Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance of Cell Lines
2.2. Cloning of Constructs Encoding for HLA-B*57:01
2.3. Stable Transduction of LCL721.221 Cells with Lentivirus Encoding for HLA-B*57:01
2.4. CFSE-Based Cytotoxicity Assay (CTA)
2.5. Analysis of T Cell Receptor (TCR) Vβ-Chain Repertoire
2.6. Mass Spectrometric Detection of ABC in Solution
2.7. Mass Spectrometric Analysis of ABC-Induced Modifications in PBMCs of ABC Sensitive and ABC Tolerant HLA-B*57:01 Carriers
3. Results
3.1. Classification of HLA-B*57:01+ Donors as ABC Sensitive or ABC Tolerant
3.2. TCR Vβ-Chain 6 and 24 Are Potential Candidates for Public ABC-Specific TCRs
3.3. Impact of ABC Treatment on the Proteome of PBMCs Significantly Differs in ABC Sensitive and ABC Tolerant HLA-B*57:01 Carriers
3.4. Proteins Upregulated in PBMCs from ABC Sensitive Compared to ABC Tolerant Healthy HLA-B*57:01 Carries following ABC Treatment Are Involved Various Immune Responses
3.5. Proteomic Content of Untreated PBMCs from ABC Sensitive and ABC Tolerant Healthy HLA-B*57:01 Carriers Varies Significantly
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. International drug monitoring: The role of national centres. Report of a WHO meeting. World Health Organ. Tech. Rep. Ser. 1972, 498, 1–25. [Google Scholar]
- Simper, G.S.; Celik, A.A.; Kunze-Schumacher, H.; Blasczyk, R.; Bade-Doding, C. Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens; IntechOpen: London, UK, 2017. [Google Scholar]
- Redwood, A.; Pavlos, R.; White, K.D.; Phillips, E.J. HLAs: Key regulators of T-cell-mediated drug hypersensitivity. HLA 2017, 91, 3–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichler, W.J.; Hausmann, O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int. Arch. Allergy Immunol. 2016, 171, 166–179. [Google Scholar] [CrossRef]
- Adam, J.; Pichler, W.J.; Yerly, D. Delayed drug hypersensitivity: Models of T-cell stimulation. Br. J. Clin. Pharmacol. 2010, 71, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, M.D. Clinical pharmacology. Adverse reactions to drugs. Br. Med. J. Clin. Res. Ed. 1981, 282, 974–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef]
- Deshpande, P.; Hertzman, R.J.; Palubinsky, A.M.; Giles, J.B.; Karnes, J.H.; Gibson, A.; Phillips, E.J. Immunopharmacogenomics: Mechanisms of HLA-Associated Drug Reactions. Clin. Pharmacol. Ther. 2021, 110, 607–615. [Google Scholar] [CrossRef]
- Illing, P.; Purcell, A.W.; McCluskey, J. The role of HLA genes in pharmacogenomics: Unravelling HLA associated adverse drug reactions. Immunogenetics 2017, 69, 617–630. [Google Scholar] [CrossRef]
- Pichler, W.J. Delayed Drug Hypersensitivity Reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef]
- Chung, W.H.; Hung, S.I.; Hong, H.S.; Hsih, M.S.; Yang, L.C.; Ho, H.C. Medical genetics: A marker for Stevens-Johnson syndrome. Nature 2004, 428, 486. [Google Scholar] [CrossRef]
- Hung, S.-I.; Chung, W.-H.; Liou, L.-B.; Chu, C.-C.; Lin, M.; Huang, H.-P.; Lin, Y.-L.; Lan, J.-L.; Yang, L.-C.; Hong, H.-S.; et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl. Acad. Sci. USA 2005, 102, 4134–4139. [Google Scholar] [CrossRef] [Green Version]
- Wolf, R.; Matz, H.; Orion, E.; Tuzun, B.; Tuzun, Y. Dapsone. Dermatol. Online J. 2002, 8, 2. [Google Scholar] [CrossRef]
- Nakkam, N.; Gibson, A.; Mouhtouris, E.; Konvinse, K.C.; Holmes, N.E.; Chua, K.Y.; Phillips, E.J. Cross-reactivity between vancomycin, teicoplanin, and telavancin in patients with HLA-A*32:01–positive vancomycin-induced DRESS sharing an HLA class II haplotype. J. Allergy Clin. Immunol. 2021, 147, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Huyton, T.; Ladas, N.; Schumacher, H.; Blasczyk, R.; Bade-Doeding, C. Pocketcheck: Updating the HLA class I peptide specificity roadmap. Tissue Antigens 2012, 80, 239–248. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Petersen, J.; Rossjohn, J.; Fugger, L. HLA variation and disease. Nat. Rev. Immunol. 2018, 18, 325–339. [Google Scholar] [CrossRef]
