A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Power Estimation
2.2. Participants
2.3. Genotyping and QC Procedures
2.4. Association Studies
2.5. Functional Annotation of Associated Loci
2.5.1. Linkage Disequilibrium Blocks and Regulated Genes
2.5.2. Gene Networks
3. Results
3.1. Association Studies
3.2. Gene Networks
4. Discussion
4.1. Sex Differences and AD
4.2. Function of the Discovered Genes
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domi, E.; Domi, A.; Adermark, L.; Heilig, M.; Augier, E. Neurobiology of alcohol seeking behavior. J. Neurochem. 2021, 157, 1585–1614. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.F.; Heilig, M.; Perez, A.; Probst, C.; Rehm, J. Alcohol use disorders. Lancet 2019, 394, 781–792. [Google Scholar] [CrossRef]
- Bobak, M.; McKee, M.; Rose, R.; Marmot, M. Alcohol consumption in a national sample of the Russian population. Addiction 1999, 94, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, M.; Bunova, A.; Gornyi, B.; Ferreira-Borges, C.; Gerber, A.; Khaltourina, D.; Yurasova, E.; Rehm, J. Russia’s National Concept to Reduce Alcohol Abuse and Alcohol-Dependence in the Population 2010-2020: Which Policy Targets Have Been Achieved? Int. J. Environ. Res. Public Health 2020, 17, 8270. [Google Scholar] [CrossRef]
- Verhulst, B.; Neale, M.C.; Kendler, K.S. The heritability of alcohol use disorders: A meta-analysis of twin and adoption studies. Psychol. Med. 2015, 45, 1061–1072. [Google Scholar] [CrossRef] [Green Version]
- Lai, D.; Wetherill, L.; Bertelsen, S.; Carey, C.E.; Kamarajan, C.; Kapoor, M.; Meyers, J.L.; Anokhin, A.P.; Bennett, D.A.; Bucholz, K.K.; et al. Genome-wide association studies of alcohol dependence, DSM-IV criterion count and individual criteria. Genes Brain Behav. 2019, 18, e12579. [Google Scholar] [CrossRef]
- Zhou, H.; Sealock, J.M.; Sanchez-Roige, S.; Clarke, T.K.; Levey, D.F.; Cheng, Z.; Li, B.; Polimanti, R.; Kember, R.L.; Smith, R.V.; et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 2020, 23, 809–818. [Google Scholar] [CrossRef]
- Thompson, A.; Cook, J.; Choquet, H.; Jorgenson, E.; Yin, J.; Kinnunen, T.; Barclay, J.; Morris, A.P.; Pirmohamed, M. Functional validity, role, and implications of heavy alcohol consumption genetic loci. Sci. Adv. 2020, 6, eaay5034. [Google Scholar] [CrossRef] [Green Version]
- Evangelou, E.; Gao, H.; Chu, C.; Ntritsos, G.; Blakeley, P.; Butts, A.R.; Pazoki, R.; Suzuki, H.; Koskeridis, F.; Yiorkas, A.M.; et al. New alcohol-related genes suggest shared genetic mechanisms with neuropsychiatric disorders. Nat. Hum. Behav. 2019, 3, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Gelernter, J.; Kranzler, H.R.; Sherva, R.; Almasy, L.; Koesterer, R.; Smith, A.H.; Anton, R.; Preuss, U.W.; Ridinger, M.; Rujescu, D.; et al. Genome-wide association study of alcohol dependence:significant findings in African—And European-Americans including novel risk loci. Mol. Psychiatry 2014, 19, 41–49. [Google Scholar] [CrossRef]
- Gelernter, J.; Sun, N.; Polimanti, R.; Pietrzak, R.H.; Levey, D.F.; Lu, Q.; Hu, Y.; Li, B.; Radhakrishnan, K.; Aslan, M.; et al. Genome-wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol. Psychiatry 2019, 86, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Mallard, T.T.; Savage, J.E.; Johnson, E.C.; Huang, Y.; Edwards, A.C.; Hottenga, J.J.; Grotzinger, A.D.; Gustavson, D.E.; Jennings, M.V.; Anokhin, A.; et al. Item-Level Genome-Wide Association Study of the Alcohol Use Disorders Identification Test in Three Population-Based Cohorts. Am. J. Psychiatry 2022, 179, 58–70. [Google Scholar] [CrossRef] [PubMed]
- Walters, R.K.; Polimanti, R.; Johnson, E.C.; McClintick, J.N.; Adams, M.J.; Adkins, A.E.; Aliev, F.; Bacanu, S.A.; Batzler, A.; Bertelsen, S.; et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 2018, 21, 1656–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Roige, S.; Palmer, A.A.; Fontanillas, P.; Elson, S.L.; 23andMe Research Team; the Substance Use Disorder Working Group of the Psychiatric Genomics Consortium; Adams, M.J.; Howard, D.M.; Edenberg, H.J.; Davies, G.; et al. Genome-Wide Association Study Meta-Analysis of the Alcohol Use Disorders Identification Test (AUDIT) in Two Population-Based Cohorts. Am. J. Psychiatry 2019, 176, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Peterson, R.E.; Ong, J.S.; MacGregor, S.; Edwards, A.C.; Clarke, T.K.; Frank, J.; Gerring, Z.; Gillespie, N.A.; Lind, P.A.; et al. Evidence of causal effect of major depression on alcohol dependence: Findings from the psychiatric genomics consortium. Psychol. Med. 2019, 49, 1218–1226. [Google Scholar] [CrossRef]
- Abdellaoui, A.; Smit, D.J.A.; van den Brink, W.; Denys, D.; Verweij, K.J.H. Genomic relationships across psychiatric disorders including substance use disorders. Drug Alcohol Depend. 2021, 220, 108535. [Google Scholar] [CrossRef]
- Kranzler, H.R.; Zhou, H.; Kember, R.L.; Vickers Smith, R.; Justice, A.C.; Damrauer, S.; Tsao, P.S.; Klarin, D.; Baras, A.; Reid, J.; et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun. 2019, 10, 1499. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Roige, S.; Palmer, A.A.; Clarke, T.K. Recent Efforts to Dissect the Genetic Basis of Alcohol Use and Abuse. Biol. Psychiatry 2020, 87, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Yang, B.Z.; Kranzler, H.R.; Liu, X.; Zhao, H.; Farrer, L.A.; Boerwinkle, E.; Potash, J.B.; Gelernter, J. Integrating GWASs and human protein interaction networks identifies a gene subnetwork underlying alcohol dependence. Am. J. Hum. Genet. 2013, 93, 1027–1034. [Google Scholar] [CrossRef] [Green Version]
