND20 | Litters from 3 mothers of each strain (n = 62) | Raising of head Raising and coordination of limbs Locomotor activity Exploratory activity |
Wistar OXYS | Male Female | PND10-PND20 | Litters from 4 mothers of each strain (n = 80) | Righting in mid-air |
Wistar OXYS | Male Female | PND1-PND10 | Litters from 3 mothers of each strain (n = 66) | Placing reaction elicited by chin (“jumping”) Placing reaction elicited by vibrissae (“climbing”) |
Wistar OXYS | Male Female | PND4-PND20 | Litters from 3 mothers of each strain (n = 55) | Overcoming a gap between cages |
Wistar OXYS | Male Female | PND5-PND20 | Litters from 4 mothers of each strain (n = 80) | Jumping from height |
Wistar OXYS | Male Female | PND3-PND20 | Litters from 3 mothers of each strain (n = 56) | Ability to climb down (rope) Ability to climb down (rod) Ability to climb (rope) Ability to climb (rod) |
Wistar OXYS | Male Female | PND12-PND15 PND16 PND17 PND18 | 4 siblings from 5 mothers of each strain (n = 40) | Habituation Novel object recognition (NOR) task Object location recognition (OLR) task Recency recognition (RR) task |
Wistar OXYS | Male Female | PND45 | n = 13 | Depression-like behavior |
Parameter | Literature Data [29] | Wistar | OXYS | ||||
---|---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | ||
Litter size | 12 | 7.2 ± 0.24 | 7.3 ± 0.19 | 13.8 ± 0.15 | 5.8 ± 0.23 * | 6.4 ± 0.21 * | 11.2 ± 0.14 * |
Auricle detachment | PND2 | 2.1 ± 0.03 | 2.1 ± 0.04 | 2.1 ± 0.02 | 3.1 ± 0.07 * | 3.0 ± 0.06 * | 3.1 ± 0.05 * |
Emergence of pelage | PND5 | 5.0 ± 0.09 | 4.9 ± 0.08 | 5.0 ± 0.06 | 5.6 ± 0.08 * | 5.5 ± 0.07 * | 5.6 ± 0.05 * |
Emergence of incisors | PND8 | 9.4 ± 0.18 | 9.0 ± 0.17 | 9.2 ± 0.13 | 9.7 ± 0.07 | 9.8 ± 0.08 * | 9.7 ± 0.05 * |
Eye opening | PND14 | 13.9 ± 0.10 | 13.8 ± 0.11 | 13.9 ± 0.08 | 15.6 ± 0.07 * | 15.4 ± 0.07 *,# | 15.5 ± 0.05 * |
Descent of testes | PND25 | 24.1 ± 0.14 | - | - | 24.5 ± 0.19 | - | - |
Vaginal opening | PND30 | - | 29.6 ± 0.22 | - | - | 31.1 ± 0.25 * | - |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ (PND) | ♀ (PND) | ♂ + ♀ (PND) | ♂ (PND) | ♀ (PND) | ♂ + ♀ (PND) | |
Raising of head | 6.0 ± 0.38 | 6.25 ± 0.25 | 5.67 ± 0.20 | 6.77 ± 0.37 | 6.55 ± 0.28 | 6.68 ± 0.25 * |
Raising of forelimbs | 2.14 ± 0.34 | 2.75 ± 0.85 | 4.36 ± 0.33 | 3.47 ± 0.55 | 3.0 ± 0.66 | 3.29 ± 0.42 * |
Raising of hindlimbs | 2.29 ± 0.29 | 2.5 ± 0.65 | 2.45 ± 0.2 | 1.47 ± 0.3 | 1.55 ± 0.37 | 1.5 ± 0.23 * |
Coordinated movements of forelimbs | 4.14 ± 0.26 | 3.5 ± 0.65 | 5.15 ± 0.25 | 6.47 ± 0.38 * | 6.82 ± 0.4 * | 6.61 ± 0.28 * |
Coordinated movements of hindlimbs | 5.71 ± 0.64 | 6.75 ± 0.48 | 6.94 ± 0.23 | 7.18 ± 0.43 | 7.73 ± 0.47 | 7.39 ± 0.32 |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | |
Mid-air righting | 11.58 ± 0.41 | 12.11 ± 0.4 | 11.78 ± 0.3 | 12.15 ± 0.48 | 12.4 ± 0.54 | 12.23 ± 0.36 * |
Placing reaction: jumping down before landing | 4.95 ± 0.52 | 4.87 ± 0.56 | 4.9 ± 0.38 | 6.67 ± 0.51 * | 5.22 ± 0.81 | 6.13 ± 0.46 (p = 0.05) |