- Zinkernagel, R.M.; Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974, 248, 701–702. [Google Scholar] [CrossRef]
- Neefjes, J.; Jongsma, M.L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presen-tation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Mallal, S.; Nolan, D.; Witt, C.; Masel, G.; Martin, A.; Moore, C.; Sayer, D.; Castley, A.; Mamotte, C.; Maxwell, D.; et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002, 359, 727–732. [Google Scholar] [CrossRef]
- Hetherington, S.; Hughes, A.R.; Mosteller, M.; Shortino, D.; Baker-Neblett, K.; Spreen, W.; Lai, E.; Davies, K.; Handley, A.; Dow, D.J.; et al. Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 2002, 359, 1121–1122. [Google Scholar] [CrossRef]
- Martin, A.M.; Nolan, D.; Gaudieri, S.; Almeida, C.A.; Nolan, R.; James, I.; Carvalho, F.; Phillips, E.; Christiansen, F.T.; Purcell, A.; et al. Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl. Acad. Sci. USA 2004, 101, 4180–4185. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.A.; Kroetz, D.L. Abacavir Pharmacogenetics-From Initial Reports to Standard of Care. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2013, 33, 765–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illing, P.; Vivian, J.; Dudek, N.L.; Kostenko, L.; Chen, Z.; Bharadwaj, M.; Miles, J.; Kjer-Nielsen, L.; Gras, S.; Williamson, N.; et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature 2012, 486, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Norcross, M.A.; Luo, S.; Lu, L.; Boyne, M.T.; Gomarteli, M.; Rennels, A.D.; Buchli, R. Abacavir induces loading of novel self-peptides into HLA-B*57: 01: An autoimmune model for HLA-associated drug hypersensitivity. AIDS 2012, 26, F21–F29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrov, D.A.; Grant, B.; Pompeu, Y.A.; Sidney, J.; Harndahl, M.; Southwood, S.; Oseroff, C.; Lu, S.; Jakoncic, J.; de Oliveira, C.A.F.; et al. Drug hypersensitivity caused by alteration of the MHC-presented self-peptide repertoire. Proc. Natl. Acad. Sci. USA 2012, 109, 9959–9964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chessman, D.; Kostenko, L.; Lethborg, T.; Purcell, A.W.; Williamson, N.A.; Chen, Z.; Kjer-Nielsen, L.; Mifsud, N.A.; Tait, B.D.; Holdsworth, R.; et al. Human Leukocyte Antigen Class I-Restricted Activation of CD8+ T Cells Provides the Immunogenetic Basis of a Systemic Drug Hypersensitivity. Immunity 2008, 28, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.M.; Workman, C.; Tomazic, J.; Benbow, A. HLA-B*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef] [Green Version]
- Saag, M.; Balu, R.; Phillips, E.; Brachman, P.; Martorell, C.; Burman, W.; Stancil, B.; Mosteller, M.; Brothers, C.; Wannamaker, P.; et al. High Sensitivity of Human Leukocyte Antigen–B*5701 as a Marker for Immunologically Confirmed Abacavir Hypersensitivity in White and Black Patients. Clin. Infect. Dis. 2008, 46, 1111–1118. [Google Scholar] [CrossRef] [Green Version]
- Cardone, M.; Garcia, K.; Tilahun, M.E.; Boyd, L.F.; Gebreyohannes, S.; Yano, M.; Roderiquez, G.; Akue, A.D.; Juengst, L.; Mattson, E.; et al. A transgenic mouse model for HLA-B*57:01–linked abacavir drug tolerance and reactivity. J. Clin. Investig. 2018, 128, 2819–2832. [Google Scholar] [CrossRef] [Green Version]
- Phillips, E.J.; Mallal, S.A. Active suppression rather than ignorance: Tolerance to abacavir-induced HLA-B*57:01 peptide reper-toire alteration. J. Clin. Investig. 2018, 128, 2746–2749. [Google Scholar] [CrossRef]