- Edenberg, H.J.; Gelernter, J.; Agrawal, A. Genetics of Alcoholism. Curr. Psychiatry Rep. 2019, 21, 26. [Google Scholar] [CrossRef]
- Karlsson Linner, R.; Biroli, P.; Kong, E.; Meddens, S.F.W.; Wedow, R.; Fontana, M.A.; Lebreton, M.; Tino, S.P.; Abdellaoui, A.; Hammerschlag, A.R.; et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 2019, 51, 245–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Jiang, Y.; Wedow, R.; Li, Y.; Brazel, D.M.; Chen, F.; Datta, G.; Davila-Velderrain, J.; McGuire, D.; Tian, C.; et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 2019, 51, 237–244. [Google Scholar] [CrossRef]
- Clarke, T.K.; Adams, M.J.; Davies, G.; Howard, D.M.; Hall, L.S.; Padmanabhan, S.; Murray, A.D.; Smith, B.H.; Campbell, A.; Hayward, C.; et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112 117). Mol. Psychiatry 2017, 22, 1376–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojnar, M.; Brower, K.J.; Strobbe, S.; Ilgen, M.; Matsumoto, H.; Nowosad, I.; Sliwerska, E.; Burmeister, M. Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcohol. Clin. Exp. Res. 2009, 33, 693–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Hutchison, K.E.; Calhoun, V.D.; Claus, E.D.; Turner, J.A.; Sui, J.; Liu, J. CREB-BDNF pathway influences alcohol cue-elicited activation in drinkers. Hum. Brain Mapp. 2015, 36, 3007–3019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zai, C.C.; Manchia, M.; Zai, G.C.; Woo, J.; Tiwari, A.K.; de Luca, V.; Kennedy, J.L. Association study of BDNF and DRD3 genes with alcohol use disorder in Schizophrenia. Neurosci. Lett. 2018, 671, 1–6. [Google Scholar] [CrossRef]
- Trucco, E.M.; Villafuerte, S.; Hussong, A.; Burmeister, M.; Zucker, R.A. Biological underpinnings of an internalizing pathway to alcohol, cigarette, and marijuana use. J. Abnorm. Psychol. 2018, 127, 79–91. [Google Scholar] [CrossRef]
- Lappalainen, J.; Krupitsky, E.; Remizov, M.; Pchelina, S.; Taraskina, A.; Zvartau, E.; Somberg, L.K.; Covault, J.; Kranzler, H.R.; Krystal, J.H.; et al. Association between alcoholism and gamma-amino butyric acid alpha2 receptor subtype in a Russian population. Alcohol. Clin. Exp. Res. 2005, 29, 493–498. [Google Scholar] [CrossRef]
- Golenkov, A.V.; Kozlov, V.A.; Sapozhnikov, S.P.; Trofimova, I.N.; Mikhaylov, I.V. A clinical and psychological study of tobacco dependence in patients with alcoholism. Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova 2015, 115, 40–45. [Google Scholar] [CrossRef]
- Marees, A.T.; de Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; He, J.; Zhao, S.; Wu, H.; Zhong, X.; Sheng, Q.; Samuels, D.C.; Shyr, Y.; Long, J. Illumina human exome genotyping array clustering and quality control. Nat. Protoc. 2014, 9, 2643–2662. [Google Scholar] [CrossRef] [PubMed]
- The 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Transactions. Ser. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [Green Version]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Malov, S.V.; Antonik, A.; Tang, M.; Berred, A.; Zeng, Y.; O’Brien, S.J. Signal localization: A new approach in signal discovery. Biom. J. 2017, 59, 126–144. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [Green Version]
- Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell 2018, 173, 1705–1715.e16. [Google Scholar] [CrossRef] [Green Version]
- Levchenko, A.; Kanapin, A.; Samsonova, A.; Fedorenko, O.Y.; Kornetova, E.G.; Nurgaliev, T.; Mazo, G.E.; Semke, A.V.; Kibitov, A.O.; Bokhan, N.A.; et al. A genome-wide association study identifies a gene network associated with paranoid schizophrenia and antipsychotics-induced tardive dyskinesia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 105, 110134. [Google Scholar] [CrossRef]
- Wang, D.; Liu, S.; Warrell, J.; Won, H.; Shi, X.; Navarro, F.C.P.; Clarke, D.; Gu, M.; Emani, P.; Yang, Y.T.; et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 2018, 362, eaat8464. [Google Scholar] [CrossRef]
- Fishilevich, S.; Nudel, R.; Rappaport, N.; Hadar, R.; Plaschkes, I.; Iny Stein, T.; Rosen, N.; Kohn, A.; Twik, M.; Safran, M.; et al. GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford) 2017, 2017, bax028. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.31–31.30.33. [Google Scholar] [CrossRef] [PubMed]
- Braschi, B.; Denny, P.; Gray, K.; Jones, T.; Seal, R.; Tweedie, S.; Yates, B.; Bruford, E. Genenames.org: The HGNC and VGNC resources in 2019. Nucleic Acids Res. 2019, 47, D786–D792. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Eraslan, B.; Wieland, T.; Hallstrom, B.; Hopf, T.; Zolg, D.P.; Zecha, J.; Asplund, A.; Li, L.H.; Meng, C.; et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 2019, 15, e8503. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef]
- Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; van Bakel, H.; Varghese, M.; Wang, Y.; et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018, 362, eaat8127. [Google Scholar] [CrossRef] [Green Version]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, E.C.; Chang, Y.; Agrawal, A. An update on the role of common genetic variation underlying substance use disorders. Curr. Genet. Med. Rep. 2020, 8, 35–46. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Gonzalez-Giraldo, Y.; Wegman-Ostrosky, T.; Forero, D.A. Molecular genetics of substance use disorders: An umbrella review. Neurosci. Biobehav. Rev. 2021, 124, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER version 16: A revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Thomas, P. PANTHER pathway: An ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009, 563, 123–140. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef] [PubMed]
- Gilly, A.; Southam, L.; Suveges, D.; Kuchenbaecker, K.; Moore, R.; Melloni, G.E.M.; Hatzikotoulas, K.; Farmaki, A.E.; Ritchie, G.; Schwartzentruber, J.; et al. Very low-depth whole-genome sequencing in complex trait association studies. Bioinformatics 2019, 35, 2555–2561. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Luo, T.; Li, T.; Li, Y.; Zhang, J.; Shan, Y.; Wang, X.; Yang, L.; Zhou, F.; Zhu, Z.; et al. Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits. Nat. Genet. 2019, 51, 1637–1644. [Google Scholar] [CrossRef]
- Okbay, A.; Baselmans, B.M.; De Neve, J.E.; Turley, P.; Nivard, M.G.; Fontana, M.A.; Meddens, S.F.; Linner, R.K.; Rietveld, C.A.; Derringer, J.; et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 2016, 48, 624–633. [Google Scholar] [CrossRef]
- Mick, E.; McGough, J.; Deutsch, C.K.; Frazier, J.A.; Kennedy, D.; Goldberg, R.J. Genome-wide association study of proneness to anger. PLoS ONE 2014, 9, e87257. [Google Scholar] [CrossRef] [Green Version]
- Goes, F.S.; McGrath, J.; Avramopoulos, D.; Wolyniec, P.; Pirooznia, M.; Ruczinski, I.; Nestadt, G.; Kenny, E.E.; Vacic, V.; Peters, I.; et al. Genome-wide association study of schizophrenia in Ashkenazi Jews. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 649–659. [Google Scholar] [CrossRef]
- Stefansson, H.; Ophoff, R.A.; Steinberg, S.; Andreassen, O.A.; Cichon, S.; Rujescu, D.; Werge, T.; Pietilainen, O.P.; Mors, O.; Mortensen, P.B.; et al. Common variants conferring risk of schizophrenia. Nature 2009, 460, 744–747. [Google Scholar] [CrossRef] [Green Version]
- Edenberg, H.J.; McClintick, J.N. Alcohol Dehydrogenases, Aldehyde Dehydrogenases, and Alcohol Use Disorders: A Critical Review. Alcohol. Clin. Exp. Res. 2018, 42, 2281–2297. [Google Scholar] [CrossRef]
- DiBlasi, E.; Shabalin, A.A.; Monson, E.T.; Keeshin, B.R.; Bakian, A.V.; Kirby, A.V.; Ferris, E.; Chen, D.; William, N.; Gaj, E.; et al. Rare protein-coding variants implicate genes involved in risk of suicide death. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2021, 186, 508–520. [Google Scholar] [CrossRef]
- Blokland, G.A.M.; Grove, J.; Chen, C.Y.; Cotsapas, C.; Tobet, S.; Handa, R.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; St Clair, D.; Lencz, T.; Mowry, B.J.; et al. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol. Psychiatry 2022, 91, 102–117. [Google Scholar] [CrossRef]
- Zagni, E.; Simoni, L.; Colombo, D. Sex and Gender Differences in Central Nervous System-Related Disorders. Neurosci. J. 2016, 2016, 2827090. [Google Scholar] [CrossRef] [Green Version]
- Balaton, B.P.; Cotton, A.M.; Brown, C.J. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol. Sex Differ. 2015, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, L.M.; Kim, M.; Hoftman, G.D.; Haney, J.R.; de la Torre-Ubieta, L.; Pasaniuc, B.; Gandal, M.J. Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biol. Psychiatry 2021, 89, 54–64. [Google Scholar] [CrossRef]
- Schiele, M.A.; Gottschalk, M.G.; Domschke, K. The applied implications of epigenetics in anxiety, affective and stress-related disorders—A review and synthesis on psychosocial stress, psychotherapy and prevention. Clin. Psychol. Rev. 2020, 77, 101830. [Google Scholar] [CrossRef]
- White, A.M. Gender Differences in the Epidemiology of Alcohol Use and Related Harms in the United States. Alcohol Res. Curr. Rev. 2020, 40, 01. [Google Scholar] [CrossRef]
- Chung, W.; Lim, S.; Lee, S. Why is high-risk drinking more prevalent among men than women? Evidence from South Korea. BMC Public Health 2012, 12, 101. [Google Scholar] [CrossRef] [Green Version]
- Erol, A.; Karpyak, V.M. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Cochrane, J.J.; Goering, P.; Lancee, W. Gender differences in the manifestations of problem drinking in a community sample. J. Subst. Abuse 1992, 4, 247–254. [Google Scholar] [CrossRef]
- Guinle, M.I.B.; Sinha, R. The Role of Stress, Trauma, and Negative Affect in Alcohol Misuse and Alcohol Use Disorder in Women. Alcohol Res. Curr. Rev. 2020, 40, 05. [Google Scholar] [CrossRef]
- Hallers-Haalboom, E.T.; Maas, J.; Kunst, L.E.; Bekker, M.H.J. The role of sex and gender in anxiety disorders: Being scared “like a girl”? Handb. Clin. Neurol. 2020, 175, 359–368. [Google Scholar] [CrossRef]
- Van der Doef, T.F.; Zaragoza Domingo, S.; Jacobs, G.E.; Drevets, W.C.; Marston, H.M.; Nathan, P.J.; Tome, M.B.; Tamminga, C.A.; van Gerven, J.M.A.; Kas, M.J.H. New approaches in psychiatric drug development. Eur. Neuropsychopharmacol. 2018, 28, 983–993. [Google Scholar] [CrossRef] [Green Version]
