Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential
Abstract
:1. Introduction
1.1. Biological Characteristics of Platelets
1.2. Platelets’ Activation
2. Platelets’ Pathologies Relevant for Oral Surgery
- − Platelet diseases with an adhesion defect;
- − Thrombocytopathies with an aggregation defect;
- − Thrombocytopathies with a defect in the release reaction.
- − Reduced platelet production: aplastic anemia, leukemia, vitamin B12, or folic acid deficiency cause a reduced development and faster destruction of bone marrow cells, including the megakaryocytes. In cases of aplastic anemia, which can be inherited or acquired, the bone marrow stem cells are incapacitated to proliferate and differentiate.
- − Destruction of platelets is due to [14]:
- Immunological mechanisms: circulating antibodies or immune complexes can cause immune-mediated destruction of platelets following autoimmune, drug-induced, or HIV-associated diseases.
- Mechanical damage: caused by platelets colliding with prosthetic heart valves, thrombi, or narrowed vessel walls.
- Hypersplenism: due to increased platelet sequestration by the splenic phagocyte system.
2.1. Immunological Mechanisms: IMMUNE Thrombocytopenic Purpura (ITP)
2.2. Immunological Mechanisms: Heparin-Induced Thrombocytopenia
2.3. Immunological Mechanisms: HIV-Associated Thrombocytopenia
2.4. Mechanical Damage: Thrombotic Microangiopathies
3. Hemorrhagic Diseases of Impaired Platelet Function
- − Defects in platelet adhesion to the subendothelial matrix [21], as in the case of von Willebrand disease or Bernard-Soulier syndrome [22], an autosomal recessive disorder caused by the hereditary deficiency of the membrane glycoprotein complex Ib-IX, which acts as a receptor for von Willebrand factor, essential for the physiological adhesion of platelets to the subendothelial matrix.
- Diseases associated with a reduction in circulating von Willebrand factor:
- -
- Type 1 (70–80% of cases) is the most common form of von Willebrand disease, due to non-sense mutations, with mild but variable clinical manifestations: the more significant the vWF deficiency in type 1 disease, the more likely we are to find signs and symptoms of hemophilia A [26].
- -
- Type 3 is a rare autosomal recessive form characterized by severe clinical manifestations caused by frameshift mutations or deletions [26].
- Diseases associated with qualitative deficiencies of von Willebrand factor:
- -
- Type 2, responsible for 15–20% of cases, is an autosomal dominant form due to non-sense mutations causing defective assembly of the multimers, with mild to moderate symptoms. Treatment involves desmopressin, which stimulates vWF, or factor VIII and vWF concentrate [26].
- -
- Defects in platelet aggregation, such as Glanzmann’s thrombasthenia, an autosomal recessive disorder characterized by a deficiency or malfunction of glycoprotein IIB-IIIa, a protein complex that contributes to the formation of “bridges” between platelets [26].
4. Role of Platelets Derivates in Regenerative Dental Procedures
- The presence of anticoagulants such as bovine thrombin could cause allergic reactions and coagulopathies due to the action of antibodies against factors V, XI, and consequent thrombus formation [36];
- Final preparation without rigidity requires the further addition of bone grafts to maintain a stable volume [36].
- Stimulation, through the growth factors contained within it, of the proliferation, differentiation, chemotaxis, and adhesion of stem cells, promoting angiogenesis and immune processes [34];
- Increased expression of alkaline phosphatase (ALP) in stem cells, leading to faster mineralization of the newly formed tissue [34];
- Induction of mineralization of the defect, thanks to the growth factors it contains (TGF-β1 and PDGF) [39];
- The creation of an epithelial barrier by the PRF membrane [40].
- A blood sample (10 to 100 cc of blood) taken and placed in a 10 mL glass tube (not plastic as the latter activates fewer coagulation factors);
- Centrifugation at 3000 rpm for 10 min.
- Superficial layer: cellular plasma;
- Middle layer: fibrin + platelets + leucocytes (PRF);
- Deep layer: blood cells.
- Pellets for bone grafting;
- Membrane.
- Endothelial growth factor (EGF): it stimulates endothelial cell chemotaxis, mesenchymal cell mitosis, epithelialization and increases tissue tensile strength [43].
