Methylenetetrahydrofolate Reductase C677T Gene Variant in Relation to Body Mass Index and Folate Concentration in a Polish Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements of Biomarkers
2.3. Genotyping of the MTHFR C677T Polymorphism
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, W.; Luo, D.; Ruan, X.; Gu, C.; Lu, W.; Lian, K.; Mu, X. Polymorphisms in gene MTHFR modify the association between gestational weight gain and adverse birth outcomes. Front. Nutr. 2022, 9, 919651. [Google Scholar] [CrossRef]
- Tran, P.; Leclerc, D.; Chan, M.; Pai, A.; Hiou-Tim, F.; Wu, Q.; Goyette, P.; Artigas, C.; Milos, R.; Rozen, R. Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm. Genome 2002, 13, 483–492. [Google Scholar] [CrossRef]
- Kutzbach, C.; Stokstad, E.L. Mammalian methylenetetrahydrofolate reductase. Partial purification, properties, and inhibition by s-adenosylmethionine. Biochim. Biophys. Acta 1971, 250, 459–477. [Google Scholar] [CrossRef]
- Yamada, K.; Strahler, J.R.; Andrews, P.C.; Matthews, R.G. Regulation of human methylenetetrahydrofolate reductase by phosphorylation. Proc. Natl. Acad. Sci. USA 2005, 102, 10454–10459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.S.; Zhou, J.; Wong, P.W.; Kowalisyn, J.; Strokosch, G. Intermediate homocysteinemia: A thermolabile variant of methylenetetrahydrofolate reductase. Am. J. Hum. Genet. 1988, 43, 414–421. [Google Scholar] [PubMed]
- Kang, S.S.; Wong, P.W.; Bock, H.G.; Horwitz, A.; Grix, A. Intermediate hyperhomocysteinemia resulting from compound heterozygosity of methylenetetrahydrofolate reductase mutations. Am. J. Hum. Genet. 1991, 48, 546–551. [Google Scholar] [PubMed]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.H.; den Heijer, M.; Kluijtmans, L.A.J.; van den Heuve, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Gudnason, V.; Stansbie, D.; Scott, J.; Bowron, A.; Nicaud, V.; Humphries, S. C677T (thermolabile alanine/valine) polymorphism in methylenetetrahydrofolate reductase (MTHFR): Its frequency and impact on plasma homocysteine concentration in different European populations. EARS group. Atherosclerosis 1998, 136, 347–354. [Google Scholar] [CrossRef]
- Berg, M.J. The importance of folic acid. J. Gend. Specif. Med. 1999, 2, 24–28. [Google Scholar]
- Scott, J.M.; Weir, D.G. Folic acid, homocysteine and one-carbon metabolism: A review of the essential biochemistry. J. Cardiovasc. Risk 1998, 5, 223–227. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Quadros, E.V. Cerebral Folate Deficiency Syndrome: Early Diagnosis, Intervention and Treatment Strategies. Nutrients 2022, 14, 3096. [Google Scholar] [CrossRef] [PubMed]
- Baker, H.; Thomson, A.D.; Feingold, S.; Frank, O. Role of the Jejunum in the Absorption of Folic Acid and Its Polyglutamates. Am. J. Clin. Nutr. 1969, 22, 124–132. [Google Scholar] [CrossRef]