Placing reaction: climbing elevated object | 1.9 ± 0.2 | 1.7 ± 0.17 | 1.79 ± 0.13 | 4.2 ± 0.44 * | 4.67 ± 0.47 * | 4.38 ± 0.32 * |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | |
Horizontal jumping 1.2 cm | 8.35 ± 0.36 | 8.89 ± 0.54 | 8.6 ± 0.32 | 9.57 ± 0.81 | 8.7 ± 0.3 | 9.1 ± 0.38 |
Horizontal jumping 3.8 cm | 18.09 ± 0.64 | 19.11 ± 0.26 | 18.55 ± 0.38 | - | 20.0 ± 0.0 | 20.0 ± 0 (p = 0.05) |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | |
Familiarization trial | ||||||
Distance, cm | 117.00 ± 22.43 | 266.90 ± 69.88 | 191.95 ± 39.64 | 120.82 ± 34.90 | 87.33 ± 19.81 | 105.75 ± 21.01 * |
Approaches to right object | 0.20 ± 0.13 | 1.90 ± 1.06 | 1.05 ± 0.55 | 0.82 ± 0.38 | 0 | 0.45 ± 0.22 |
Time of investigation of right object, s | 0.45 ± 0.32 | 4.45 ± 2.39 | 2.45 ± 1.26 | 3.64 ± 2.19 | 0 | 2.00 ± 1.25 |
Approaches to left object | 0.30 ± 0.15 | 2.00 ± 0.89 | 1.15 ± 0.48 | 0.45 ± 0.28 | 0.33 ± 0.24 | 0.40 ± 0.18 |
Time of investigation of left object, s | 1.60 ± 0.92 | 9.10 ± 4.80 | 5.35 ± 2.53 | 1.73 ± 1.44 | 0.67 ± 0.47 | 1.25 ± 0.81 |
Testing trial | ||||||
Distance, cm | 214.60 ± 54.21 | 270.44 ± 76.72 | 241.05 ± 45.34 | 265.73 ± 66.39 $ | 228.56 ± 54.74 $ | 249.00 ± 43.14 $ |
Approaches to familiar object | 1.80 ± 0.65 | 2.33 ± 1.27 | 2.05 ± 0.67 | 3.18 ± 1.26 | 1.56 ± 0.73 | 2.45 ± 0.77 $ |
Time of investigation of familiar object, s | 11.20 ± 5.38 | 8.78 ± 4.19 | 10.05 ± 3.37 | 13.00 ± 6.88 $ | 6.00 ± 3.07 $ | 9.85 ± 4.02 $ |
Approaches to novel object | 1.80 ± 0.73 | 1.89 ± 1.07 | 1.84 ± 0.62 | 3.09 ± 1.37 | 1.78 ± 0.49 | 2.50 ± 0.78 $ |
Time of investigation of novel object, s | 5.30 ± 2.17 | 3.44 ± 1.89 | 4.42 ± 1.43 | 10.18 ± 5.28 | 6.11 ± 1.83 $ | 8.35 ± 2.99 $ |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | |
Familiarization trial | ||||||
Distance, cm | 137.50 ± 38.51 | 304.50 ± 51.57 # | 221.00 ± 36.71 | 98.64 ± 34.01 | 95.22 ± 24.59 * | 97.10 ± 21.21 * |
Approaches to right object | 1.60 ± 0.75 | 3.70 ± 0.98 | 2.65 ± 0.65 | 1.18 ± 0.83 | 1.67 ± 0.71 | 1.40 ± 0.54 |
Time of investigation of right object, s | 7.80 ± 2.96 | 11.30 ± 2.12 | 9.55 ± 1.82 | 4.18 ± 2.92 | 7.33 ± 4.15 | 5.60 ± 2.42 |
Approaches to left object | 1.90 ± 0.97 | 4.00 ± 1.15 | 2.95 ± 0.77 | 1.09 ± 0.90 | 0.89 ± 0.39 | 1.00 ± 0.51 |
Time of investigation of left object, s | 7.90 ± 4.77 | 14.60 ± 3.19 | 11.25 ± 2.90 | 6.18 ± 5.60 | 1.67 ± 0.73 | 4.15 ± 3.07 |
Testing trial | ||||||
Distance, cm | 317.20 ± 62.23 | 306.00 ± 91.88 | 311.60 ± 54.02 | 269.55 ± 56.01 | 138.67 ± 230.72 | 210.65 ± 36.20 |
Approaches to familiar object | 5.10 ± 1.40 | 4.10 ± 1.12 | 4.60 ± 0.88 | 4.45 ± 1.27 $ | 2.00 ± 0.85 | 3.35 ± 0.83 $ |
Time of investigation of familiar object, s | 25.30 ± 7.86 $ | 17.40 ± 6.49 | 21.35 ± 5.05 $ | 18.09 ± 3.93 | 11.44 ± 6.98 | 15.10 ± 3.78 $ |
Approaches to novel object | 4.50 ± 1.28 | 4.40 ± 1.46 | 4.45 ± 0.95 | 5.82 ± 1.54 $ | 1.67 ± 0.47 | 3.95 ± 0.98 $ |
Time of investigation of novel object, s | 17.20 ± 5.47 $ | 19.50 ± 7.00 | 18.35 ± 4.33 $ | 26.73 ± 7.25 $ | 9.67 ± 5.33 | 19.05 ± 4.94 $ |
Parameter | Wistar | OXYS | ||||
---|---|---|---|---|---|---|
♂ | ♀ | ♂ + ♀ | ♂ | ♀ | ♂ + ♀ | |
