Enzymes of Fibrosis in Chronic Liver Disease
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Material and Methods
2.2.1. Prolyl Hydroxylase
2.2.2. Collagenase
2.2.3. Gelatinase
2.2.4. Elastase
2.2.5. Protein Estimations
2.2.6. Serum Studies
2.3. Statistical Analysis
3. Results
3.1. Hepatic Prolyl-Hydroxylase
3.2. Hepatic Collagenase
3.3. Prolyl Hydroxylase/Collagenase Ratio
3.4. Hepatic Gelatinase
3.5. Hepatic Elastase
3.6. Serum MMP-1
3.7. Serum MMP-2
3.8. Serum MMP-9
3.9. Serum TIMP-1
3.10. Serum TIMP-2
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ignat, S.R.; Dinescu, S.; Hermenean, A.; Costache, M. Cellular interplay as a consequence of inflammatory signals leading to liver fibrosis development. Cells 2020, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Huang, E.; Peng, N.; Xiao, F.; Hu, D.; Wang, X.; Lu, L. The roles of immune cells in the pathogenesis of fibrosis. Int. J. Mol. Sci. 2020, 21, 5203. [Google Scholar] [CrossRef] [PubMed]
- Dhar, D.; Baglieri, J.; Kisseleva, T.; Brenner, D.A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 2020, 245, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.D.; Zhou, J.; Chen, E.Q. Molecular mechanisms and potential new therapeutic drugs for liver fibrosis. Front. Pharmacol. 2022, 13, 787748. [Google Scholar] [CrossRef]
- Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellicoro, A.; Aucott, R.L.; Ramachandran, P.; Robson, A.J.; Fallowfield, J.A.; Snowdon, V.K.; Hartland, S.N.; Vernon, M.; Duffield, J.S.; Benyon, R.C.; et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 2012, 55, 1965–1975. [Google Scholar] [CrossRef]
- Herrera, J.; Henke, C.A.; Bitterman, P.B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 2018, 128, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Acharya, P.; Chouhan, K.; Weiskirchen, S.; Weiskirchen, R. Cellular mechanisms of liver fibrosis. Front. Pharmacol. 2021, 12, 671640. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liang, Z.; Qin, S.; Ruan, X.; Jiang, H. Serum-derived miR-574-5p-containing exosomes contribute to liver fibrosis by activating hepatic stellate cells. Mol. Biol. Rep. 2022, 49, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Bingyu, W.; Lei, Y.; Xingxing, Y. The antifibrotic role of natural killer cells in liver fibrosis. Exp. Biol. Med. 2022, 247, 1235–1243. [Google Scholar] [CrossRef]
- Aizarani, N.; Saviano, A.; Sagar; Mailly, L.; Durand, S.; Herman, J.S.; Pessaux, P.; Baumert, T.F.; Grün, D. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 2019, 572, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, P.; Dobie, R.; Wilson-Kanamori, J.R.; Dora, E.F.; Henderson, B.E.P.; Luu, N.T.; Portman, J.R.; Matchett, K.P.; Brice, M.; Marwick, J.A.; et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019, 575, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef]
- Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells 2021, 10, 2759. [Google Scholar] [CrossRef]
- Takeuchi, T.; Prockop, D.J. Protocollagen proline hydroxylase in normal liver and in hepatic fibrosis. Gastroenterology 1969, 56, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.W.; Fuller, G.C.; Rodil, J.V.; Vidins, E.I. Hepatic prolyl hydroxylase and collagen synthesis in patients with alcoholic liver disease. Gut 1979, 20, 825–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGee, J.O.; Fallon, A. Hepatic cirrhosis—A collagen formative disease? J. Clin. Pathol. Suppl. 1978, 12, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Somerville, R.P.; Oblander, S.A.; Apte, S.S. Matrix metalloproteinases: Old dogs with new tricks. Genome. Biol. 2003, 4, 216. [Google Scholar] [CrossRef] [Green Version]