- Transforming growth factor β1 (TGF-β1): it regulates angiogenesis, upregulates vascular endothelium growth factor (VEGF), regulates the tissue repair process, immune modulation, synthesis of extracellular matrix, and plays a key role during bone regeneration, stimulating the chemotaxis and mitogenesis in osteoblast precursors and the deposition of mineralized tissue on the bone collagen matrix [43].
- Platelet-derived growth factor (PDGF): this factor is mainly produced by platelets, and it can be in the fibrin matrix in high quantities. PDGF regulates the migration, the proliferation of mesenchymal cells, stimulates collagen production, the mitogenesis of osteoblasts, fibroblasts, smooth muscle cells, and glial cells [43].
- Insulin-like growth factors (IGF): the IGF is secreted by platelets and over-regulates the proliferation and differentiation of various cells involved in tissue repair mechanisms, the differentiation and proliferation of mesenchymal cells, and at the same time, it is a regulator of programmed apoptosis [43].
- VEGF: macrophages and thrombocytes secrete VEGF, the main factor in stimulating angiogenesis, modulating tissue remodeling, and when added to bone materials, stimulates the formation of new bone tissue [43].
Clinical Use of Platelets Derivates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linden, M.D. Platelet Physiology. Methods Mol. Biol. 2013, 992, 13–30. [Google Scholar]
- Maouia, A.; Rebetz, J.; Kapur, R.; Semple, J.W. The Immune Nature of Platelets Revisited. Transfus. Med. Rev. 2020, 34, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Rubak, P.; Nissen, P.H.; Kristensen, S.D.; Hvas, A.-M. Investigation of platelet function and platelet disorders using flow cytometry. Platelets 2016, 27, 66–74. [Google Scholar] [CrossRef]
- Kanchan, G.M. Platelet Disorders: Thrombocytopenia, Platelet Dysfunction, and Thrombocytosis: Assessment, Analysis, and Associated Dental Management Guidelines. In Dentist’s Guide to Medical Conditions, Medications, and Complications; Wiley Online Books: Ames, IA, USA, 2013; pp. 243–249. ISBN 9781119421450. [Google Scholar]
- Xu, J.; Gou, L.; Zhang, P.; Li, H.; Qiu, S. Platelet-rich plasma and regenerative dentistry. Aust. Dent. J. 2020, 65, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Thon, J.N.; Italiano, J.E. Platelets: Production, morphology and ultrastructure. Handb. Exp. Pharmacol. 2012, 210, 3–22. [Google Scholar]
- Jurk, K.; Ph, D.; Kehrel, B.E. Platelets: Physiology and Biochemistry. Semin. Thromb. Hemost. 2005, 1, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trowbridge, E.A.; Martin, J.F.; Slate, D.N.; Kishk, Y.T.; Warren, C.W.; Harley, P.J.; Woodcock, B. The origin of platelet count and volume. Clin. Phys. Physiol. Meas. 1984, 5, 145–170. [Google Scholar] [CrossRef]
- Rendu, F.; Brohard-bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 2001, 12, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Periayah, M.H.; Halim, A.S.; Mat Saad, A.Z. Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis. Int. J. Hematol. Stem Cell Res. 2017, 11, 319–327. [Google Scholar]
- Scharf, R.E. Drugs that affect platelet function. Semin. Thromb. Hemost. 2012, 38, 865–883. [Google Scholar] [CrossRef]
- Little, J.W.; Falace, D.A.; Miller, C.S.; Rhodus, N.L. Acquired Bleeding and Hypercoagulable Disorders. In Little and Falace’s Dental Management of the Medically Compromised Patient; Little, J.W., Falace, D.A., Miller, C.S., Rhodus, N.L.B.T.-L., Eds.; Mosby: St. Louis, MO, USA, 2013; pp. 409–436. ISBN 978-0-323-08028-6. [Google Scholar]
- Aliotta, A.; Bertaggia Calderara, D.; Zermatten, M.G.; Marchetti, M.; Alberio, L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J. Clin. Med. 2021, 10, 894. [Google Scholar] [CrossRef]