- Numakawa, T.; Odaka, H.; Adachi, N. Actions of Brain-Derived Neurotrophin Factor in the Neurogenesis and Neuronal Function, and Its Involvement in the Pathophysiology of Brain Diseases. Int. J. Mol. Sci. 2018, 19, 3650. [Google Scholar] [CrossRef] [Green Version]
- Koshimizu, H.; Matsuoka, H.; Nakajima, Y.; Kawai, A.; Ono, J.; Ohta, K.I.; Miki, T.; Sunagawa, M.; Adachi, N.; Suzuki, S. Brain-derived neurotrophic factor predominantly regulates the expression of synapse-related genes in the striatum: Insights from in vitro transcriptomics. Neuropsychopharmacol. Rep. 2021, 41, 485–495. [Google Scholar] [CrossRef]
- Ornell, F.; Hansen, F.; Schuch, F.B.; Pezzini Rebelatto, F.; Tavares, A.L.; Scherer, J.N.; Valerio, A.G.; Pechansky, F.; Paim Kessler, F.H.; von Diemen, L. Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug Alcohol Depend. 2018, 193, 91–103. [Google Scholar] [CrossRef]
- Di Carlo, P.; Punzi, G.; Ursini, G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr. Genet. 2019, 29, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wu, D.; Qu, X.; Li, M.; Zou, J.; Tan, S. BDNF and nicotine dependence: Associations and potential mechanisms. Rev. Neurosci. 2021, 32, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Matrone, C.; Petrillo, F.; Nasso, R.; Ferretti, G. Fyn Tyrosine Kinase as Harmonizing Factor in Neuronal Functions and Dysfunctions. Int. J. Mol. Sci. 2020, 21, 4444. [Google Scholar] [CrossRef]
- Morisot, N.; Ron, D. Alcohol-dependent molecular adaptations of the NMDA receptor system. Genes Brain Behav. 2017, 16, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.; Rujescu, D.; Kissling, C.; Soyka, M.; Dahmen, N.; Preuss, U.W.; Wieman, S.; Depner, M.; Wellek, S.; Lascorz, J.; et al. Analysis of genetic variations of protein tyrosine kinase fyn and their association with alcohol dependence in two independent cohorts. Biol. Psychiatry 2003, 54, 1422–1426. [Google Scholar] [CrossRef]
- Pastor, I.J.; Laso, F.J.; Ines, S.; Marcos, M.; Gonzalez-Sarmiento, R. Genetic association between -93A/G polymorphism in the Fyn kinase gene and alcohol dependence in Spanish men. Eur. Psychiatry 2009, 24, 191–194. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Yu, H.; He, L.; Xu, Y.; Zhang, D.; Yi, Q.; Li, C.; Li, X.; Shen, J.; et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat. Genet. 2017, 49, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, D.J.; Lee, A.; Sprengel, R.; Seeburg, P.H.; Harrison, P.J.; Bannerman, D.M. Altered balance of excitatory and inhibitory learning in a genetically modified mouse model of glutamatergic dysfunction relevant to schizophrenia. Sci. Rep. 2017, 7, 1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, M.; Chen, C.Y.; Li, Z.; Martin, A.R.; Bryois, J.; Ma, X.; Gaspar, H.; Ikeda, M.; Benyamin, B.; Brown, B.C.; et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 2019, 51, 1670–1678. [Google Scholar] [CrossRef]
- Ripke, S.; O’Dushlaine, C.; Chambert, K.; Moran, J.L.; Kahler, A.K.; Akterin, S.; Bergen, S.E.; Collins, A.L.; Crowley, J.J.; Fromer, M.; et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013, 45, 1150–1159. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, H.; Baranova, A.; Huang, H.; Li, S.; Cai, L.; Rao, S.; Dai, M.; Xie, M.; Dou, Y.; et al. Multi-trait analysis for genome-wide association study of five psychiatric disorders. Transl. Psychiatry 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Takahashi, A.; Kamatani, Y.; Momozawa, Y.; Saito, T.; Kondo, K.; Shimasaki, A.; Kawase, K.; Sakusabe, T.; Iwayama, Y.; et al. Genome-Wide Association Study Detected Novel Susceptibility Genes for Schizophrenia and Shared Trans-Populations/Diseases Genetic Effect. Schizophr. Bull. 2019, 45, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 2017, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Forrest, M.P.; Hill, M.J.; Kavanagh, D.H.; Tansey, K.E.; Waite, A.J.; Blake, D.J. The Psychiatric Risk Gene Transcription Factor 4 (TCF4) Regulates Neurodevelopmental Pathways Associated With Schizophrenia, Autism, and Intellectual Disability. Schizophr. Bull. 2018, 44, 1100–1110. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.R.; Szeto, R.A.; Carvalho, V.M.A.; Muotri, A.R.; Papes, F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry 2021, 11, 19. [Google Scholar] [CrossRef]
- Nagel, M.; Jansen, P.R.; Stringer, S.; Watanabe, K.; de Leeuw, C.A.; Bryois, J.; Savage, J.E.; Hammerschlag, A.R.; Skene, N.G.; Munoz-Manchado, A.B.; et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat. Genet. 2018, 50, 920–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, T.; Smith, M.D.; Jelokhani-Niaraki, M. Toward understanding the mechanism of ion transport activity of neuronal uncoupling proteins UCP2, UCP4, and UCP5. Biochemistry 2012, 51, 4004–4014. [Google Scholar] [CrossRef]
- Mouaffak, F.; Kebir, O.; Bellon, A.; Gourevitch, R.; Tordjman, S.; Viala, A.; Millet, B.; Jaafari, N.; Olie, J.P.; Krebs, M.O. Association of an UCP4 (SLC25A27) haplotype with ultra-resistant schizophrenia. Pharmacogenomics 2011, 12, 185–193. [Google Scholar] [CrossRef]
- Maekawa, R.; Seino, Y.; Ogata, H.; Murase, M.; Iida, A.; Hosokawa, K.; Joo, E.; Harada, N.; Tsunekawa, S.; Hamada, Y.; et al. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice. J. Nutr. Biochem. 2017, 49, 71–79. [Google Scholar] [CrossRef]