- Duarte, S.; Baber, J.; Fujii, T.; Coito, A.J. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol. 2015, 44–46, 147–156. [Google Scholar] [CrossRef]
- Roeb, E. Matrix metalloproteinases and liver fibrosis (translational aspects). Matrix Biol. 2018, 68–69, 463–473. [Google Scholar] [CrossRef]
- Geervliet, E.; Bansal, R. Matrix metalloproteinases as potential biomarkers and therapeutic targets in liver diseases. Cells 2020, 9, 1212. [Google Scholar] [CrossRef]
- Knittel, T.; Mehde, M.; Kobold, D.; Saile, B.; Dinter, C.; Ramadori, G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: Regulation by TNF-alpha and TGF-beta1. J. Hepatol. 1999, 30, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Ram, M.; Sherer, Y.; Shoenfeld, Y. Matrix metalloproteinase-9 and autoimmune diseases. J. Clin. Immunol. 2006, 26, 299–307. [Google Scholar] [CrossRef]
- Roderfeld, M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol. 2018, 68–69, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Ljumovic, D.; Diamantis, I.; Alegakis, A.K.; Kouroumalis, E.A. Differential expression of matrix metalloproteinases in viral and non-viral chronic liver diseases. Clin. Chim. Acta. 2004, 349, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Kiagiadaki, F.; Kampa, M.; Voumvouraki, A.; Castanas, E.; Kouroumalis, E.; Notas, G. Activin-A causes Hepatic stellate cell activation via the induction of TNFα and TGFβ in Kupffer cells. Biochim. Biophys. Acta. Mol. Basis Dis. 2018, 1864, 891–899. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Aspects Med. 2019, 65, 37–55. [Google Scholar] [CrossRef]
- Lleo, A.; Leung, P.S.C.; Hirschfield, G.M.; Gershwin, E.M. The pathogenesis of primary biliary cholangitis: A comprehensive review. Semin. Liver Dis. 2020, 40, 34–48. [Google Scholar] [CrossRef]
- Gulamhusein, A.F.; Hirschfield, G.M. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 93–110. [Google Scholar] [CrossRef]
- Park, J.W.; Kim, J.H.; Kim, S.E.; Jung, J.H.; Jang, M.K.; Park, S.H.; Lee, M.S.; Kim, H.S.; Suk, K.T.; Kim, D.J. Primary biliary cholangitis and primary sclerosing cholangitis: Current knowledge of pathogenesis and therapeutics. Biomedicines 2022, 10, 1288. [Google Scholar] [CrossRef]
- Ludwig, J.; Dickson, E.R.; McDonald, G.S. Staging of chronic nonsuppurative destructive cholangitis (syndrome of primary biliary cirrhosis). Virchows Arch. A Pathol. Anat. Histol. 1978, 379, 103–112. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of cholestatic liver diseases. J. Hepatol. 2009, 51, 237–267. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef] [PubMed]
- Hutton, J.J.; Tappel, A.L.; Udenfriend, S. A rapid assay for collagen proline hydroxylase. Anal. Biochem. 1966, 16, 384–394. [Google Scholar] [CrossRef]
- Hutton, J.J., Jr.; Trappel, A.L.; Udenfriend, S. Requirements for alpha-ketoglutarate, ferrous ion and ascorbate by collagen proline hydroxylase. Biochem. Biophys. Res. Commun. 1966, 24, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Mezey, E.; Potter, J.J.; Maddrey, W.C. Hepatic collagen proline hydroxylase activity in alcoholic liver disease. Clin. Chim. Acta. 1976, 68, 313–320. [Google Scholar] [CrossRef]