- Little, J.W.; Falace, D.A.; Miller, C.S.; Rhodus, N.L. Congenital Bleeding and Hypercoagulable Disorders. In Little and Falace’s Dental Management of the Medically Compromised Patient; Little, J.W., Falace, D.A., Miller, C.S., Rhodus, N.L.B.T.-L., Eds.; Mosby: St. Louis, MO, USA, 2013; pp. 437–458. ISBN 978-0-323-08028-6. [Google Scholar]
- Iraqi, M.; Perdomo, J.; Yan, F.; Choi, P.Y.-I.; Chong, B.H. Immune thrombocytopenia: Antiplatelet autoantibodies inhibit proplatelet formation by megakaryocytes and impair platelet production in vitro. Haematologica 2015, 100, 623–632. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.S.Y.; Kang, J.H.-E.; Maw, K.Z. Acute immune thrombocytopenic purpura post first dose of COVID-19 vaccination. Postgrad. Med. J. 2021. [Google Scholar] [CrossRef]
- Linkins, L.-A. Heparin induced thrombocytopenia. BMJ Br. Med. J. 2015, 350, g7566. [Google Scholar] [CrossRef] [PubMed]
- Scaradavou, A. HIV-related thrombocytopenia. Blood Rev. 2002, 16, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Arnold, D.M.; Patriquin, C.J.; Nazy, I. Thrombotic microangiopathies: A general approach to diagnosis and management. CMAJ 2017, 189, E153–E159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warner, T.D.; Nylander, S.; Whatling, C. Anti-platelet therapy: Cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Br. J. Clin. Pharmacol. 2011, 72, 619–633. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, Z.M.; Mendolicchio, G.L. Adhesion Mechanisms in Platelet Function. Circ. Res. 2007, 100, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Lanza, F. Bernard-Soulier syndrome (Hemorrhagiparous thrombocytic dystrophy). Orphanet J. Rare Dis. 2006, 1, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leebeek, F.W.G.; Atiq, F. How I manage severe von Willebrand disease. Br. J. Haematol. 2019, 187, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Peyvandi, F.; Garagiola, I.; Baronciani, L. Role of von Willebrand factor in the haemostasis. Blood Transfus. 2011, 9 (Suppl. S2), S3–S8. [Google Scholar] [PubMed]
- Castaman, G.; Linari, S. Diagnosis and Treatment of von Willebrand Disease and Rare Bleeding Disorders. J. Clin. Med. 2017, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- James, P.D.; Goodeve, A.C. Von Willebrand Disease. Genet. Med. 2011, 13, 365–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Andrea, G.; Chetta, M.; Margaglione, M. Inherited platelet disorders: Thrombocytopenias and thrombocytopathies. Blood Transfus. 2009, 7, 278–292. [Google Scholar]
- Anitua, E.; Nurden, P.; Prado, R.; Nurden, A.T.; Padilla, S. Autologous fibrin scaffolds: When platelet- and plasma-derived biomolecules meet fibrin. Biomaterials 2019, 192, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Bhandi, S.; Alkahtani, A.; Reda, R.; Mashyakhy, M.; Boreak, N.; Maganur, P.C.; Vishwanathaiah, S.; Mehta, D.; Vyas, N.; Patil, V.; et al. Parathyroid Hormone Secretion and Receptor Expression Determine the Age-Related Degree of Osteogenic Differentiation in Dental Pulp Stem Cells. J. Pers. Med. 2021, 11, 349. [Google Scholar] [CrossRef]
- Patil, S.; Reda, R.; Boreak, N.; Taher, H.A.; Melha, A.A.; Albrakati, A.; Vinothkumar, T.S.; Mustafa, M.; Robaian, A.; Alroomy, R.; et al. Adipogenic Stimulation and Pyrrolidine Dithiocarbamate Induced Osteogenic Inhibition of Dental Pulp Stem Cells Is Countered by Cordycepin. J. Pers. Med. 2021, 11, 915. [Google Scholar] [CrossRef]
- Eming, S.A.; Paul, M.; Marjana, T.-C. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, sr6–sr265. [Google Scholar] [CrossRef] [Green Version]
- Dhurat, R.; Sukesh, M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and Author’s Perspective. J. Cutan. Aesthet. Surg. 2014, 7, 189–197. [Google Scholar] [CrossRef]
