Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario
Abstract
:1. Introduction
2. AD Genetics and Implementation of Genetic Findings
2.1. AD Genetics
2.2. Implementation in Clinical Setting
2.3. Implementation in Research Setting
2.4. Implementation in Direct-to-Consumer Setting
3. Protocols and Practice of AD Genetic Risk Disclosure
3.1. Clinical Setting
3.2. Research Setting
3.3. Direct-to-Consumer Setting
4. Context-Sensitive Perspectives
4.1. How Can Genetic Risk Testing for AD Be Evaluated?
4.2. Safety
4.3. Users’ Perspective
4.4. The Italian Context
5. Conclusions
5.1. Development of a Guidance
5.2. Genetic Risk Communication
5.3. Setting and Professionals
5.4. Continuing Education
5.5. Patient-Centred Health Value
5.6. Limitations and Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Dementia. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 9 September 2022).
- Tampi, R.R.; Forester, B.P.; Agronin, M. Aducanumab: Evidence from clinical trial data and controversies. Drugs Context. 2021, 10, 2021-7-3. [Google Scholar] [CrossRef] [PubMed]
- Van Cauwenberghe, C.; Van Broeckhoven, C.; Sleegers, K. The genetic landscape of Alzheimer disease: Clinical implications and perspectives. Genet. Med. 2016, 18, 421–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 2022, 54, 412–436. [Google Scholar] [CrossRef] [PubMed]
- Ebenau, J.L.; van der Lee, S.J.; Hulsman, M.; Tesi, N.; Jansen, I.E.; Verberk, I.M.W.; van Leeuwenstijn, M.; Teunissen, C.E.; Barkhof, F.; Prins, N.D.; et al. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. Alzheimers Dement. 2021, 13, e12229. [Google Scholar] [CrossRef]
- Ranson, J.M.; Rittman, T.; Hayat, S.; Brayne, C.; Jessen, F.; Blennow, K.; van Duijn, C.; Barkhof, F.; Tang, E.; Mummery, C.J.; et al. Modifiable risk factors for dementia and dementia risk profiling. A user manual for Brain Health Services-part 2 of 6. Alzheimers Res. Ther. 2021, 13, 169. [Google Scholar] [CrossRef]
- Grill, J.D.; Karlawish, J. Disclosing Alzheimer Disease Biomarker Results to Research Participants. JAMA Neurol. 2022, 79, 645–646. [Google Scholar] [CrossRef]
- van der Schaar, J.; Visser, L.N.C.; Bouwman, F.H.; Ket, J.C.F.; Scheltens, P.; Bredenoord, A.L.; van der Flier, W.M. Considerations regarding a diagnosis of Alzheimer’s disease before dementia: A systematic review. Alzheimers Res. Ther. 2022, 14, 31. [Google Scholar] [CrossRef]
- Frank, L.; Ashford, J.W.; Bayley, P.J.; Borson, S.; Buschke, H.; Cohen, D.; Cummings, J.L.; Davies, P.; Dean, M.; Finkel, S.I.; et al. Genetic Risk of Alzheimer’s Disease: Three Wishes Now That the Genie is Out of the Bottle. J. Alzheimers Dis. 2018, 66, 421–423. [Google Scholar] [CrossRef] [Green Version]
- Mega, A.; Galluzzi, S.; Bonvicini, C.; Fostinelli, S.; Gennarelli, M.; Geroldi, C.; Zanetti, O.; Benussi, L.; Di Maria, E.; Frisoni, G.B. Genetic counselling and testing for inherited dementia: Single-centre evaluation of the consensus Italian DIAfN protocol. Alzheimers Res. Ther. 2020, 12, 152. [Google Scholar] [CrossRef]
- Galluzzi, S.; Mega, A.; Di Fede, G.; Muscio, C.; Fascendini, S.; Benussi, L.; Tagliavini, F.; Frisoni, G.B.; Di Maria, E.; Italian-DIAfN Working Group. Psychological Impact of Predictive Genetic Testing for Inherited Alzheimer Disease and Frontotemporal Dementia: The IT-DIAfN Protocol. Alzheimers Dis. Assoc. Disord. 2022, 36, 118–124. [Google Scholar] [CrossRef]
- Gatz, M.; Reynolds, C.A.; Fratiglioni, L.; Johansson, B.; Mortimer, J.A.; Berg, S.; Fiske, A.; Pedersen, N.L. Role of Genes and Environments for Explaining Alzheimer Disease. Arch. Gen. Psychiatry 2006, 63, 168–174. [Google Scholar] [PubMed] [Green Version]