- McGee, J.O.; Patrick, R.S.; Rodger, M.C.; Luty, C.M. Collagen proline hydroxylase activity and 35S sulphate uptake in human liver biopsies. Gut 1974, 15, 260–267. [Google Scholar] [CrossRef] [Green Version]
- Stein, H.D.; Keiser, H.R.; Sjoerdsma, A. Proline-hydroxylase activity in human blood. Lancet 1970, 1, 106–109. [Google Scholar] [CrossRef]
- Hirayama, C.; Hiroshige, K.; Masuya, T. Hepatic collagenolytic activity in rats after carbon tetrachloride poisoning. Biochem. J. 1969, 115, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.D., Jr.; Vater, V.A. Methodology of Collagenase Research: Substrate Preparation, Activation and Purification. In Collagenase in Normal and Pathological Connective Tissue; Wooley, D.E., Evanson, J.M., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 1980; pp. 46–48. [Google Scholar]
- Takahashi, S.; Dunn, M.A.; Seifter, S. Liver collagenase in murine schistosomiasis. Gastroenterology 1980, 78, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, K.; Feinman, L.; Okazaki, I.; Lieber, C.S. Direct measurement of neutral collagenase activity in homogenates from baboon and human liver. Biochim. Biophys. Acta. 1981, 658, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Simpser, E. Granuloma collagenase and EDTA-sensitive neutral protease production in hepatic murine schistosomiasis. Hepatology 1981, 1, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.D., Jr.; Krane, S.M. An endopeptidase from rheumatoid synovial tissue culture. Biochim. Biophys. Acta. 1972, 258, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.; Bretz, U.; Baggiolini, M.; Reynolds, J.J. The latent collagenase and gelatinase of human polymorphonuclear neutrophil leucocytes. Biochem. J. 1980, 192, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Sopata, I.; Dancewicz, A.M. Presence of a gelatin-specific proteinase and its latent form in human leucocytes. Biochim. Biophys. Acta. 1974, 370, 510–523. [Google Scholar] [CrossRef]
- Takahashi, S.; Seifter, S.; Yang, F.C. A new radioactive assay for enzymes with elastolytic activity using reduced tritiated elastin. The effect of sodium dodecyl sulfate on elastolysis. Biochim. Biophys. Acta. 1973, 327, 138–145. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Koulentaki, M.; Valatas, V.; Xidakis, K.; Kouroumalis, A.; Petinaki, E.; Castanas, E.; Kouroumalis, E. Matrix metalloproteinases and their inhibitors in acute viral hepatitis. J. Viral. Hepat. 2002, 9, 189–193. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, J.; Khalil, R.A. Zymography as a research tool in the study of matrix metalloproteinase inhibitors. Methods Mol. Biol. 2017, 1626, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Chirco, R.; Liu, X.W.; Jung, K.K.; Kim, H.R. Novel functions of TIMPs in cell signaling. Cancer Metastasis. Rev. 2006, 25, 99–113. [Google Scholar] [CrossRef]
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol. 2001, 17, 463–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacke, F.; Trautwein, C. Mechanisms of liver fibrosis resolution. J. Hepatol. 2015, 63, 1038–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blériot, C.; Ginhoux, F. Understanding the heterogeneity of resident liver macrophages. Front. Immunol. 2019, 10, 2694. [Google Scholar] [CrossRef] [Green Version]