- Gregory, J.F., III. Case Study: Folate Bioavailability. J. Nutr. 2001, 131, 1376S–1382S. [Google Scholar] [CrossRef] [Green Version]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B12, folate, and the methionine remethylation cycle—Biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2018, 42, 673–685. [Google Scholar] [CrossRef] [Green Version]
- Hoffbrand, A.V.; Weir, D.G. The history of folic acid. Br. J. Haematol. 2001, 113, 579–589. [Google Scholar] [CrossRef]
- Al-Bayyari, N.; Hamadneh, J.; Hailat, R.; Hamadneh, S. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study. Nutr. Res. 2017, 48, 9–15. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Wang, N.; Zhu, M.; Liu, X.; Wang, R.; Jiang, F.; Chen, Y.; Zhao, Q.; Zhao, G. Central But Not General Obesity Is Positively Associated with the Risk of Hyperhomocysteinemia in Middle-Aged Women. Nutrients 2019, 11, 1614. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Xu, L.; Xia, H.; Li, Y.; Tang, S. Association of MTHFR C677T gene polymorphism with metabolic syndrome in a Chinese population: A case–control study. J. Int. Med. Res. 2018, 46, 2658–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirozzi, F.F.; Belini, E.; Okumura, J.V.; Salvarani, M.; Bonini-Domingos, C.R.; Ruiz, M.A. The relationship between of ACE I/D and the MTHFR C677T polymorphisms in the pathophysiology of type 2 diabetes mellitus in a population of Brazilian obese patients. Arch. Endocrinol. Metab. 2018, 62, 21–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishio, K.; Goto, Y.; Kondo, T.; Ito, S.; Ishida, Y.; Kawai, S.; Naito, M.; Wakai, K.; Hamajima, N. Serum Folate and Methylenetetrahydrofolate Reductase (MTHFR) C677T Polymorphism Adjusted for Folate Intake. J. Epidemiol. 2008, 18, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrzosek, M.; Sokal, M.; Sawicka, A.; Wlodarczyk, M.; Glowala, M.; Wrzosek, M.; Kosior, M.; Talalaj, M.; Biecek, P.; Nowicka, G. Impact of obesity and nitric oxide synthase gene G894T polymorphism on essential hypertension. J. Physiol. Pharmacol. 2015, 66, 681–689. [Google Scholar]
- Arlouskaya, Y.; Sawicka, A.; Głowala, M.; Giebułtowicz, J.; Korytowska, N.; Tałałaj, M.; Nowicka, G.; Wrzosek, M. Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA) Concentrations in Patients with Obesity and the Risk of Obstructive Sleep Apnea (OSA). J. Clin. Med. 2019, 8, 897. [Google Scholar] [CrossRef]
- Wrzosek, M.; Sawicka, A.; Wrzosek, M.; Piątkiewicz, P.; Tałałaj, M.; Nowicka, G. Age at onset of obesity, transcription factor 7-like 2 (TCF7L2) rs7903146 polymorphism, adiponectin levels and the risk of type 2 diabetes in obese patients. Arch. Med. Sci. 2019, 15, 321–329. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Mlodzik-Czyzewska, M.A.; Malinowska, A.M.; Chmurzynska, A. Low folate intake and serum levels are associated with higher body mass index and abdominal fat accumulation: A case control study. Nutr. J. 2020, 19, 53. [Google Scholar] [CrossRef]