First familiarization trial | ||||||
Distance, cm | 156.60 ± 40.32 | 304.90 ± 48.07 | 230.75 ± 34.95 | 63.36 ± 16.22 | 103.44 ± 24.27 | 81.40 ± 14.45 |
Approaches to right object | 2.50 ± 1.24 | 5.70 ± 1.31 | 4.10 ± 0.95 | 0.36 ± 0.28 | 0.44 ± 0.24 | 0.40 ± 0.18 |
Time of investigation of the right object, s | 11.50 ± 6.82 | 21.90 ± 5.96 | 16.70 ± 4.57 | 1.73 ± 1.38 * | 1.00 ± 0.53 * | 1.40 ± 0.78 * |
Approaches to left object | 2.30 ± 0.84 | 4.80 ± 1.06 | 3.55 ± 0.72 | 0.18 ± 0.12 | 0.67 ± 0.29 | 0.40 ± 0.15 |
Time of investigation of left object, s | 21.10 ± 12.11 | 18.20 ± 4.81 | 19.65 ± 6.35 | 0.45 ± 0.37 * | 3.00 ± 1.66 * | 1.60 ± 0.80 * |
Second familiarization trial | ||||||
Distance, cm | 215.30 ± 30.54 | 236.90 ± 55.46 | 226.10 ± 30.91 | 56.00 ± 14.36 | 60.44 ± 18.72 | 58.00 ± 11.24 |
Approaches to right object | 3.40 ± 1.00 | 4.00 ± 1.23 | 3.70 ± 0.77 | 0.18 ± 0.12 | 0.44 ± 0.24 | 0.30 ± 0.13 |
Time of investigation of right object, s | 10.50 ± 2.87 | 12.50 ± 4.04 | 11.50 ± 2.42 | 0.73 ± 0.63 | 0.67 ± 0.37 | 0.70 ± 0.38 |
Approaches to left object | 2.10 ± 0.81 | 3.50 ± 0.98 | 2.80 ± 0.64 | 0.18 ± 0.12 | 0.44 ± 0.34 | 0.30 ± 0.16 |
Time of investigation of left object, s | 4.90 ± 1.72 | 13.90 ± 4.34 | 9.40 ± 2.49 | 0.27 ± 0.19 | 1.67 ± 1.18 | 0.90 ± 0.55 |
Testing trial | ||||||
Distance, cm | 167.10 ± 27.85 | 127.20 ± 32.81 | 147.15 ± 21.44 | 75.00 ± 15.63 * | 70.33 ± 16.11 * | 72.90 ± 10.97 * |
Approaches to familiar object | 5.20 ± 1.30 | 2.10 ± 0.82 | 3.65 ± 0.83 | 1.27 ± 0.45 * | 1.11 ± 0.65 * | 1.20 ± 0.37 * |
Time of investigation of familiar object, s | 30.60 ± 10.54 | 13.20 ± 4.51 | 21.90 ± 5.92 | 5.73 ± 1.90 * | 8.33 ± 4.58 * | 6.90 ± 2.26 * |
Approaches to novel object | 3.70 ± 0.80 | 2.20 ± 1.06 | 2.95 ± 0.67 | 0.55 ± 0.28 * | 0.89 ± 0.68 * | 0.70 ± 0.33 * |
Time of investigation of novel object, s | 20.70 ± 9.23 | 5.80 ± 2.76 | 13.25 ± 4.99 | 3.36 ± 1.84 | 4.56 ± 3.40 | 3.90 ± 1.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlova, T.; Rudnitskaya, E.; Burnyasheva, A.; Stefanova, N.; Peunov, D.; Kolosova, N. Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer’s Disease-like Pathology. Biomedicines 2022, 10, 2910. https://doi.org/10.3390/biomedicines10112910
Kozlova T, Rudnitskaya E, Burnyasheva A, Stefanova N, Peunov D, Kolosova N. Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer’s Disease-like Pathology. Biomedicines. 2022; 10(11):2910. https://doi.org/10.3390/biomedicines10112910
Chicago/Turabian StyleKozlova, Tatiana, Ekaterina Rudnitskaya, Alena Burnyasheva, Natalia Stefanova, Daniil Peunov, and Nataliya Kolosova. 2022. "Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer’s Disease-like Pathology" Biomedicines 10, no. 11: 2910. https://doi.org/10.3390/biomedicines10112910
APA StyleKozlova, T., Rudnitskaya, E., Burnyasheva, A., Stefanova, N., Peunov, D., & Kolosova, N. (2022). Delayed Formation of Neonatal Reflexes and of Locomotor Skills Is Associated with Poor Maternal Behavior in OXYS Rats Prone to Alzheimer’s Disease-like Pathology. Biomedicines, 10(11), 2910. https://doi.org/10.3390/biomedicines10112910