- Cawston, T.E. Measurement of activity of collagenolytic MMP and inhibitors of MMPs using radiolabeled collagen substrate. Nat. Protoc. 2009, 4, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.M.; Powell, L.K.; Wright, J.K.; Cawston, T.E.; Hazleman, B.L. Monoclonal antibodies against human fibroblast collagenase and the design of an enzyme-linked immunosorbent assay to measure total collagenase. Matrix 1992, 12, 475–480. [Google Scholar] [CrossRef]
- Clark, I.M.; Powell, L.K.; Ramsey, S.; Hazleman, B.L.; Cawston, T.E. The measurement of collagenase, tissue inhibitor of metalloproteinases (TIMP), and collagenase-TIMP complex in synovial fluids from patients with osteoarthritis and rheumatoid arthritis. Arthritis. Rheum. 1993, 36, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, S.B.; Christensen, S.L.; Würtz, S.O.; Lundberg, M.; Nielsen, B.S.; Vinther, L.; Knowles, M.; Gee, N.; Fredriksson, S.; Møller, S.; et al. Plasma levels of the MMP-9:TIMP-1 complex as prognostic biomarker in breast cancer: A retrospective study. BMC Cancer 2013, 13, 598. [Google Scholar] [CrossRef] [Green Version]
- Piechota-Polanczyk, A.; Demyanets, S.; Mittlboeck, M.; Hofmann, M.; Domenig, C.M.; Neumayer, C.; Wojta, J.; Klinger, M.; Nanobachvili, J.; Huk, I. The influence of simvastatin on NGAL, matrix metalloproteinases and their tissue inhibitors in human intraluminal thrombus and abdominal aortic aneurysm tissue. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Calmus, Y.; Poupon, R. Shaping macrophages function and innate immunity by bile acids: Mechanisms and implication in cholestatic liver diseases. Clin. Res. Hepatol. Gastroenterol. 2014, 38, 550–556. [Google Scholar] [CrossRef]
- Sato, K.; Hall, C.; Glaser, S.; Francis, H.; Meng, F.; Alpini, G. Pathogenesis of Kupffer cells in cholestatic liver injury. Am. J. Pathol. 2016, 186, 2238–2247. [Google Scholar] [CrossRef]
- Jain, S.; Scheuer, P.J.; McGee, J.O.; Sherlock, S. Hepatic collagen proline hydroxylase activity in primary biliary cirrhosis. Eur. J. Clin. Investig. 1978, 8, 15–17. [Google Scholar] [CrossRef]
- Bauer, A.; Habior, A. Concentration of serum matrix metalloproteinase-3 in patients with primary biliary cholangitis. Front. Immunol. 2022, 13, 885229. [Google Scholar] [CrossRef]
- Vesterhus, M.; Nielsen, M.J.; Hov, J.R.; Saffioti, F.; Manon-Jensen, T.; Leeming, D.J.; Moum, B.; Boberg, K.M.; Pinzani, M.; Karlsen, T.H.; et al. Comprehensive assessment of ECM turnover using serum biomarkers establishes PBC as a high-turnover autoimmune liver disease. JHEP Rep. 2020, 3, 100178. [Google Scholar] [CrossRef]
- Benyon, R.C.; Iredale, J.P.; Goddard, S.; Winwood, P.J.; Arthur, M.J. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 1996, 110, 821–831. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, M. Epigallocatechin-3-gallate ameliorates intrahepatic cholestasis of pregnancy by inhibiting matrix metalloproteinase-2 and matrix metalloproteinase-9. Fundam. Clin. Pharmacol. 2017, 31, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Voumvouraki, A.; Koulentaki, M.; Tzardi, M.; Sfakianaki, O.; Manousou, P.; Notas, G.; Kouroumalis, E. Increased ΤGF-β3 in primary biliary cirrhosis: An abnormality related to pathogenesis? World J. Gastroenterol. 2010, 16, 5057–5064. [Google Scholar] [CrossRef] [PubMed]