- Pavlos, R.; Deshpande, P.; Chopra, A.; Leary, S.; Strautins, K.; Nolan, D.; Thorborn, D.; Shaefer, M.; Rauch, A.; Dunn, D.; et al. New genetic predictors for abacavir tolerance in HLA-B*57:01 positive individuals. Hum. Immunol. 2020, 81, 300–304. [Google Scholar] [CrossRef]
- Li, Y.; Deshpande, P.; Hertzman, R.J.; Palubinsky, A.M.; Gibson, A.; Phillips, E.J. Genomic Risk Factors Driving Immune-Mediated Delayed Drug Hypersensitivity Reactions. Front. Genet. 2021, 12, 641905. [Google Scholar] [CrossRef]
- Venturi, V.; Price, D.A.; Douek, D.C.; Davenport, M.P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 2008, 8, 231–238. [Google Scholar] [CrossRef]
- Pan, R.-Y.; Chu, M.-T.; Wang, C.-W.; Lee, Y.-S.; Lemonnier, F.; Michels, A.W.; Schutte, R.; Ostrov, D.A.; Chen, C.-B.; Phillips, E.J.; et al. Identification of drug-specific public TCR driving severe cutaneous adverse reactions. Nat. Commun. 2019, 10, 3569. [Google Scholar] [CrossRef] [Green Version]
- Badrinath, S.; Kunze-Schumacher, H.; Blasczyk, R.; Huyton, T.; Bade-Doeding, C. A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A*24 Al-lotypes. J. Immunol. Res. 2014, 2014, 298145. [Google Scholar] [CrossRef] [Green Version]
- Bade-Doding, C.; Theodossis, A.; Gras, S.; Kjer-Nielsen, L.; Eiz-Vesper, B.; Seltsam, A.; Blasczyk, R. The impact of human leukocyte anti-gen (HLA) micropolymorphism on ligand specificity within the HLA-B*41 allotypic family. Haematologica 2011, 96, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Ho, G.T.; Heinen, F.J.; Huyton, T.; Blasczyk, R.; Bade-Doding, C. HLA-F*01:01 presents peptides with N-terminal flexibility and a preferred length of 16 residues. Immunogenetics 2019, 71, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Seo, K.S.; Park, J.Y.; Terman, D.S.; Bohach, G.A. A quantitative real time PCR method to analyze T cell receptor Vbeta subgroup expansion by staphylococcal superantigens. J. Transl. Med. 2010, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Hò, G.-G.T.; Heinen, F.J.; Blasczyk, R.; Pich, A.; Bade-Doeding, C. HLA-F Allele-Specific Peptide Restriction Represents an Exceptional Proteomic Footprint. Int. J. Mol. Sci. 2019, 20, 5572. [Google Scholar] [CrossRef] [Green Version]
- Haukamp, F.J.; Gall, E.; Hò, G.-G.T.; Hiemisch, W.; Stieglitz, F.; Kuhn, J.; Blasczyk, R.; Pich, A.; Bade-Döding, C. Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. J. Pers. Med. 2022, 12, 40. [Google Scholar] [CrossRef]
- Simper, G.S.; Ho, G.T.; Celik, A.A.; Huyton, T.; Kuhn, J.; Kunze-Schumacher, H.; Bade-Döding, C. Carbamazepine-Mediated Adverse Drug Reac-tions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B*15:02. J. Immunol. Res. 2018, 2018, 5086503. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and pro-teome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Shive, C.L.; Jiang, W.; Anthony, D.D.; Lederman, M.M. Soluble CD14 is a nonspecific marker of monocyte activation. AIDS 2015, 29, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Krastinova, E.; Lecuroux, C.; Leroy, C.; Seng, R.; Cabié, A.; Rami, A.; Venet, A.; Meyer, L.; Goujard, C. High soluble CD14 levels at primary HIV-1 infection predict more rapid disease progression. J. Infect. Dis. 2015, 212, 909–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serwold, T.; Gonzalez, F.; Kim, J.; Jacob, R.; Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 2002, 419, 480–483. [Google Scholar] [CrossRef]
- Turner, S.J.; Doherty, P.C.; McCluskey, J.; Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 2006, 6, 883–894. [Google Scholar] [CrossRef]
- Yuen, G.J.; Weller, S.; Pakes, G.E.; Pakes, G.E. A review of the pharmacokinetics of abacavir. Clin. Pharmacokinet. 2008, 47, 351–371. [Google Scholar] [CrossRef]