- Saunders, A.M.; Schmader, K.; Breitner, J.C.; Benson, M.D.; Brown, W.T.; Goldfarb, L.; Goldgaber, D.; Manwaring, M.G.; Szymanski, M.H.; McCown, N.; et al. Apolipoprotein E epsilon 4 allele distributions in late-onset Alzheimer’s disease and in other amyloid-forming diseases. Lancet 1993, 342, 710–711. [Google Scholar] [CrossRef] [PubMed]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013, 45, 1452–1458. [Google Scholar] [CrossRef] [Green Version]
- Harold, D.; Abraham, R.; Hollingworth, P.; Sims, R.; Gerrish, A.; Hamshere, M.L.; Singh Pahwa, J.; Moskvina, V.; Dowzell, K.; Williams, A.; et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009, 41, 1088–1093. [Google Scholar] [CrossRef] [Green Version]
- Dourlen, P.; Kilinc, D.; Malmanche, N.; Chapuis, J.; Lambert, J.-C. The new genetic landscape of Alzheimer’s disease: From amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol. 2019, 138, 221–236. [Google Scholar] [CrossRef] [Green Version]
- Goldman, J.S.; Hahn, S.E.; Catania, J.W.; LaRusse-Eckert, S.; Butson, M.B.; Rumbaugh, M.; Strecker, M.N.; Roberts, J.S.; Burke, W.; Mayeux, R.; et al. Genetic counselling and testing for Alzheimer disease: Joint practice guidelines of the American College of Medical Genetics and the National Society of Genetic Counselors. Genet. Med. 2011, 13, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Decourt, B.; Sabbagh, M.N. The importance of genomics in advancing the diagnosis and treatment of dementia. Lancet Neurol. 2022, 21, 676–677. [Google Scholar]
- Ayers, K.L.; Mirshahi, U.L.; Wardeh, A.H.; Murray, M.F.; Hao, K.; Glicksberg, B.S.; Li, S.; Carey, D.J.; Chen, R. A loss of function variant in CASP7 protects against Alzheimer’s disease in homozygous APOE ε4 allele carriers. BMC Genom. 2016, 17, 445. [Google Scholar] [CrossRef] [Green Version]
- Daunt, P.; Ballard, C.G.; Creese, B.; Davidson, G.; Hardy, J.; Oshota, O.; Pither, R.J.; Gibson, A.M. Polygenic Risk Scoring is an Effective Approach to Predict Those Individuals Most Likely to Decline Cognitively Due to Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2021, 8, 78–83. [Google Scholar] [CrossRef]
- Baker, E.; Escott-Price, V. Polygenic Risk Scores in Alzheimer’s Disease: Current Applications and Future Directions. Front. Digit. Health 2020, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.; Molinuevo, J.L.; Ritchie, C.; Ribaldi, F.; Carrera, E.; Dubois, B.; Jessen, F.; McWhirter, L.; Scheltens, P.; van der Flier, W.M.; et al. Brain Health Services: Organization, structure, and challenges for implementation. A user manual for Brain Health Services-part 1 of 6. Alzheimers Res. Ther. 2021, 13, 168. [Google Scholar] [CrossRef] [PubMed]
- Isaacson, R.S.; Ganzer, C.A.; Hristov, H.; Hackett, K.; Caesar, E.; Cohen, R.; Kachko, R.; Meléndez-Cabrero, J.; Rahman, A.; Scheyer, O.; et al. The clinical practice of risk reduction for Alzheimer’s disease: A precision medicine approach. Alzheimers Dement. 2018, 14, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; et al. Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients with Early Alzheimer Disease. JAMA Neurol. 2022, 79, 13–21. [Google Scholar] [CrossRef]
- Sperling, R.A.; Rentz, D.M.; Johnson, K.A.; Karlawish, J.; Donohue, M.; Salmon, D.P.; Aisen, P. The A4 study: Stopping AD before symptoms begin? Sci. Transl. Med. 2014, 6, 228fs13. [Google Scholar] [CrossRef] [Green Version]
- Lopez Lopez, C.; Tariot, P.N.; Caputo, A.; Langbaum, J.B.; Liu, F.; Riviere, M.-E.; Langlois, C.; Rouzade-Dominguez, M.-L.; Zalesak, M.; Hendrix, S.; et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2019, 5, 216–227. [Google Scholar] [CrossRef]
- Cummings, J.; Aisen, P.S.; Dubois, B.; Frölich, L.; Jack, C.R., Jr.; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res. Ther. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Langbaum, J.B.; Karlawish, J.; Roberts, J.S.; Wood, E.M.; Bradbury, A.; High, N.; Walsh, T.L.; Gordon, D.; Aggarwal, R.; Davis, P.; et al. GeneMatch: A novel recruitment registry using at-home APOE genotyping to enhance referrals to Alzheimer’s prevention studies. Alzheimers Dement. 2019, 15, 515–524. [Google Scholar] [CrossRef]