- Lightfoot, T.J.; Skibola, C.F.; Willett, E.V.; Skibola, D.R.; Allan, J.M.; Coppede, F.; Adamson, P.J.; Morgan, G.J.; Roman, E.; Smith, M.T. Risk of Non–Hodgkin Lymphoma Associated with Polymorphisms in Folate-Metabolizing Genes. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2999–3003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jusić-Karić, A.; Terzić, R.; Jerkić, Z.; Avdić, A.; Pođanin, M. Frequency and association of 1691 (G>A) FVL, 20210 (G>A) PT and 677 (C>T) MTHFR with deep vein thrombosis in the population of Bosnia and Herzegovina. Balk. J. Med. Genet. 2016, 19, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, A.M.; Daly, S.; Mills, J.L.; Kirke, P.N.; Whitehead, A.S.; Ramsbottom, D.; Conley, M.R.; Weir, D.G.; Scott, J.M. Thermolabile variant of 5,10-methylenetetrahydrofolate reductase associated with low red-cell folates: Implications for folate intake recommendations. Lancet 1997, 349, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Bueno, O.; Molloy, A.M.; Fernandez-Ballart, J.D.; García-Minguillán, C.J.; Ceruelo, S.; Ríos, L.; Ueland, P.M.; Meyer, K.; Murphy, M.M. Common Polymorphisms That Affect Folate Transport or Metabolism Modify the Effect of the MTHFR 677C > T Polymorphism on Folate Status. J. Nutr. 2015, 146, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, K.E.; Rohlicek, C.V.; Andelfinger, G.U.; Michaud, J.; Bigras, J.-L.; Richter, A.; MacKenzie, R.E.; Rozen, R. The MTHFD1 p.Arg653Gln variant alters enzyme function and increases risk for congenital heart defects. Hum. Mutat. 2009, 30, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M. Folate intake, serum folate, serum total homocysteine levels and methylenetetrahydrofolate reductase C677T polymorphism in young Japanese women. J. Nutr. Sci. Vitaminol. 2004, 50, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Mahabir, S.; Ettinger, S.; Johnson, L.; Baer, D.J.; Clevidence, B.A.; Hartman, T.J.; Taylor, P.R. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur. J. Clin. Nutr. 2007, 62, 644–650. [Google Scholar] [CrossRef]
- Kim, H.; Hwang, J.-Y.; Kim, K.-N.; Ha, E.-H.; Park, H.; Ha, M.; Lee, K.-Y.; Hong, Y.-C.; Tamura, T.; Chang, N. Relationship between body-mass index and serum folate concentrations in pregnant women. Eur. J. Clin. Nutr. 2011, 66, 136–138. [Google Scholar] [CrossRef] [Green Version]
- Manna, P.; Jain, S.K. Obesity, Oxidative Stress, Adipose Tissue Dysfunction, and the Associated Health Risks: Causes and Therapeutic Strategies. Metab. Syndr. Relat. Disord. 2015, 13, 423–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelli, H.M.; Corrigan, F.E., 3rd; Heinl, R.E.; Dhindsa, D.S.; Hammadah, M.; Samman-Tahhan, A.; Sandesara, P.; O’Neal, W.T.; Al Mheid, I.; Ko, Y.-A.; et al. Relation of Changes in Body Fat Distribution to Oxidative Stress. Am. J. Cardiol. 2017, 120, 2289–2293. [Google Scholar] [CrossRef]