- Schumann, G.; Liu, C.; O’Reilly, P.; Gao, H.; Song, P.; Xu, B.; Ruggeri, B.; Amin, N.; Jia, T.; Preis, S.; et al. KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference. Proc. Natl. Acad. Sci. USA 2016, 113, 14372–14377. [Google Scholar] [CrossRef]
- Yehia, L.; Eng, C. Largescale population genomics versus deep phenotyping: Brute force or elegant pragmatism towards precision medicine. NPJ Genom. Med. 2019, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, B.D.; Fornage, M.; McArdle, P.F.; Cheng, Y.C.; Pulit, S.L.; Wong, Q.; Dave, T.; Williams, S.R.; Corriveau, R.; Gwinn, K.; et al. Using previously genotyped controls in genome-wide association studies (GWAS): Application to the Stroke Genetics Network (SiGN). Front. Genet. 2014, 5, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudarev, A.A.; Chupakhin, V.S.; Odland, J.O. Health and society in Chukotka: An overview. Int. J. Circumpolar Health 2013, 72, 20469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pakriev, S.; Vasar, V.; Aluoja, A.; Shlik, J. Prevalence of ICD-10 harmful use of alcohol and alcohol dependence among the rural population in Udmurtia. Alcohol Alcoholism. 1998, 33, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.C.; Sanchez-Roige, S.; Acion, L.; Adams, M.J.; Bucholz, K.K.; Chan, G.; Chao, M.J.; Chorlian, D.B.; Dick, D.M.; Edenberg, H.J.; et al. Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples. Psychol. Med. 2021, 51, 1147–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedorenko, O.Y.; Golimbet, V.E.; Ivanova, S.A.; Levchenko, A.; Gainetdinov, R.R.; Semke, A.V.; Simutkin, G.G.; Gareeva, A.E.; Glotov, A.S.; Gryaznova, A.; et al. Opening up new horizons for psychiatric genetics in the Russian Federation: Moving toward a national consortium. Mol. Psychiatry 2019, 24, 1099–1111. [Google Scholar] [CrossRef]
Phenotype | Density (%) | Mean | Standard Deviation | Yes | No |
---|---|---|---|---|---|
(A) | |||||
Alcohol Dependence (AD) | 100 | 224 | 0 | ||
Family history of AD | 100 | 117 | 107 | ||
Family history of mental disorders | 100 | 10 | 214 | ||
Average amount of alcohol consumed, either self-reported or assessed with TFLB (absolute ethanol, grams per day) | 100 | 101.3 | 82.1 | ||
TLFB, Number of heavy drinking days | 50 | 24.8 | 21.9 | ||
TLFB, Number of drinking days | 50 | 9 | 8.7 | ||
TLFB, Number of sobriety days | 50 | 56.1 | 24.7 | ||
STAI—State anxiety | 100 | 39.8 | 9.6 | ||
STAI—Trait anxiety | 100 | 42.6 | 9.5 | ||
OCDS | 100 | 12.1 | 12.2 | ||
PACS | 100 | 3.8 | 4.9 | ||
VAS for alcohol craving | 100 | 1.6 | 1.6 | ||
HAS | 50 | 7 | 5.7 | ||
MADRS | 50 | 5.9 | 5.4 | ||
CGI—Severity | 50 | 4.1 | 0.6 | ||
Average number of cigarettes smoked daily | 33.5 | 14.6 | 9.3 | ||
(B) | |||||
Alcohol Dependence (AD) | 100 | 192 | 0 | ||
Family history of AD | 100 | 104 | 88 | ||
Family history of mental disorders | 100 | 7 | 185 | ||
Average amount of alcohol consumed, either self-reported or assessed with TFLB (absolute ethanol, grams per day) | 100 | 107 | 85.8 | ||
TLFB, Number of heavy drinking days | 51.6 | 25.1 | 21.8 | ||
TLFB, Number of drinking days | 51.6 | 8.1 | 17 | ||
TLFB, Number of sobriety days | 51.6 | 56.7 | 24.1 | ||
STAI—State anxiety | 100 | 39.8 | 9.9 | ||
STAI—Trait anxiety | 100 | 42 | 9.4 | ||
OCDS | 100 | 11.6 | 12 | ||
PACS | 100 | 3.7 | 4.5 | ||
VAS for alcohol craving | 100 | 1.5 | 1.5 | ||
HAS | 51.6 | 7.2 | 5.8 | ||
MADRS | 51.6 | 6 | 5.4 | ||
CGI—Severity | 51.6 | 4.1 | 0.6 | ||
Average number of cigarettes smoked daily | 33.3 | 16.3 | 8.5 | ||
(C) | |||||
Alcohol Dependence (AD) | 100 | 32 | 0 | ||
Family history of AD | 100 | 13 | 19 | ||
Family history of mental disorders | 100 | 3 | 29 | ||
Average amount of alcohol consumed, either self-reported or assessed with TFLB (absolute ethanol, grams per day) | 100 | 67.15 | 40.84 | ||
TLFB, Number of heavy drinking days | 40.6 | 21.9 | 23.5 | ||
TLFB, Number of drinking days | 40.6 | 16.3 | 28.5 | ||
TLFB, Number of sobriety days | 40.6 | 51.8 | 29.6 | ||
STAI—State anxiety | 100 | 39.9 | 7.4 | ||
STAI—Trait anxiety | 100 | 46.4 | 9.1 | ||
OCDS | 100 | 14.7 | 13.2 | ||
PACS | 100 | 4.5 | 6.7 | ||
VAS for alcohol craving | 100 | 2 | 2.1 | ||
HAS | 40.6 | 6.1 | 4.3 | ||
MADRS | 40.6 | 4.5 | 4.7 | ||
CGI—Severity | 40.6 | 4.1 | 0.6 | ||
Average number of cigarettes smoked daily | 34.4 | 4.7 | 7.3 |
Filtration Step | Variants Removed | People Removed | Variants Remaining | People Remaining |
---|---|---|---|---|
(A) | ||||
SNP missingness (<0.2) | 24,963 | 0 | 617,861 | 1283 |
Missingness per individual (<0.2) | 0 | 7 | 617,861 | 1276 |
SNP missingness (<0.02) | 75,494 | 0 | 542,367 | 1276 |
IND missingness (<0.02) | 0 | 26 | 542,367 | 1250 |
Sex discrepancy | 0 | 12 | 542,367 | 1238 |
Autosomes only | 13,562 | 0 | 528,805 | 1238 |
MAF < 0.01 | 116,798 | 0 | 412,007 | 1238 |
hwe 1 × 10−6 | 43 | 0 | 411,964 | 1238 |
Heterozygocity outliers | 0 | 0 | 411,964 | 1238 |
Inbreeding (autosomal het) | 0 | 0 | 411,964 | 1238 |
Relatedness (IBD) | 0 | 29 | 411,964 | 1209 |
MDS outlier | 0 | 1 | 411,964 | 1208 |
SNPs removed by Illumina | 374 | 0 | 411,590 | 1208 |
SNPs removed from dbSNP | 4 | 0 | 411,586 | 1208 |
Final | 231,238 | 75 | 411,586 | 1208 |
(B) | ||||