- Ryan, M.M.; Cox, C.G.; Witbracht, M.; Hoang, D.; Gillen, D.L.; Grill, J.D. Using Direct-to-Consumer Genetic Testing Results to Accelerate Alzheimer Disease Clinical Trial Recruitment. Alzheimer Dis. Assoc. Disord. 2021, 35, 141–147. [Google Scholar] [CrossRef]
- Hoxhaj, I.; Stojanovic, J.; Boccia, S. European citizens’ perspectives on direct-to-consumer genetic testing: An updated systematic review. Eur. J. Public Health 2020, ckz246. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. FDA Allows Marketing of First Direct-to-Consumer Tests that Provide Genetic Risk Information for Certain Conditions. 2017. Available online: https://www.fda.gov/news-events/press-announcements/fda-allows-marketing-first-direct-consumer-tests-provide-genetic-risk-information-certain-conditions (accessed on 9 September 2022).
- Kalokairinou, L.; Howard, H.C.; Slokenberga, S.; Fisher, E.; Flatscher-Thöni, M.; Hartlev, M.; van Hellemondt, R.; Juškevičius, J.; Kapelenska-Pregowska, J.; Kováč, P.; et al. Legislation of direct-to-consumer genetic testing in Europe: A fragmented regulatory landscape. J. Community Genet. 2018, 9, 117–132. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, R.; Tibben, A.; Frontali, M.; Evers-Kiebooms, G.; Jones, A.; Martinez-Descales, A.; Roos, R.A. Recommendations for the predictive genetic test in Huntington’s disease. Clin. Genet. 2013, 83, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Bocchetta, M.; Mega, A.; Bernardi, L.; Di Maria, E.; Benussi, L.; Binetti, G.; Borroni, B.; Colao, R.; Di Fede, G.; Fostinelli, S.; et al. Genetic Counselling and Testing for Alzheimer’s Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. J. Alzheimers Dis. 2016, 51, 277–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.C.; Roberts, J.S.; Cupples, L.A.; Relkin, N.R.; Whitehouse, P.J.; Brown, T.; LaRusse Eckert, S.; Butson, M.; Dessa Sadovnick, A.; Quaid, K.A.; et al. Disclosure of APOE genotype for risk of Alzheimer’s disease. N. Engl. J. Med. 2009, 361, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, R.C.; Christensen, K.D.; Cupples, L.A.; Relkin, N.R.; Whitehouse, P.J.; Royal, C.D.M.; Obisesan, T.O.; Cook-Deegan, R.; Linnenbringer, E.; Barber Butson, M.; et al. A randomized noninferiority trial of condensed protocols for genetic risk disclosure of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1222–1230. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.D.; Uhlmann, W.R.; Roberts, J.S.; Linnenbringer, E.; Whitehouse, P.J.; Royal, C.D.; Obisesan, T.O.; Cupples, L.A.; Butson, M.B.; Fasaye, G.-A.; et al. A randomized controlled trial of disclosing genetic risk information for Alzheimer disease via telephone. Genet. Med. 2017, 20, 132–141. [Google Scholar] [CrossRef]
- Langlois, C.M.; Bradbury, A.; Wood, E.M.; Roberts, J.S.; Kim, S.Y.H.; Riviere, M.-E.; Liu, F.; Reiman, E.M.; Tariot, P.N.; Karlawish, J.; et al. Alzheimer’s Prevention Initiative Generation Program: Development of an APOE genetic counseling and disclosure process in the context of clinical trials. Alzheimers Dement. Transl. Res. Clin. Interv. 2019, 5, 705–716. [Google Scholar] [CrossRef]
- Alber, J.; Popescu, D.; Thompson, L.I.; Tonini, G.M.; Arthur, E.; Oh, H.; Correia, S.; Salloway, S.P.; Lee, A.K. Safety and Tolerability of APOE Genotyping and Disclosure in Cognitively Normal Volunteers from the Butler Alzheimer’s Prevention Registry. J. Geriatr. Psychiatry Neurol. 2022, 35, 293–301. [Google Scholar] [CrossRef]
- Oliveri, S.; Cincidda, C.; Ongaro, G.; Cutica, I.; Gorini, A.; Spinella, F.; Fiorentino, F.; Baldi, M.; Pravettoni, G. What people really change after genetic testing (GT) performed in private labs: Results from an Italian study. Eur. J. Hum. Genet. 2022, 30, 62–72. [Google Scholar] [CrossRef]