- Asbaghi, O.; Ghanavati, M.; Ashtary-Larky, D.; Bagheri, R.; Kelishadi, M.R.; Nazarian, B.; Nordvall, M.; Wong, A.; Dutheil, F.; Suzuki, K.; et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants 2021, 10, 871. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Guerrero, C.; Romo-Palafox, I.; Díaz-Gutiérrez, M.C.; Iturbe-García, M.; Texcahua-Salazar, A.; Pérez-Lizaur, A.B. Prevalence of metilentetrahidrofolate reductase C677T polymorphism, consumption of vitamins B6, B9, B12 and determination of lipidic hydroperoxides in obese and normal weight Mexican population. Nutr. Hosp. 2013, 28, 2142–2150. [Google Scholar]
- Terruzzi, I.; Senesi, P.; Fermo, I.; Lattuada, G.; Luzi, L. Are genetic variants of the methyl group metabolism enzymes risk factors predisposing to obesity? J. Endocrinol. Investig. 2007, 30, 747–753. [Google Scholar] [CrossRef]
- Yokomori, N.; Tawata, M.; Onaya, T. DNA demethylation modulates mouse leptin promoter activity during the differentiation of 3T3-L1 cells. Diabetologia 2002, 45, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Leal-Ugarte, E.; Peralta-Leal, V.; Meza-Espinoza, J.P.; Duran-Gonzalez, J.; Macías-Gómez, N.M.; Bocanegra-Alonso, A.; Lara-Ramos, J.R. Association of the MTHFR 677C>T polymorphism with obesity and biochemical variables in a young population of Mexico. J. Med. Biochem. 2019, 38, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Mlodzik-Czyzewska, M.A.; Malinowska, A.M.; Szwengiel, A.; Chmurzynska, A. Associations of plasma betaine, plasma choline, choline intake, and MTHFR polymorphism (rs1801133) with anthropometric parameters of healthy adults are sex-dependent. J. Hum. Nutr. Diet. 2022, 35, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.J.; Lawlor, D.A.; Nordestgaard, B.G.; Tybjærg-Hansen, A.; Ebrahim, S.; Zacho, J.; Ness, A.; Leary, S.; Smith, G.D. The methylenetetrahydrofolate reductase C677T genotype and the risk of obesity in three large population-based cohorts. Eur. J. Endocrinol. 2008, 159, 35–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultana, T.; Iftikhar, I.; Sultana, S.; Al-Ghanim, K.; Al-Misned, F.; Shahid, T.; Mahboob, S. C677T genotypes in methyltetrahydrofolate reductase gene in student obesity. J. King Saud Univ. Sci. 2020, 32, 920–923. [Google Scholar] [CrossRef]
Characteristics | BMI < 30 | BMI ≥ 30 | p |
---|---|---|---|
Number of subjects | 518 | 1194 | - |
Gender (male/female) | 167/351 | 381/813 | 0.893 |
Age (years) | 45.3 ± 15.0 | 44.6 ± 11.4 | 0.271 |
Height (cm) | 167.9 ± 9.3 | 168.8 ± 9.0 | 0.086 |