Selection of samples | 0 | 1059 | 642,824 | 224 |
SNP missingness (<0.2) | 26,960 | 0 | 615,864 | 224 |
Missingness per individual (<0.2) | 0 | 7 | 615,864 | 217 |
SNP missingness (<0.02) | 93,387 | 0 | 522,477 | 217 |
IND missingness (<0.02) | 0 | 6 | 522,477 | 211 |
Sex discrepancy | 0 | 6 | 522,477 | 205 |
Autosomes only | 12,785 | 0 | 509,692 | 205 |
MAF < 0.01 | 128,251 | 0 | 381,441 | 205 |
hwe 1 × 10−10 | 9 | 0 | 381,432 | 205 |
Heterozygocity outliers | 0 | 0 | 381,432 | 205 |
Inbreeding (autosomal het) | 0 | 0 | 381,432 | 205 |
Relatedness (IBD) | 0 | 12 | 381,432 | 193 |
MDS outlier | 0 | 1 | 381,432 | 192 |
SNPs removed by Illumina | 345 | 0 | 381,087 | 192 |
SNPs removed from dbSNP | 3 | 0 | 381,084 | 192 |
Final | 261,740 | 1091 | 381,084 | 192 |
Test Name | Phenotype | Sex | Chr | Position (hg38) | SNP | p-Value (Screening) | p-Value (Yates-Corrected χ2) | p-Value (Fisher’s Exact) | Replication | p-Value (Original Results) | GTEx eQTL b | Top Candidate Gene |
---|---|---|---|---|---|---|---|---|---|---|---|---|
ALC:INC/SPB:F/CAT/D | Alcohol dependence | Female | 6 | 46,872,709 | rs220677 a | 1.33 × 10−8 | 1.33 × 10−8 | 1.47 × 10−7 | N/A | N/A | No | SLC25A27 |
ALC:INC/SPB:F/CAT/CD | 1.85 × 10−8 | 1.85 × 10−8 | 1.47 × 10−7 | |||||||||
ALC:INC/SPB:F/CAT/A | 2.11 × 10−8 | 2.11 × 10−8 | 6.38 × 10−7 | |||||||||
ALC:INC/SPB:F/GLM:PC1/D | 1.65 × 10−7 | 1.33 × 10−8 | 1.47 × 10−7 | |||||||||
ALC:INC/SPB:F/GLM:PC1/CD | 1.07 × 10−6 | 1.85 × 10−8 | 1.47 × 10−7 | |||||||||
ALC:INC/SPB:F/GLM:PC1/A | 1.05 × 10−6 | 2.11 × 10−8 | 6.38 × 10−7 | |||||||||
ALC:INC/SPB/CAT/CD | Mixed | 5 | 153,115,323 | rs6868545 | 1.49 × 10−7 | 1.49 × 10−7 | 8.25 × 10−6 | Schizophrenia | 7 × 10−7 | No | GRIA1 | |
ALC:INC/SPB:M/CAT/CD | Male | 9.62 × 10−7 | 9.62 × 10−7 | 3.04 × 10−5 | ||||||||
Test Name | Phenotype | Sex | Chr | Position (hg38) | SNP | p-Value (Screening) | p-Value (Linear Model) | p-Value (GLM Quasi-Poisson) | Replication | p-Value (Original Results) | GTEx eQTL | Top Candidate Gene |
ALC:TAI/SPB:F/GLM/A | STAI—Trait anxiety | Female | 6 | 111,801,023 | rs2148710 | 4.34 × 10−6 | 3.97 × 10−5 | 4.34 × 10−6 | Anger (proneness to anger) | 3 × 10−8 | Yes, in frontal cortex, basal ganglia, and hippocampus c | FYN |
ALC:PACS/SPB:F/GLM/CD | Penn alcohol craving scale | 3 | 146,650,400 | rs9842222 | 5.93 × 10−7 | 2.73 × 10−4 | 5.93 × 10−7 | Brain region volumes (region: right vessel) | 5 × 10−9 | No | ||
ALC:PACS/SPB:F/GLM/D | 1.03 × 10−6 | 5.88 × 10−5 | 1.03 × 10−6 | |||||||||
ALC:PACS/SPB:F/GLM/A | 11 | 74,406,417 | rs593531 | 2.89 × 10−6 | 4.94 × 10−6 | 2.89 × 10−6 | Neuroticism | 2 × 10−6 | Yes, in brain cortex, basal ganglia, hippocampus, and hypothalamus | UCP2/3 | ||
ALC:PACS/SPB/LM/R | Mixed | 11 | 27,658,369 | rs6265 | 5.27 × 10−7 | 5.27 × 10−7 | 1.20 × 10−4 | Smoking behavior phenotypes; General risk tolerance | 9 × 10−29 d | Yes, in frontal cortex, basal ganglia, anterior cingulate cortex, hippocampus, substantia nigra, and hypothalamus | BDNF | |
ALC:PACS/SPB/LM/CD | 1.03 × 10−6 | 1.03 × 10−6 | 1.16 × 10−4 | |||||||||
ALC:PACS/SPB/LM/R | 18 | 55,487,771 | rs9960767 | 1.22 × 10−6 | 1.22 × 10−6 | 1.03 × 10−3 | Schizophrenia | 4 × 10−9 | No | TCF4 | ||
ALC:PACS/SPB/LM/CD | 3.68 × 10−6 | 3.68 × 10−6 | 2.45 × 10−3 | |||||||||
ALC:ATF/SPB/GLM:VERS/D | Average amount of alcohol consumed | 19 | 47,065,746 | rs3810291 | 1.55 × 10−7 | 5.06 × 10−6 | 1.55 × 10−7 | Smoking initiation (ever smoked regularly) | 2 × 10−8 | Yes, in brain cortex, basal ganglia, and hypothalamus | CALM3 | |
ALC:ATF/SPB/GLM:VERS/CD | 1.09 × 10−6 | 3.01 × 10−5 | 1.09 × 10−6 | |||||||||
ALC:ATF/SPB:M/GLM:VERS/D | Male | 1.49 × 10−6 | 3.19 × 10−5 | 1.49 × 10−6 |
Pathways | Genes |
---|---|
hsa05034 Alcoholism—Homo sapiens (human) (4) | hsa:2354 FOSB; FosB proto-oncogene, AP-1 transcription factor subunit |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa:808 CALM3; calmodulin 3 | |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04024 cAMP signaling pathway—Homo sapiens (human) (4) | hsa:2696 GIPR; gastric inhibitory polypeptide receptor |
hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 | |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa:808 CALM3; calmodulin 3 | |
hsa04611 Platelet activation—Homo sapiens (human) (4) | hsa:2534 FYN; FYN proto-oncogene, Src family tyrosine kinase |
hsa:2909 ARHGAP35; Rho GTPase activating protein 35 | |
hsa:5739 PTGIR; prostaglandin I2 receptor | |
hsa:7408 VASP; vasodilator stimulated phosphoprotein | |
hsa05016 Huntington disease—Homo sapiens (human) (4) | hsa:1175 AP2S1; adaptor related protein complex 2 subunit sigma 1 |
hsa:27113 BBC3; BCL2 binding component 3 | |
hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 | |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa04728 Dopaminergic synapse—Homo sapiens (human) (3) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:808 CALM3; calmodulin 3 | |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa05031 Amphetamine addiction—Homo sapiens (human) (3) | hsa:2354 FOSB; FosB proto-oncogene, AP-1 transcription factor subunit |
hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 | |
hsa:808 CALM3; calmodulin 3 | |
hsa05200 Pathways in cancer—Homo sapiens (human) (3) | hsa:27113 BBC3; BCL2 binding component 3 |