- ACMG Board of Directors. Direct-to-consumer genetic testing: A revised position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 207–208. [Google Scholar] [CrossRef] [Green Version]
- European Society of Human Genetics. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes. Eur. J. Hum. Genet. 2010, 18, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Pitini, E.; De Vito, C.; Marzuillo, C.; D’Andrea, E.; Rosso, A.; Federici, A.; Di Maria, E.; Villari, P. How is genetic testing evaluated? A systematic review of the literature. Eur. J. Hum. Genet. 2018, 26, 605–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parens, E.; Appelbaum, P.S. On What We Have Learned and Still Need to Learn about the Psychosocial Impacts of Genetic Testing. Häst. Cent. Rep. 2019, 49 (Suppl. 1), S2–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milverton, J.; Carter, D. Neglected impacts of patient decision-making associated with genetic testing. Int. J. Technol. Assess. Health Care 2022, 38, e75. [Google Scholar] [CrossRef]
- Pitini, E.; D’Andrea, E.; De Vito, C.; Rosso, A.; Unim, B.; Marzuillo, C.; Federici, A.; Di Maria, E.; Villari, P. A proposal of a new evaluation framework towards implementation of genetic tests. PLoS ONE 2019, 14, e0219755. [Google Scholar] [CrossRef] [Green Version]
- The HTA Core Model—Guiding Principles on Use. European Network for Health Technology Assessment, 2015. Available online: https://www.eunethta.eu/hta-core-model_-guiding-principles-on-use (accessed on 31 October 2022).
- Porter, M.E. What Is Value in Health Care? N. Engl. J. Med. 2010, 363, 2477–2481. [Google Scholar] [CrossRef]
- Marshe, V.S.; Gorbovskaya, I.; Kanji, S.; Kish, M.; Müller, D.J. Clinical implications of APOE genotyping for late-onset Alzheimer’s disease (LOAD) risk estimation: A review of the literature. J. Neural. Transm. 2019, 126, 65–85. [Google Scholar] [CrossRef]
- Goldman, J.S. Predictive Genetic Counseling for Neurodegenerative Diseases: Past, Present, and Future. Cold Spring Harb. Perspect. Med. 2020, 10, a036525. [Google Scholar] [CrossRef]
- Cassidy, M.R.; Roberts, J.S.; Bird, T.D.; Steinbart, E.J.; Cupples, A.; Chen, C.A.; Linnenbringer, E.; Green, R.C. Comparing test-specific distress of susceptibility versus deterministic genetic testing for Alzheimer’s disease. Alzheimers Dement. 2008, 4, 406–413. [Google Scholar] [CrossRef] [Green Version]
- Lineweaver, T.T.; Bondi, M.W.; Galasko, D.; Salmon, D.P. Effect of knowledge of APOE genotype on subjective and objective memory performance in healthy older adults. Am. J. Psychiatry 2014, 171, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.D.; Roberts, J.S.; Zikmund-Fisher, B.J.; Kardia, S.L.; McBride, C.M.; Linnenbringer, E.; Green, R.C.; REVEAL Study Group. Associations between self-referral and health behavior responses to genetic risk information. Genome Med. 2015, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Largent, E.A.; Bhardwaj, T.; Abera, M.; Stites, S.D.; Harkins, K.; Lerner, A.J.; Bradbury, A.R.; Karlawish, J. Disclosing Genetic Risk of Alzheimer’s Disease to Cognitively Unimpaired Older Adults: Findings from the Study of Knowledge and Reactions to APOE Testing (SOKRATES II). J. Alzheimers Dis. 2021, 84, 1015–1028. [Google Scholar] [CrossRef] [PubMed]
- Janssens, A.C.J.; Gwinn, M.; Bradley, L.A.; Oostra, B.A.; van Duijn, C.M.; Khoury, M.J. A Critical Appraisal of the Scientific Basis of Commercial Genomic Profiles Used to Assess Health Risks and Personalize Health Interventions. Am. J. Hum. Genet. 2008, 82, 593–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloss, C.S.; Schork, N.J.; Topol, E.J. Effect of direct-to-consumer genomewide profiling to assess disease risk. N. Engl. J. Med. 2011, 364, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Egglestone, C.; Morris, A.; O’Brien, A. Effect of Direct-to-Consumer Genetic Tests on Health Behaviour and Anxiety: A Survey of Consumers and Potential Consumers. J. Genet. Couns. 2013, 22, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Francke, U.; Dijamco, C.; Kiefer, A.K.; Eriksson, N.; Moiseff, B.; Tung, J.Y.; Mountain, J.L. Dealing with the unexpected: Consumer responses to direct-access BRCA mutation testing. PeerJ 2013, 1, e8. [Google Scholar] [CrossRef] [Green Version]