- Bernardi, S.; Mummolo, S.; Tecco, S.; Continenza, M.A.; Marzo, G. Histological Characterization of Sacco’s Concentrated Growth Factors Membrane. Int. J. Morphol. 2017, 35, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Dohan Ehrenfest, D.M.; Andia, I.; Zumstein, M.A.; Zhang, C.-Q.; Pinto, N.R.; Bielecki, T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles. Ligaments Tendons J. 2014, 4, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijnheer, R.; Pietersz, R.N.; de Korte, D.; Gouwerok, C.W.; Dekker, W.J.; Reesink, H.W.; Roos, D. Platelet activation during preparation of platelet concentrates: A comparison of the platelet-rich plasma and the buffy coat methods. Transfusion 1990, 30, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Kawase, T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: Basic principles and concepts underlying recent advances. Odontology 2015, 103, 126–135. [Google Scholar] [CrossRef]
- Choukroun, J.; Diss, A.; Simonpieri, A.; Girard, M.-O.; Schoeffler, C.; Dohan, S.L.; Dohan, A.J.J.; Mouhyi, J.; Dohan, D.M. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006, 101, e56–e60. [Google Scholar] [CrossRef]
- Charrier, J.B.; Monteil, J.P.; Albert, S.; Collon, S.; Bobin, S.; Dohan Ehrenfest, D.M. Relevance of Choukroun’s Platelet-Rich Fibrin (PRF) and SMAS flap in primary reconstruction after superficial or subtotal parotidectomy in patients with focal pleiomorphic adenoma: A new technique. Rev. Laryngol. Otol. Rhinol. 2008, 129, 313–318. [Google Scholar]
- Dohan Ehrenfest, D.M.; de Peppo, G.M.; Doglioli, P.; Sammartino, G. Slow release of growth factors and thrombospondin-1 in Choukroun’s platelet-rich fibrin (PRF): A gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors 2009, 27, 63–69. [Google Scholar] [CrossRef]
- Gassling, V.; Douglas, T.; Warnke, P.H.; Acil, Y.; Wiltfang, J.; Becker, S.T. Platelet-rich fibrin membranes as scaffolds for periosteal tissue engineering. Clin. Oral Implant. Res. 2010, 21, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Pitzurra, L.; Jansen, I.D.C.; de Vries, T.J.; Hoogenkamp, M.A.; Loos, B.G. Effects of L-PRF and A-PRF+ on periodontal fibroblasts in in vitro wound healing experiments. J. Periodontal Res. 2020, 55, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.; Quinlan, D.J.; Ghanem, A. Injectable platelet-rich fibrin for facial rejuvenation: A prospective, single-center study. J. Cosmet. Dermatol. 2020, 19, 3213–3221. [Google Scholar] [CrossRef]
- Rodella, L.F.; Favero, G.; Boninsegna, R.; Buffoli, B.; Labanca, M.; Scarì, G.; Sacco, L.; Batani, T.; Rezzani, R. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc. Res. Tech. 2011, 74, 772–777. [Google Scholar] [CrossRef]
- Everts, P.A.M.; Knape, J.T.A.; Weibrich, G.; Schönberger, J.P.A.M.; Hoffmann, J.; Overdevest, E.P.; Box, H.A.M.; van Zundert, A. Platelet-rich plasma and platelet gel: A review. J. Extra. Corpor. Technol. 2006, 38, 174–187. [Google Scholar]
- Mancini, L.; Romandini, M.; Fratini, A.; Americo, L.M.; Panda, S.; Marchetti, E. Biomaterials for Periodontal and Peri-Implant Regeneration. Materials 2021, 14, 3319. [Google Scholar] [CrossRef] [PubMed]
- Tarallo, F.; Mancini, L.; Pitzurra, L.; Bizzarro, S.; Tepedino, M.; Marchetti, E. Use of Platelet-Rich Fibrin in the Treatment of Grade 2 Furcation Defects: Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2104. [Google Scholar] [CrossRef] [PubMed]
- Mancini, L.; Tarallo, F.; Quinzi, V.; Fratini, A.; Mummolo, S.; Marchetti, E. Platelet-rich fibrin in single and multiple coronally advanced flap for type 1 recession: An updated systematic review and meta-analysis. Medicina 2021, 57, 144. [Google Scholar] [CrossRef]