- Bassani-Sternberg, M.; Pletscher-Frankild, S.; Jensen, L.J.; Mann, M. Mass spectrometry of human leukocyte antigen class I pep-tidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol. Cell. Proteom. 2015, 14, 658–673. [Google Scholar] [CrossRef] [Green Version]
- Betjes, M.G.; Haks, M.C.; Tuk, C.W.; Beelen, R.H. Monoclonal Antibody EBM11 (Anti-CD68) Discriminates between Dendritic Cells and Macrophages after Short-Term Culture. Immunobiology 1991, 183, 79–87. [Google Scholar] [CrossRef]
- Barois, N.; De Saint-Vis, B.; Lebecque, S.; Geuze, H.J.; Kleijmeer, M.J. MHC Class II Compartments in Human Dendritic Cells Undergo Profound Structural Changes Upon Activation. Traffic 2002, 3, 894–905. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Killingsworth, M.C.; Myasoedova, V.A.; Orekhov, A.N.; Bobryshev, Y.V. CD68/macrosialin: Not just a histochem-ical marker. Lab. Investig. 2017, 97, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Lee, C.; Schindler, C. Deletion of the murine scavenger receptor CD68. J. Lipid Res. 2011, 52, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Scapini, P.; Pereira, S.; Zhang, H.; Lowell, C.A. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol. Rev. 2009, 228, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.-L.; Lowell, C.A. The Lyn Tyrosine Kinase Differentially Regulates Dendritic Cell Generation and Maturation. J. Immunol. 2005, 175, 2880–2889. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.C. The non-canonical NF-kappaB pathway in immunity and inflammation. Nat. Rev. Immunol. 2017, 17, 545–558. [Google Scholar] [CrossRef]
- Koretzky, G.A.; Myung, P.S. Positive and negative regulation of t-cell activation by adaptor proteins. Nat. Rev. Immunol. 2001, 1, 95–107. [Google Scholar] [CrossRef]
- Paschke, L.; Jopek, K.; Szyszka, M.; Tyczewska, M.; Ziolkowska, A.; Rucinski, M.; Malendowicz, L.K. ZFP91: A Noncanonical NF-kappaB Signaling Pathway Regulator with Oncogenic Properties Is Overexpressed in Prostate Cancer. BioMed Res. Int. 2016, 2016, 6963582. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Picard, C.; Chemin, K.; Dogniaux, S.; le Deist, F.; Hivroz, C. ZAP70: A master regulator of adaptive immunity. Semin. Immunopathol. 2010, 32, 107–116. [Google Scholar] [CrossRef]
- Patel, T.R.; Bernards, C.; Meier, M.; McEleney, K.; Winzor, D.J.; Koch, M.; Stetefeld, J. Structural elucidation of full-length nidogen and the laminin–nidogen complex in solution. Matrix Biol. 2014, 33, 60–67. [Google Scholar] [CrossRef]
- Vanhaverbeke, M.; Vausort, M.; Veltman, D.; Zhang, L.; Wu, M.; Laenen, G.; Gillijns, H.; Moreau, Y.; Bartunek, J.; Van De Werf, F.; et al. Peripheral Blood RNA Levels of QSOX1 and PLBD1 Are New Independent Predictors of Left Ventricular Dysfunction after Acute Myocardial Infarction. Circ. Genom. Precis. Med. 2019, 12, e002656. [Google Scholar] [CrossRef]
- Whitton, B.; Okamoto, H.; Packham, G.; Crabb, S.J. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med. 2018, 7, 3800–3811. [Google Scholar] [CrossRef]
- Yang, H.D.; Eun, J.W.; Lee, K.-B.; Shen, Q.; Kim, H.S.; Kim, S.Y.; Seo, D.-W.; Park, W.S.; Lee, J.Y.; Nam, S.W. T-cell immune regulator 1 enhances metastasis in hepatocellular carcinoma. Exp. Mol. Med. 2018, 50, e420. [Google Scholar] [CrossRef] [PubMed]
- Hinton, A.; Sennoune, S.R.; Bond, S.; Fang, M.; Reuveni, M.; Sahagian, G.G.; Forgac, M. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J. Biol. Chem. 2009, 284, 16400–16408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utku, N.; Heinemann, T.; Tullius, S.G.; Bulwin, G.C.; Beinke, S.; Blumberg, R.S.; Gullans, S.R. Prevention of acute allograft rejection by anti-body targeting of TIRC7, a novel T cell membrane protein. Immunity 1998, 9, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Chitirala, P.; Ravichandran, K.; Schirra, C.; Chang, H.-F.; Krause, E.; Kazmaier, U.; Lauterbach, M.A.; Rettig, J. Role of V-ATPase a3-Subunit in Mouse CTL Function. J. Immunol. 2020, 204, 2818–2828. [Google Scholar] [CrossRef]