- Rosin, E.R.; Blasco, D.; Pilozzi, A.R.; Yang, L.H.; Huang, X. A Narrative Review of Alzheimer’s Disease Stigma. J. Alzheimers Dis. 2020, 78, 515–528. [Google Scholar] [CrossRef]
- Messner, D.A. Informed Choice in Direct-to-Consumer Genetic Testing for Alzheimer and Other Diseases: Lessons from Two Cases. New Genet. Soc. 2011, 30, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Broady, K.M.; Ormond, K.E.; Topol, E.J.; Schork, N.J.; Bloss, C.S. Predictors of adverse psychological experiences surrounding genome-wide profiling for disease risk. J. Community Genet. 2018, 9, 217–225. [Google Scholar] [CrossRef]
- Wikler, E.M.; Blendon, R.J.; Benson, J.M. Would you want to know? Public attitudes on early diagnostic testing for Alzheimer’s disease. Alzheimers Res. Ther. 2013, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Caselli, R.J.; Langbaum, J.; Marchant, G.E.; Lindor, R.A.; Hunt, K.S.; Henslin, B.R.; Dueck, A.C.; Robert, J. Public Perceptions of Presymptomatic Testing for Alzheimer Disease. Mayo Clin. Proc. 2014, 89, 1389–1396. [Google Scholar] [CrossRef] [PubMed]
- Galvin, J.E.; Fu, Q.; Nguyen, J.T.; Glasheen, C.; Scharff, D.P. Psychosocial determinants of intention to screen for Alzheimer’s disease. Alzheimers Dement. 2008, 4, 353–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.S.; Gornick, M.C.; Carere, D.A.; Uhlmann, W.R.; Ruffin, M.T.; Green, R.C. Direct-to-consumer genetic testing: User motivations, decision making, and perceived utility of results. Public Health Genom. 2017, 20, 36–45. [Google Scholar] [CrossRef]
- Hercher, L.S.; Caudle, M.; Griffin, J.; Herzog, M.; Matviychuk, D.; Tidwell, J. Student-athletes’ views on APOE genotyping for increased risk of poor recovery after a traumatic brain injury. J. Genet. Couns. 2016, 25, 1267–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavarini, G.; Hamdi, L.; Lorimer, J.; Singh, I. Young people’s moral attitudes and motivations towards direct-to-consumer genetic testing for inherited risk of Alzheimer disease. Eur. J. Med. Genet. 2021, 64, 104180. [Google Scholar] [CrossRef]
- Felzmann, H. ‘Just a bit of fun’: How recreational is direct-to-customer genetic testing? N. Bioeth. 2015, 21, 20–32. [Google Scholar] [CrossRef]
- Oliveri, S.; Marton, G.; Vergani, L.; Cutica, I.; Gorini, A.; Spinella, F.; Pravettoni, G. Genetic Testing Consumers in Italy: A Preliminary Investigation of the Socio-Demographic Profile, Health-Related Habits, and Decision Purposes. Front. Public Health 2020, 8, 511. [Google Scholar] [CrossRef] [PubMed]
- Ongaro, G.; Brivio, E.; Cincidda, C.; Oliveri, S.; Spinella, F.; Steinberger, D.; Cutica, I.; Gorini, A.; Pravettoni, G. Genetic testing users in Italy and Germany: Health orientation, health-related habits, and psychological profile. Mol. Genet. Genom. Med. 2022, 10, e1851. [Google Scholar] [CrossRef]
- Marzuillo, C.; De Vito, C.; D’Addario, M.; Santini, P.; D’Andrea, E.; Boccia, A.; Villari, P. Are public health professionals prepared for public health genomics? A cross-sectional survey in Italy. BMC Health Serv. Res. 2014, 14, 239. [Google Scholar] [CrossRef] [Green Version]
- Marzuillo, C.; De Vito, C.; Boccia, S.; D’Addario, M.; D’Andrea, E.; Santini, P.; Boccia, A.; Villari, P. Knowledge, attitudes and behavior of physicians regarding predictive genetic tests for breast and colorectal cancer. Prev. Med. 2013, 57, 477–482. [Google Scholar] [CrossRef]