hsa:808 CALM3; calmodulin 3 | |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04015 Rap1 signaling pathway—Homo sapiens (human) (3) | hsa:25865 PRKD2; protein kinase D2 |
hsa:7408 VASP; vasodilator stimulated phosphoprotein | |
hsa:808 CALM3; calmodulin 3 | |
hsa05022 Pathways of neurodegeneration—multiple diseases—Homo sapiens (human) (3) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa:808 CALM3; calmodulin 3 | |
hsa04974 Protein digestion and absorption—Homo sapiens (human) (3) | hsa:10008 KCNE3; potassium voltage-gated channel subfamily E regulatory subunit 3 |
hsa:117247 SLC16A10; solute carrier family 16 member 10 | |
hsa:6510 SLC1A5; solute carrier family 1 member 5 | |
hsa04080 Neuroactive ligand-receptor interaction—Homo sapiens (human) (3) | hsa:2696 GIPR; gastric inhibitory polypeptide receptor |
hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 | |
hsa:5739 PTGIR; prostaglandin I2 receptor | |
hsa04713 Circadian entrainment—Homo sapiens (human) (3) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:808 CALM3; calmodulin 3 | |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04510 Focal adhesion—Homo sapiens (human) (3) | hsa:2534 FYN; FYN proto-oncogene, Src family tyrosine kinase |
hsa:2909 ARHGAP35; Rho GTPase activating protein 35 | |
hsa:7408 VASP; vasodilator stimulated phosphoprotein | |
hsa04014 Ras signaling pathway—Homo sapiens (human) (3) | hsa:627 BDNF; brain derived neurotrophic factor |
hsa:808 CALM3; calmodulin 3 | |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa01524 Platinum drug resistance—Homo sapiens (human) (3) | hsa:2067 ERCC1; ERCC excision repair 1, endonuclease non-catalytic subunit |
hsa:27113 BBC3; BCL2 binding component 3 | |
hsa:5980 REV3L; REV3 like, DNA directed polymerase zeta catalytic subunit | |
hsa04724 Glutamatergic synapse—Homo sapiens (human) (2) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04720 Long-term potentiation—Homo sapiens (human) (2) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:808 CALM3; calmodulin 3 | |
hsa04723 Retrograde endocannabinoid signaling—Homo sapiens (human) (2) | hsa:2890 GRIA1; glutamate ionotropic receptor AMPA type subunit 1 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa05030 Cocaine addiction—Homo sapiens (human) (2) | hsa:2354 FOSB; FosB proto-oncogene, AP-1 transcription factor subunit |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa04151 PI3K-Akt signaling pathway—Homo sapiens (human) (2) | hsa:627 BDNF; brain derived neurotrophic factor |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04722 Neurotrophin signaling pathway—Homo sapiens (human) (2) | hsa:627 BDNF; brain derived neurotrophic factor |
hsa:808 CALM3; calmodulin 3 | |
hsa04010 MAPK signaling pathway—Homo sapiens (human) (2) | hsa:5536 PPP5C; protein phosphatase 5 catalytic subunit |
hsa:627 BDNF; brain derived neurotrophic factor | |
hsa01100 Metabolic pathways—Homo sapiens (human) (2) | hsa:283209 PGM2L1; phosphoglucomutase 2 like 1 |
hsa:79147 FKRP; fukutin related protein | |
hsa04022 cGMP-PKG signaling pathway—Homo sapiens (human) (2) | hsa:7408 VASP; vasodilator stimulated phosphoprotein |
hsa:808 CALM3; calmodulin 3 | |
hsa04270 Vascular smooth muscle contraction—Homo sapiens (human) (2) | hsa:5739 PTGIR; prostaglandin I2 receptor |
hsa:808 CALM3; calmodulin 3 | |
hsa04380 Osteoclast differentiation—Homo sapiens (human) (2) | hsa:2354 FOSB; FosB proto-oncogene, AP-1 transcription factor subunit |
hsa:2534 FYN; FYN proto-oncogene, Src family tyrosine kinase | |
hsa04925 Aldosterone synthesis and secretion—Homo sapiens (human) (2) | hsa:25865 PRKD2; protein kinase D2 |
hsa:808 CALM3; calmodulin 3 | |
hsa05163 Human cytomegalovirus infection—Homo sapiens (human) (2) | hsa:808 CALM3; calmodulin 3 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa04670 Leukocyte transendothelial migration—Homo sapiens (human) (2) | hsa:2909 ARHGAP35; Rho GTPase activating protein 35 |
hsa:7408 VASP; vasodilator stimulated phosphoprotein | |
hsa04371 Apelin signaling pathway—Homo sapiens (human) (2) | hsa:808 CALM3; calmodulin 3 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa05167 Kaposi sarcoma-associated herpesvirus infection—Homo sapiens (human) (2) | hsa:808 CALM3; calmodulin 3 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa05170 Human immunodeficiency virus 1 infection—Homo sapiens (human) (2) | hsa:808 CALM3; calmodulin 3 |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa03460 Fanconi anemia pathway—Homo sapiens (human) (2) | hsa:2067 ERCC1; ERCC excision repair 1, endonuclease non-catalytic subunit |
hsa:5980 REV3L; REV3 like, DNA directed polymerase zeta catalytic subunit | |
hsa04530 Tight junction—Homo sapiens (human) (2) | hsa:7408 VASP; vasodilator stimulated phosphoprotein |
hsa:8189 SYMPK; symplekin scaffold protein | |
hsa04725 Cholinergic synapse—Homo sapiens (human) (2) | hsa:2534 FYN; FYN proto-oncogene, Src family tyrosine kinase |
hsa:94235 GNG8; G protein subunit gamma 8 | |
hsa03420 Nucleotide excision repair—Homo sapiens (human) (2) | hsa:10714 POLD3; DNA polymerase delta 3, accessory subunit |
hsa:2067 ERCC1; ERCC excision repair 1, endonuclease non-catalytic subunit |
GO Biological Process Complete | Fold Enrichment | Raw p-Value | FDR |
---|---|---|---|