- Qi, C.; Lei, L.; Hu, J.; Wang, G.; Liu, J.; Ou, S. T cell immune regulator 1 is a prognostic marker associated with immune infiltration in glioblastoma multiforme. Oncol. Lett. 2021, 21, 22. [Google Scholar] [CrossRef]
HLA-B*57:01+ Healthy Volunteer | HLA-A Genotype | HLA-B Genotype | HLA-C Genotype | HLA-DPB1 Genotype | HLA-DQB1 Genotype | HLA-DRB1 Genotype |
---|---|---|---|---|---|---|
A | A*02:01 | B*35:03 | C*06:02 | 04:01 | 03:02 | 04:01 |
A*11:01 | B*57:01 | C*12:03 | 04:02 | 05:02 | 16:01 | |
B | A*02:01 | B*50:01 | C*06:02 | 04:01 | 02:01 | 03:01 |
B*57:01 | 03:03 | 07:01 | ||||
C | A*01:01 | B*15:01 | C*06:02 | 04:01 | 02:02 | 07:01 |
A*02:01 | B*57:01 | C*12:03 | 04:02 | 03:03 | ||
D | A*01:01 | B*07:02 | C*06:02 | 01:01 | 07:01 | 03:03 |
A*03:01 | B*57:01 | C*07:02 | 04:01 | 15:01 | ||
E | A*01:01 | B*44:03 | C*06:02 | 11:02 | 02:01 | 07:01 |
A*29:02 | B*57:01 | C*16:01 | 23:01 | |||
F | A*01:01 | B*44:03 | C*06:02 | 04:02 | 03:01 | 07:01 |
A*02:01 | B*57:01 | C*16:01 | 03:03 | 11:04 | ||
G | A*01:01 | B*08:01 | C*06:02 | 01:01 | 02:01 | 03:01 |
B*57:01 | C*07:01 | 04:01 | 03:03 | 07:01 | ||
H | A*01:01 | B*35:01 | C*04:01 | 04:01 | 03:03 | 07:01 |
A*11:01 | B*57:01 | C*06:02 | 06:01 | 04:02 | 08:01 |
Protein Name | Gene Code | log2 Regulation | p-Value |
---|---|---|---|
60S acidic ribosomal protein P1 | RPLP1 | 3.79 | 0.034 |
Serine/threonine-protein phosphatase 2A | PPP2R2C | 2.84 | 0.018 |
HLA class II histocompatibility antigen, DQ beta 1 chain | HLA-DQB1 | 2.46 | 0.023 |
Switch-associated protein 70 | SWAP70 | 2.26 | 0.014 |
Torsin-1A | TOR1A | 2.26 | 0.003 |
Tyrosine-protein kinase Lyn | LYN | 2.16 | 0.050 |
Nurim | NRM | 2.14 | 0.006 |
E3 ubiquitin-protein ligase ZFP91 | ZFP91 | 2.10 | 0.020 |
Macrosialin | CD68 | 2.09 | 0.023 |
Dermcidin | DCD | 2.00 | 0.027 |
Protein Name | Gene Code | Log2 Regulation | p-Value |
---|---|---|---|
Nidogen-1 | NID1 | 2.90 | 0.003 |
Phospholipase B-like 1 | PLBD1 | 2.28 | 0.012 |
Fibrinogen gamma chain | FGG | 2.22 | 0.002 |
Coagulation factor V | F5 | 2.21 | 0.005 |
Dysferlin | DYSF | 2.17 | 0.002 |
Proline-serine-threonine phosphatase-interacting protein 2 | PSTPIP2 | 2.13 | <0.001 |
Myoferlin | MYOF | 2.05 | 0.011 |
T cell immune regulator 1 | TCIRG1 | 1.93 | 0.003 |
CAAX prenyl protease 1 homolog | ZMPSTE24 | 1.91 | 0.001 |
Plexin-B2 | PLXNB2 | 1.84 | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gall, E.; Stieglitz, F.; Pich, A.; Behrens, G.M.N.; Kuhn, J.; Blasczyk, R.; Haukamp, F.J.; Bade-Döding, C. Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines 2022, 10, 693. https://doi.org/10.3390/biomedicines10030693
Gall E, Stieglitz F, Pich A, Behrens GMN, Kuhn J, Blasczyk R, Haukamp FJ, Bade-Döding C. Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines. 2022; 10(3):693. https://doi.org/10.3390/biomedicines10030693
Chicago/Turabian StyleGall, Eline, Florian Stieglitz, Andreas Pich, Georg Martin Norbert Behrens, Joachim Kuhn, Rainer Blasczyk, Funmilola Josephine Haukamp, and Christina Bade-Döding. 2022. "Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects" Biomedicines 10, no. 3: 693. https://doi.org/10.3390/biomedicines10030693
APA StyleGall, E., Stieglitz, F., Pich, A., Behrens, G. M. N., Kuhn, J., Blasczyk, R., Haukamp, F. J., & Bade-Döding, C. (2022). Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines, 10(3), 693. https://doi.org/10.3390/biomedicines10030693