- Panic, N.; Leoncini, E.; Di Giannantonio, P.; Simone, B.; Silenzi, A.; Ferriero, A.M.; Falvo, R.; Silvestrini, G.; Cadeddu, C.; Marzuillo, C.; et al. Survey on Knowledge, Attitudes, and Training Needs of Italian Residents on Genetic Tests for Hereditary Breast and Colorectal Cancer. BioMed Res. Int. 2014, 2014, 418416. [Google Scholar] [CrossRef] [PubMed]
- Alpinar-Sencan, Z.; Schicktanz, S. Addressing ethical challenges of disclosure in dementia prediction: Limitations of current guidelines and suggestions to proceed. BMC Med. Ethics 2020, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, G.E.; Sassano, M.; Tognetto, A.; Boccia, S. Citizens’ Attitudes, Knowledge, and Educational Needs in the Field of Omics Sciences: A Systematic Literature Review. Front. Genet. 2020, 11, 570649. [Google Scholar] [CrossRef] [PubMed]
- NICE. Developing NICE Guidelines: The Manual—Process and Methods. 2022. Available online: https://www.nice.org.uk/process/pmg20/chapter/introduction (accessed on 21 October 2022).
- Centro Nazionale per l’Eccellenza Clinica, la Qualità e la Sicurezza delle Cure. Manuale Metodologico per la Produzione di Linee Guida di Pratica Clinica. 2019. Available online: https://snlg.iss.it/wp-content/uploads/2019/04/MM_v1.3.2_apr_2019.pdf (accessed on 21 October 2022).
- Visser, L.N.C.; Minguillon, C.; Sánchez-Benavides, G.; Abramowicz, M.; Altomare, D.; Fauria, K.; Frisoni, G.B.; Georges, J.; Ribaldi, F.; Scheltens, P.; et al. Dementia risk communication. A user manual for Brain Health Services-part 3 of 6. Alzheimers Res. Ther. 2021, 13, 170. [Google Scholar] [CrossRef]
- Croyle, R.T.; Lerman, C. Risk Communication in Genetic Testing for Cancer Susceptibility. J. Natl. Cancer Inst. Monogr. 1999, 1999, 59. [Google Scholar] [CrossRef]
Protocol | Population | Genetic Variant | Delivery | Personnel | Pre-Test Evaluations | Structure |
---|---|---|---|---|---|---|
ACMG and NSGC guidelines [18] | Individuals with familial AD | PSEN1, PSEN2, APP | In-person, videoconference | Genetic counsellor | Neurologist, psychologist/psychiatrist | Two-part pre-test; one or more post-disclosure follow-up |
The REVEAL study [36] | Individuals with first-degree AD relative | APOE | In-person | Genetic counsellor | Scales on depression, anxiety, stress | Two-part pre-test; three post-disclosure follow-ups |
The REVEAL study [37] | Individuals with first-degree AD relative | APOE | In-person | Genetic counsellor or study physician | Scales on depression, anxiety | One-part pre-test; three post-disclosure follow-ups |
The REVEAL study [38] | Individuals with first-degree AD relative | APOE | Telephone (genetic disclosure) | Genetic counsellor | Scales on depression, anxiety, stress | One-part pre-test; three post-disclosure follow-ups |
API Generation Program [39] | Older individuals enrolled in the trial | APOE | In-person, telephone (follow-up) | Provider qualified per local regulations | Scales on depression, anxiety, suicidal ideation | One-part pre-test; one or more post-disclosure follow-up |
Butler Alzheimer’s Prevention Registry [40] | Older individuals volunteering in the register | APOE | In-person, online (follow-up) | Board-certified neuropsychologist | Scales on depression, anxiety, suicidal ideation | One-part pre-test; three post-disclosure follow-ups |
Topic | Key Word | Key Message |
---|---|---|
Genetic risk communication | Counselling | Risk communication should be included in an integrated genetic counselling and testing procedure. |
Practice | Currently, testing genetic risk factors is not recommended in clinical practice. | |
Research | In clinical research, risk disclosure should be embedded in the relevant research protocol. | |
Patient-centredness | User-centred procedures are warranted. | |
Personalised risk | The genetic risk should be interpreted and disclosed to the participant as part of a comprehensive individual risk for dementia. | |