- Torres-Salinas, M.; Parés, A.; Caballería, J.; Jiménez, W.; Heredia, D.; Bruguera, M.; Rodés, J. Serum procollagen type III peptide as a marker of hepatic fibrogenesis in alcoholic hepatitis. Gastroenterology 1986, 90, 1241–1246. [Google Scholar] [CrossRef]
- Prystupa, A.; Szpetnar, M.; Boguszewska-Czubara, A.; Grzybowski, A.; Sak, J.; Załuska, W. Activity of MMP1 and MMP13 and amino acid metabolism in patients with alcoholic liver cirrhosis. Med. Sci. Monit. 2015, 21, 1008–1014. [Google Scholar] [CrossRef] [Green Version]
- Giménez, A.; Parés, A.; Alié, S.; Camps, J.; Deulofeu, R.; Caballería, J.; Rodés, J. Fibrogenic and collagenolytic activity in carbon-tetrachloride-injured rats: Beneficial effects of zinc administration. J. Hepatol. 1994, 21, 292–298. [Google Scholar] [CrossRef]
- Zdanowicz, K.; Kowalczuk-Kryston, M.; Olanski, W.; Werpachowska, I.; Mielech, W.; Lebensztejn, D.M. Increase in serum MMP-9 and TIMP-1 concentrations during alcohol intoxication in adolescents-a preliminary study. Biomolecules 2022, 12, 710. [Google Scholar] [CrossRef] [PubMed]
- Ebata, M.; Fukuda, Y.; Nakano, I.; Katano, Y.; Fujimoto, N.; Hayakawa, T. Serum levels of tissue inhibitor of metalloproteinases-2 and of precursor form of matrix metalloproteinase-2 in patients with liver disease. Liver 1997, 17, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, A.; Hayashi, N.; Mochizuki, K.; Oshita, M.; Katayama, K.; Kato, M.; Masuzawa, M.; Yoshihara, H.; Naito, M.; Miyamoto, T.; et al. Circulating matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 as serum markers of fibrosis in patients with chronic hepatitis C. Relationship to interferon response. J. Hepatol. 1997, 26, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Kanta, J. Elastin in the liver. Front. Physiol. 2016, 7, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benyon, R.C.; Arthur, M.J. Extracellular matrix degradation and the role of hepatic stellate cells. Semin. Liver Dis. 2001, 21, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z. Soluble elastin peptides in cardiovascular homeostasis: Foe or ally. Peptides 2015, 67, 64–73. [Google Scholar] [CrossRef]
- Feng, M.; Ding, J.; Wang, M.; Zhang, J.; Zhu, X.; Guan, W. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution. Int. J. Biol. Sci. 2018, 14, 1033–1040. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, M.; Liu, X.; Bai, L.; Kong, M.; Chen, Y.; Zheng, S.; Liu, S.; Wan, Y.J.; Duan, Z.; et al. Persistence of cirrhosis is maintained by intrahepatic regulatory T cells that inhibit fibrosis resolution by regulating the balance of tissue inhibitors of metalloproteinases and matrix metalloproteinases. Transl. Res. 2016, 169, 67–79. [Google Scholar] [CrossRef]
- Walsh, K.M.; Timms, P.; Campbell, S.; MacSween, R.N.; Morris, A.J. Plasma levels of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of metalloproteinases -1 and -2 (TIMP-1 and TIMP-2) as noninvasive markers of liver disease in chronic hepatitis C: Comparison using ROC analysis. Dig. Dis. Sci. 1999, 44, 624–630. [Google Scholar] [CrossRef]
- Heymans, S.; Schroen, B.; Vermeersch, P.; Milting, H.; Gao, F.; Kassner, A.; Gillijns, H.; Herijgers, P.; Flameng, W.; Carmeliet, P.; et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, H.; Oosawa, Y.; Kawano, N.; Kameda, Y.; Hayashi, H.; Nakatani, Y.; Udaka, N.; Ito, T.; Miyazaki, K. Basement membrane patterns, gelatinase A and tissue inhibitor of metalloproteinase-2 expressions, and stromal fibrosis during the development of peripheral lung adenocarcinoma. Hum. Pathol. 1999, 30, 331–338. [Google Scholar] [CrossRef]