Weight (kg) | 68.9 ± 12.9 | 117.6 ± 24.1 | <0.001 |
BMI (kg/m2) | 24.3 ± 3.3 | 41.2 ± 7.2 | <0.001 |
Glucose (mg/dL) | 87.5 ± 19.5 | 105.8 ± 32.5 | <0.001 |
Total cholesterol (mg/dL) | 177.1 ± 37.2 | 188.2 ± 40.20 | <0.001 |
HDL-cholesterol (mg/dL) | 57.4 ± 14.9 | 45.0 ± 11.9 | 0.007 |
LDL-cholesterol (mg/dL) | 107.6 ± 34.5 | 112.2 ± 35.2 | <0.001 |
Triglycerides (mg/dL) | 118.3 ± 136.5 | 157.6 ± 88.1 | <0.001 |
Systolic blood pressure (mm Hg) | 122.1 ± 15.6 | 134.9 ± 18.0 | <0.001 |
Diastolic blood pressure (mm Hg) | 76.4 ± 10.3 | 79.3 ± 10.6 | <0.001 |
Genotypes MTHFR C677T | Cohort n (%) | HWE | BMI (kg/m2) Mean ± SD | 95% CI | Statistics p-Value * |
---|---|---|---|---|---|
Total n = 1712 | |||||
TT | 148 (8.6) | 35.3 ± 9.8 | 33.7–36.9 | ||
CT | 752 (44.0) | 0.159 | 35.6 ± 9.8 | 34.8–36.2 | 0.06 |
CC | 812 (47.4) | 36.7 ± 10.2 | 35.9–37.4 | ||
BMI < 30 n = 518 | |||||
TT | 51 (10) | 25.2 ± 3.50 | 24.3–26.2 | ||
CT | 235 (45) | 0.531 | 24.1 ± 3.28 | 23.6–24.5 | 0.07 |
CC | 232 (45) | 24.4 ± 3.33 | 24.0–25.0 | ||
Class I obesity (BMI: 30–34.99) n = 257 | |||||
TT | 27 (11.0) | 32.6 ± 1.7 | 31.9–33.3 | ||
CT | 112 (44) | 0.980 | 32.2 ± 1.8 | 32.3–32.8 | 0.59 |
CC | 117 (46.0) | 32.1 ± 1.4 | 32.1–32.6 | ||
Class II obesity (BMI: 35–39.99) n = 298 | |||||
TT | 24 (8) | 37.6 ± 1.5 | 36.9–38.2 | ||
CT | 137 (46) | 0.202 | 37.5 ± 1.5 | 37.3–37.8 | 0.189 |
CC | 137 (46) | 37.2 ± 1.4 | 37.0–37.5 | ||
Class III obesity (BMI: ≥40) n = 640 | |||||
TT | 46 (7) | 46.9 ± 6.0 | 45.2–48.7 | ||
CT | 268 (42) | 0.366 | 45.9 ± 5.0 | 45.3–46.5 | 0.162 |
CC | 326 (51) | 46.7 ± 5.9 | 46.1–47.4 |
MTHFR C677T | BMI ≥ 30 (n = 1194) n (%) | BMI < 30 (n = 518) n (%) | Crude OR (95% CI) | p-Value | Adjusted OR # (95% CI) | p-Value |
---|---|---|---|---|---|---|
Codominant model | ||||||
CC | 580 (49) | 232 (45) | 1.00 | - | - | - |
CT | 517 (43) | 235 (45) | 0.88 [0.71–1.09] | 0.248 | 0.88 [0.71–1.09] | 0.251 |
TT | 97 (8) | 51 (10) | 0.76 [0.52–1.03] | 0.149 | 0.83 [0.55–1.26] | 0.340 |
Dominant model | ||||||
CC | 580 | 232 | 1.00 | - | - | - |
TT + CT vs. CC | 614 | 286 | 0.86 [0.70–1.06] | 0.149 | 0.94 [0.74–1.18] | 0.579 |
Recessive model | ||||||
CC + CT | 1097 | 467 | 1.00 | - | - | |
TT | 97 | 51 | 0.81 [0.57–1.16] | 0.249 | 0.86 [0.57–1.28] | 0.453 |
Allelic model (T/C) | 0.30/0.70 | 0.25/0.75 | 0.88 [0.75–1.03] | 0.103 | 0.96 [0.75–1.23] | 0.725 |
MTHFR C677T Polymorphism | ||||
---|---|---|---|---|
TT n = 69 | CT n = 392 | CC n = 447 | ANOVA/Kruskal–Wallis Tests p | |
Variables | Mean ± SD | Mean ± SD | Mean ± SD | |
Age in years | 43.7 ± 11.7 | 44.6 ± 11.7 | 43.8 ± 10.4 | 0.561 |
Weight (kg) | 123.7 ± 24.4 | 122.0 ± 22.3 | 124.6 ± 23.6 | 0.276 |
BMI | 43.3 ± 7.2 | 42.7 ± 6.2 | 43.6 ± 7.0 | 0.139 |
Fat % | 43.7 ± 6.1 | 44.0 ± 6.6 | 44.2 ± 6.2 | 0.845 |
Fat mass (kg) | 50.3 ± 12.3 | 52.0 ± 35.3 | 52.8 ± 25.7 | 0.821 |