Guidance | Guidelines | Evidence-based guidelines are warranted and should be developed by independent experts from across a range of health and social care professions, including lay members. |
Inclusiveness | All relevant stakeholders should be allowed to appraise the implications—or the risks and benefits—of disclosing genetic risk factors to healthy individuals. | |
Innovation | Novel technologies should be timely evaluated by using structured assessment procedures (HTA). | |
Protocol | Setting | Users would prefer face-to-face services rather than remote consultations, as genetic testing is perceived as an option to gain knowledge on one’s own health; users rely on the presence of expert healthcare professionals. |
Multidisciplinarity | A multidisciplinary team should be in charge of the whole process of genetic risk assessment and disclosure. | |
. | Quality | The procedure should comply with acknowledged quality standards; proper resources should be allocated, also in clinical research protocols. |
Education | Health education | Educational strategies for the public may improve genomic literacy and increase abilities to make appropriate health decisions. |
Medical education | Continuing education programmes for healthcare professionals about the clinical utility of genomic technologies are warranted. | |
Interdisciplinarity | Multidisciplinary and multi-professional teams may guarantee the ability to deal with the multifaceted issues implied by genetic risk disclosure. | |
Health value | Autonomy | Enrolled individuals should be able to autonomously decide whether to know or not to know her/his genetic risk; the uncertainty related to the limited predictive value of currently available genotyping should be considered. |
Technology assessment | Structured assessments should be deployed to evaluate all domains of the genetic risk assessment and disclosure procedure—safety, effectiveness, economic and organizational issues, ethical, legal and social issues. | |
Perspectives | Evidence | Further research is needed—investigations featured by rigorous design and controlled risk of bias will contribute to accumulate knowledge; novel research questions may be considered. |
Equity | Research protocols should be equally accessible, including minority and less affluent individuals, and should be conducted in diverse cultural and national contexts. | |
Engagement | The proactive attitude of the clinical and research communities will help closing the gap between expectations and practice; users and other relevant stakeholders may contribute to the development of appropriate pathways. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzi, S.; Pievani, M.; Zanetti, O.; Benussi, L.; The Italian-DIAfN Working Group; Frisoni, G.B.; Di Maria, E. Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines 2022, 10, 3177. https://doi.org/10.3390/biomedicines10123177
Galluzzi S, Pievani M, Zanetti O, Benussi L, The Italian-DIAfN Working Group, Frisoni GB, Di Maria E. Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines. 2022; 10(12):3177. https://doi.org/10.3390/biomedicines10123177
Chicago/Turabian StyleGalluzzi, Samantha, Michela Pievani, Orazio Zanetti, Luisa Benussi, The Italian-DIAfN Working Group, Giovanni B. Frisoni, and Emilio Di Maria. 2022. "Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario" Biomedicines 10, no. 12: 3177. https://doi.org/10.3390/biomedicines10123177
APA StyleGalluzzi, S., Pievani, M., Zanetti, O., Benussi, L., The Italian-DIAfN Working Group, Frisoni, G. B., & Di Maria, E. (2022). Disclosure of Genetic Risk Factors for Alzheimer’s Disease to Cognitively Healthy Individuals—From Current Practice towards a Personalised Medicine Scenario. Biomedicines, 10(12), 3177. https://doi.org/10.3390/biomedicines10123177