- Attallah, A.M.; El-Far, M.; Abdel Malak, C.A.; Omran, M.M.; Farid, K.; Hussien, M.A.; Albannan, M.S.; Attallah, A.A.; Elbendary, M.S.; Elbesh, D.A.; et al. Fibro-check: A combination of direct and indirect markers for liver fibrosis staging in chronic hepatitis C patients. Ann. Hepatol. 2015, 14, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Murawaki, Y.; Ikuta, Y.; Idobe, Y.; Kawasaki, H. Serum matrix metalloproteinase-1 in patients with chronic viral hepatitis. J. Gastroenterol. Hepatol. 1999, 14, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Leroy, V.; Monier, F.; Bottari, S.; Trocme, C.; Sturm, N.; Hilleret, M.N.; Morel, F.; Zarski, J.P. Circulating matrix metalloproteinases 1, 2, 9 and their inhibitors TIMP-1 and TIMP-2 as serum markers of liver fibrosis in patients with chronic hepatitis C: Comparison with PIIINP and hyaluronic acid. Am. J. Gastroenterol. 2004, 99, 271–279. [Google Scholar] [CrossRef]
- Liu, C.H.; Liu, C.J.; Hong, C.M.; Su, T.H.; Yang, H.C.; Chen, K.M.; Huang, Y.P.; Yeh, Y.M.; Tien, H.L.; Liu, Y.C.; et al. A noninvasive diagnosis of hepatic fibrosis by BioFibroScore® in chronic hepatitis C patients. J. Gastroenterol. Hepatol. 2018, 33, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, R.; Al-Kadasi, H.; Jaroszewicz, J.; Prokopowicz, D.; Flisiak, I. Effect of lamivudine treatment on plasma levels of transforming growth factor beta1, tissue inhibitor of metalloproteinases-1 and metalloproteinase-1 in patients with chronic hepatitis B. World J. Gastroenterol. 2004, 10, 2661–2665. [Google Scholar] [CrossRef]
- Badra, G.; Lotfy, M.; El-Refaie, A.; Obada, M.; Abdelmonem, E.; Kandeel, S.; Fathy, A. Significance of serum matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in chronic hepatitis C patients. Acta. Microbiol. Immunol. Hung 2010, 57, 29–42. [Google Scholar] [CrossRef]
- Medeiros, T.; Saraiva, G.N.; Moraes, L.A.; Gomes, A.C.; Lacerda, G.S.; Leite, P.E.; Esberard, E.B.; Andrade, T.G.; Xavier, A.R.; Quírico-Santos, T. Liver fibrosis improvement in chronic hepatitis C after direct acting-antivirals is accompanied by reduced profibrogenic biomarkers-a role for MMP-9/TIMP-1. Dig. Liver Dis. 2020, 52, 1170–1177. [Google Scholar] [CrossRef]
- Lichtinghagen, R.; Michels, D.; Haberkorn, C.I.; Arndt, B.; Bahr, M.; Flemming, P.; Manns, M.P.; Boeker, K.H. Matrix metalloproteinase (MMP)-2, MMP-7, and tissue inhibitor of metalloproteinase-1 are closely related to the fibroproliferative process in the liver during chronic hepatitis C. J. Hepatol. 2001, 34, 239–247. [Google Scholar] [CrossRef]
- Lichtinghagen, R.; Bahr, M.J.; Wehmeier, M.; Michels, D.; Haberkorn, C.I.; Arndt, B.; Flemming, P.; Manns, M.P.; Boeker, K.H. Expression and coordinated regulation of matrix metalloproteinases in chronic hepatitis C and hepatitis C virus-induced liver cirrhosis. Clin. Sci. 2003, 105, 373–382. [Google Scholar] [CrossRef] [Green Version]
- Bruno, C.M.; Valenti, M.; Bertino, G.; Ardiri, A.; Consolo, M.; Mazzarino, C.M.; Amoroso, A.; Neri, S. Altered pattern of circulating matrix metalloproteinases -2,-9 and tissue inhibitor of metalloproteinase-2 in patients with HCV-related chronic hepatitis. Relationship to histological features. Panminerva. Med. 2009, 51, 191–196. [Google Scholar]