ethanol oxidation (GO:0006069) | 84.11 | 2.16 × 10−8 | 1.69 × 10−4 |
ethanol metabolic process (GO:0006067) | 45.42 | 1.48 × 10−8 | 2.32 × 10−4 |
regulation of biological quality (GO:0065008) | 2.08 | 7.79× 10−8 | 4.07 × 10−4 |
response to inorganic substance (GO:0010035) | 4.71 | 4.14 × 10−7 | 1.62 × 10−3 |
cell morphogenesis involved in neuron differentiation (GO:0048667) | 5.01 | 1.14 × 10−6 | 3.58 × 10−3 |
response to oxygen-containing compound (GO:1901700) | 2.71 | 2.11 × 10−6 | 5.52 × 10−3 |
primary alcohol metabolic process (GO:0034308) | 11.16 | 4.93 × 10−6 | 1.10 × 10−2 |
neuron development (GO:0048666) | 3.34 | 9.12 × 10−6 | 1.79 × 10−2 |
plasma membrane bounded cell projection morphogenesis (GO:0120039) | 4.21 | 1.71 × 10−5 | 2.06 × 10−2 |
cell projection morphogenesis (GO:0048858) | 4.18 | 1.86 × 10−5 | 2.08 × 10−2 |
response to lead ion (GO:0010288) | 30.28 | 1.70 × 10−5 | 2.22 × 10−2 |
cell morphogenesis involved in differentiation (GO:0000904) | 3.96 | 1.56 × 10−5 | 2.23 × 10−2 |
axon development (GO:0061564) | 4.69 | 1.30 × 10−5 | 2.27 × 10−2 |
diterpenoid metabolic process (GO:0016101) | 10.21 | 3.85 × 10−5 | 2.41 × 10−2 |
cell development (GO:0048468) | 2.39 | 4.05 × 10−5 | 2.44 × 10−2 |
neuron projection development (GO:0031175) | 3.47 | 3.43 × 10−5 | 2.45 × 10−2 |
neuron projection morphogenesis (GO:0048812) | 4.25 | 1.56 × 10−5 | 2.45 × 10−2 |
response to metal ion (GO:0010038) | 4.7 | 2.97 × 10−5 | 2.45 × 10−2 |
regulation of synapse structural plasticity (GO:0051823) | 56.77 | 4.39 × 10−5 | 2.46 × 10−2 |
cellular component morphogenesis (GO:0032989) | 3.65 | 3.78 × 10−5 | 2.47 × 10−2 |
startle response (GO:0001964) | 23.29 | 4.26 × 10−5 | 2.47 × 10−2 |
plasma membrane bounded cell projection organization (GO:0120036) | 2.8 | 3.32 × 10−5 | 2.48 × 10−2 |
fatty acid omega-oxidation (GO:0010430) | 64.88 | 3.21 × 10−5 | 2.51 × 10−2 |
regulation of trans-synaptic signaling (GO:0099177) | 4.32 | 2.92 × 10−5 | 2.54 × 10−2 |
regulation of hormone levels (GO:0010817) | 3.9 | 3.76 × 10−5 | 2.56 × 10−2 |
modulation of chemical synaptic transmission (GO:0050804) | 4.33 | 2.85 × 10−5 | 2.63 × 10−2 |
response to morphine (GO:0043278) | 21.63 | 5.53 × 10−5 | 2.71 × 10−2 |
cell part morphogenesis (GO:0032990) | 4.02 | 2.78 × 10−5 | 2.72 × 10−2 |
regulation of cell communication (GO:0010646) | 1.88 | 5.08 × 10−5 | 2.75 × 10−2 |
regulation of signaling (GO:0023051) | 1.87 | 5.27 × 10−5 | 2.75 × 10−2 |
carbohydrate homeostasis (GO:0033500) | 6.18 | 6.16 × 10−5 | 2.76 × 10−2 |
response to alkaloid (GO:0043279) | 9.27 | 6.40 × 10−5 | 2.79 × 10−2 |
response to isoquinoline alkaloid (GO:0014072) | 21.63 | 5.53 × 10−5 | 2.80 × 10−2 |
axonogenesis (GO:0007409) | 4.76 | 2.69 × 10−5 | 2.81× 10−2 |
cell projection organization (GO:0030030) | 2.68 | 6.10 × 10−5 | 2.81× 10−2 |
glucose homeostasis (GO:0042593) | 6.21 | 5.95 × 10−5 | 2.83 × 10−2 |
regulation of transport (GO:0051049) | 2.28 | 6.89 × 10−5 | 2.92 × 10−2 |
terpenoid metabolic process (GO:0006721) | 9.08 | 7.12 × 10−5 | 2.94 × 10−2 |
learning or memory (GO:0007611) | 5.12 | 8.63 × 10−5 | 3.47 × 10−2 |
regulation of synapse organization (GO:0050807) | 5.85 | 8.89× 10−5 | 3.49 × 10−2 |
regulation of transmembrane transport (GO:0034762) | 3.53 | 9.91× 10−5 | 3.79 × 10−2 |
negative regulation of calcium ion transmembrane transporter activity (GO:1901020) | 17.81 | 1.10× 10−4 | 4.01 × 10−2 |
regulation of synapse structure or activity (GO:0050803) | 5.69 | 1.08 × 10−4 | 4.02 × 10−2 |
negative regulation of insulin secretion (GO:0046676) | 17.3 | 1.22 × 10−4 | 4.35 × 10−2 |
response to external stimulus (GO:0009605) | 2.02 | 1.27 × 10−4 | 4.43 × 10−2 |
behavior (GO:0007610) | 3.43 | 1.30 × 10−4 | 4.45 × 10−2 |
neuron differentiation (GO:0030182) | 2.69 | 1.42 × 10−4 | 4.73 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levchenko, A.; Malov, S.; Antonik, A.; Protsvetkina, A.; Rybakova, K.V.; Kanapin, A.; Yakovlev, A.N.; Nenasteva, A.Y.; Nikolishin, A.E.; Cherkasov, N.; et al. A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines 2022, 10, 3007. https://doi.org/10.3390/biomedicines10123007
Levchenko A, Malov S, Antonik A, Protsvetkina A, Rybakova KV, Kanapin A, Yakovlev AN, Nenasteva AY, Nikolishin AE, Cherkasov N, et al. A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines. 2022; 10(12):3007. https://doi.org/10.3390/biomedicines10123007
Chicago/Turabian StyleLevchenko, Anastasia, Sergey Malov, Alexey Antonik, Anastasia Protsvetkina, Kseniya V. Rybakova, Alexander Kanapin, Alexey N. Yakovlev, Anna Y. Nenasteva, Anton E. Nikolishin, Nikolay Cherkasov, and et al. 2022. "A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures" Biomedicines 10, no. 12: 3007. https://doi.org/10.3390/biomedicines10123007
APA StyleLevchenko, A., Malov, S., Antonik, A., Protsvetkina, A., Rybakova, K. V., Kanapin, A., Yakovlev, A. N., Nenasteva, A. Y., Nikolishin, A. E., Cherkasov, N., Chuprova, N. A., Blagonravova, A. S., Sergeeva, A. V., Zhilyaeva, T. V., Denisenko, M. K., Gainetdinov, R. R., Kibitov, A. O., & Krupitsky, E. M. (2022). A Genome-Wide Association Study Reveals a BDNF-Centered Molecular Network Associated with Alcohol Dependence and Related Clinical Measures. Biomedicines, 10(12), 3007. https://doi.org/10.3390/biomedicines10123007