- Sequeira, D.B.; Oliveira, A.R.; Seabra, C.M.; Palma, P.J.; Ramos, C.; Figueiredo, M.H.; Santos, A.C.; Cardoso, A.L.; Peça, J.; Santos, J.M. Regeneration of pulp-dentin complex using human stem cells of the apical papilla: In vivo interaction with two bioactive materials. Clin. Oral Investig. 2021, 25, 5317–5329. [Google Scholar] [CrossRef] [PubMed]
- Pocaterra, A.; Caruso, S.; Bernardi, S.; Scagnoli, L.; Continenza, M.A.; Gatto, R. Effectiveness of platelet-rich plasma as an adjunctive material to bone graft: A systematic review and meta-analysis of randomized controlled clinical trials. Int. J. Oral Maxillofac. Surg. 2016, 45, 1027–1034. [Google Scholar] [CrossRef]
- Del Fabbro, M.; Karanxha, L.; Panda, S.; Bucchi, C.; Doraiswamy, J.N.; Sankari, M.; Ramamoorthi, S.; Varghese, S.; Taschieri, S. Autologous platelet concentrates for treating periodontal infrabony defects. Cochrane Database Syst. Rev. 2018, 11, CD011423. [Google Scholar] [CrossRef]
- Panda, S.; Karanxha, L.; Goker, F.; Satpathy, A.; Taschieri, S.; Francetti, L.; Das, A.C.; Kumar, M.; Panda, S.; Fabbro, M. Del Autologous Platelet Concentrates in Treatment of Furcation Defects-A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 1347. [Google Scholar] [CrossRef] [Green Version]
- Del Fabbro, M.; Corbella, S.; Ceresoli, V.; Ceci, C.; Taschieri, S. Plasma Rich in Growth Factors Improves Patients’ Postoperative Quality of Life in Maxillary Sinus Floor Augmentation: Preliminary Results of a Randomized Clinical Study. Clin. Implant. Dent. Relat. Res. 2015, 17, 708–716. [Google Scholar] [CrossRef]
- Del Fabbro, M.; Ceresoli, V.; Lolato, A.; Taschieri, S. Effect of platelet concentrate on quality of life after periradicular surgery: A randomized clinical study. J. Endod. 2012, 38, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; Bortolin, M.; Vassena, C.; Taschieri, S.; Del Fabbro, M. Antimicrobial activity of pure platelet-rich plasma against microorganisms isolated from oral cavity. BMC Microbiol. 2013, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Fabbro, M.; Bortolin, M.; Taschieri, S.; Ceci, C.; Weinstein, R.L. Antimicrobial properties of platelet-rich preparations. A systematic review of the current pre-clinical evidence. Platelets 2016, 27, 276–285. [Google Scholar] [CrossRef] [PubMed]
Blood Product | L-PRF | PRP |
---|---|---|
Protocol | 2700 rpm for 12′ | 2400 rpm 10′ |
Flow | One step continuous | Two steps cloth activation |
PDGF levels (ng/mL) [32] | High | Low |
VEGF levels(ng/mL) [34] | Highest | Low |
TGF-b 1 (ng/mL) [34] | High | Low |
Reproducibility | No bias | Possible bias |
Use of anticoagulants | No | Yes |
Fibrin density | High | Low |
Speed of fibrin formation | High | Low |
Fibrin morphology | Tetramolecular | Tetramolecular |
Handling | Easy | Complex |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, S.; Torge, D.; Rinaldi, F.; Piattelli, M.; Bernardi, S.; Varvara, G. Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential. Biomedicines 2022, 10, 218. https://doi.org/10.3390/biomedicines10020218
Bianchi S, Torge D, Rinaldi F, Piattelli M, Bernardi S, Varvara G. Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential. Biomedicines. 2022; 10(2):218. https://doi.org/10.3390/biomedicines10020218
Chicago/Turabian StyleBianchi, Serena, Diana Torge, Fabiola Rinaldi, Maurizio Piattelli, Sara Bernardi, and Giuseppe Varvara. 2022. "Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential" Biomedicines 10, no. 2: 218. https://doi.org/10.3390/biomedicines10020218
APA StyleBianchi, S., Torge, D., Rinaldi, F., Piattelli, M., Bernardi, S., & Varvara, G. (2022). Platelets’ Role in Dentistry: From Oral Pathology to Regenerative Potential. Biomedicines, 10(2), 218. https://doi.org/10.3390/biomedicines10020218