- Latronico, T.; Mascia, C.; Pati, I.; Zuccala, P.; Mengoni, F.; Marocco, R.; Tieghi, T.; Belvisi, V.; Lichtner, M.; Vullo, V.; et al. Liver fibrosis in HCV monoinfected and HIV/HCV coinfected patients: Dysregulation of matrix metalloproteinases (MMPs) and their tissue inhibitors TIMPs and effect of HCV protease inhibitors. Int. J. Mol. Sci. 2016, 17, 455. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Li, Y.; Zhao, A.; Xie, F.; Guo, Z. Clinical utility of serum matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 concentrations in the assessment of liver fibrosis due to chronic hepatitis B. J. Int. Med. Res. 2012, 40, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reif, S.; Somech, R.; Brazovski, E.; Reich, R.; Belson, A.; Konikoff, F.M.; Kessler, A. Matrix metalloproteinases 2 and 9 are markers of inflammation but not of the degree of fibrosis in chronic hepatitis C. Digestion 2005, 71, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Rozario, R.; Ramakrishna, B. Histopathological study of chronic hepatitis B and C: A comparison of two scoring systems. J. Hepatol. 2003, 38, 223–229. [Google Scholar] [CrossRef]
- Martinez-Castillo, M.; Hernandez-Barragan, A.; Flores-Vasconcelos, I.; Galicia-Moreno, M.; Rosique-Oramas, D.; Perez-Hernandez, J.L.; Higuera-De la Tijera, F.; Montalvo-Jave, E.E.; Torre-Delgadillo, A.; Cordero-Perez, P.; et al. Production and activity of matrix metalloproteinases during liver fibrosis progression of chronic hepatitis C patients. World J. Hepatol. 2021, 13, 218–232. [Google Scholar] [CrossRef] [PubMed]
Liver PH | Liver Collagenase | PH/Collagenase Ratio | Liver Gelatinase | Liver Elastase | MMP1 | MMP2 | MMP9 | TIMP1 | TIMP2 | |
---|---|---|---|---|---|---|---|---|---|---|
Normals | - | - | - | - | - | - | - | - | - | - |
Early PBC | ▲ | NS | NS | NS | NS | NS | ▼ | ▼ | ▼ | NS |
Late PBC | ▲ | ▼ | ▲ | ▼ | NS | ▼ | ▼ | ▼ | NS | NS |
On UDCA | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Viral hepatitis | NS | ▼ | ▲ | NS | NS | ▼ | ▼ | ▼ | ▼ | NS |
Viral cirrhosis | NS | ▼ | ▲ | ▼ | NS | ▼ | ▼ | ▼ | ▼ | ▲ |
Fatty liver | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Alcoholic hepatitis | ▲ | ▼ | ▲ | NS | NS | ▼ | ▼ | ▼ | ▼ | NS |
Alcoholic cirrhosis | ▲ | ▼ | ▲ | NS | NS | ▼ | ▼ | ▼ | ▼ | ▲ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsomidis, I.; Notas, G.; Xidakis, C.; Voumvouraki, A.; Samonakis, D.N.; Koulentaki, M.; Kouroumalis, E. Enzymes of Fibrosis in Chronic Liver Disease. Biomedicines 2022, 10, 3179. https://doi.org/10.3390/biomedicines10123179
Tsomidis I, Notas G, Xidakis C, Voumvouraki A, Samonakis DN, Koulentaki M, Kouroumalis E. Enzymes of Fibrosis in Chronic Liver Disease. Biomedicines. 2022; 10(12):3179. https://doi.org/10.3390/biomedicines10123179
Chicago/Turabian StyleTsomidis, Ioannis, George Notas, Costas Xidakis, Argyro Voumvouraki, Dimitrios N Samonakis, Mairi Koulentaki, and Elias Kouroumalis. 2022. "Enzymes of Fibrosis in Chronic Liver Disease" Biomedicines 10, no. 12: 3179. https://doi.org/10.3390/biomedicines10123179
APA StyleTsomidis, I., Notas, G., Xidakis, C., Voumvouraki, A., Samonakis, D. N., Koulentaki, M., & Kouroumalis, E. (2022). Enzymes of Fibrosis in Chronic Liver Disease. Biomedicines, 10(12), 3179. https://doi.org/10.3390/biomedicines10123179