Systolic blood pressure (mm Hg) | 140.1 ± 22.8 | 135.7 ± 18.6 | 135.8 ± 18.3 | 0.236 |
Diastolic blood pressure (mm Hg) | 79.5 ± 11.5 | 77.6 ± 10.1 | 77.4 ± 10.1 | 0.361 |
Fasting glucose (mg/dL) | 108.1 ± 29.5 | 107.5 ± 33.5 | 108.4 ± 35.8 | 0.931 |
HbA1c (%) | 6.1 ± 1.2 | 6.1 ± 1.3 | 6.2 ± 1.6 | 0.601 |
Total cholesterol (mg/dL) | 183.6 ± 38.1 | 184.9 ± 39.8 | 188.8 ± 39.5 | 0.754 |
LDL-cholesterol (mg/dL) | 107.3 ± 34.8 | 108.9 ± 35.4 | 110.8 ± 34.1 | 0.602 |
HDL-cholesterol (mg/dL) | 45.1 ± 12.6 | 44.6 ± 12.3 | 44.1 ± 10.8 | 0.709 |
Triglycerides (mg/dL) | 156.3 ± 72.8 | 156.9 ± 87.6 | 156.1 ± 75.3 | 0.988 |
Alanine aminotransferase (U/L) | 45.13 ± 23.2 | 48.5 ± 28.4 | 47.5 ± 47.4 | 0.785 |
Aspartate aminotransferase (U/L) | 27.5 ± 19.2 | 29.5 ± 18.7 | 28.5 ± 29.6 | 0.766 |
B12 (pg/mL) | 320.6 ± 147.1 | 338.4 ± 149.3 | 329.9 ± 129.4 | 0.526 |
Folate (ng/mL) | 6.6 ± 2.9 | 8.0 ± 3.7 | 8.2 ± 3.7 | 0.002 |
IL-6 (pg/mL) | 3.1 ± 2.2 | 3.6 ± 5.1 | 3.3 ± 3.4 | 0.590 |
ESR | 16.5 ± 12.1 | 16.7 ± 12.4 | 16.3 ± 13.4 | 0.919 |
CRP (g/L) | 9.0 ± 8.1 | 9.4 ± 14.1 | 9.0 ± 7.9 | 0.875 |
CRE (mg/dL) | 0.81 ±0.13 | 0.86 ±0.2 | 0.85 ±0.2 | 0.196 |
25(OH)D (ng/mL) | 19.51 ± 7.9 | 19.3 ± 10.8 | 18.8 ± 9.7 | 0.750 |
MTHFR C677T Polymorphism | ||||
---|---|---|---|---|
Variables | TT n = 27 | CT n = 154 | CC n = 173 | (ANOVA Tests) p |
ΔBMI (kg/m2) | −12.9 ± 4.4 | −12.8 ± 4.1 | −13.8 ± 4.2 | 0.063 |
ΔBW (kg) | −36.5 ± 14.4 | −36.4 ± 12.2 | −39.2 ± 12.1 | 0.107 |
WL (%) | −30.7 ± 9.4 | −30.5 ± 8.6 | −31.6 ± 7.4 | 0.435 |
ExWL % | 75.4 ± 23.8 | 75.2 ± 24.3 | 73.2 ± 22.3 | 0.708 |
Δ B12 (pg/mL) | −52.7 ± 165.6 | −26.3 ± 186.9 | −20.19 ± 132.1 | 0.617 |
Δ Folate (ng/mL) | 3.03 ± 5.4 | 0.14 ± 5.18 | 0.66 ± 5.61 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrzosek, M.; Ślusarczyk, K. Methylenetetrahydrofolate Reductase C677T Gene Variant in Relation to Body Mass Index and Folate Concentration in a Polish Population. Biomedicines 2022, 10, 3140. https://doi.org/10.3390/biomedicines10123140
Wrzosek M, Ślusarczyk K. Methylenetetrahydrofolate Reductase C677T Gene Variant in Relation to Body Mass Index and Folate Concentration in a Polish Population. Biomedicines. 2022; 10(12):3140. https://doi.org/10.3390/biomedicines10123140
Chicago/Turabian StyleWrzosek, Małgorzata, and Klaudia Ślusarczyk. 2022. "Methylenetetrahydrofolate Reductase C677T Gene Variant in Relation to Body Mass Index and Folate Concentration in a Polish Population" Biomedicines 10, no. 12: 3140. https://doi.org/10.3390/biomedicines10123140
APA StyleWrzosek, M., & Ślusarczyk, K. (2022). Methylenetetrahydrofolate Reductase C677T Gene Variant in Relation to Body Mass Index and Folate Concentration in a Polish Population. Biomedicines, 10(12), 3140. https://doi.org/10.3390/biomedicines10123140