Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. OCTA Imaging Analysis
2.3. Statistics
3. Results
3.1. Demographic Data
3.2. OCTA Variable Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
avgW | Average vessel caliber |
CNV | Choroidal neovascularization |
FA | Fluorescence angiography |
FD | Fractal dimension |
ICG | Indocyanine green |
MNV | Macular neovascularization |
nAMD | Neovascular age-related macular degeneration |
numN | Number of vascular nodes |
OCTA | Optical coherence tomography angiography |
PED | Pigment epithelial detachments |
RPE | Pigment epithelium |
SD | Standard deviation |
SD-OCT | Spectral-domain optical coherence tomography |
sumL | Total vascular length |
References
- Fleckenstein, M.; Keenan, T.D.L.; Guymer, R.H.; Chakravarthy, U.; Schmitz-Valckenberg, S.; Klaver, C.C.; Wong, W.T.; Chew, E.Y. Age-related macular degeneration. Nat. Rev. Dis. Primers 2021, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Scimone, C.; Donato, L.; Alibrandi, S.; Vadalà, M.; Giglia, G.; Sidoti, A.; D’Angelo, R. N-retinylidene-N-retinylethanolamine adduct induces expression of chronic inflammation cytokines in retinal pigment epithelium cells. Exp. Eye Res. 2021, 209, 108641. [Google Scholar] [CrossRef]
- Rinaldi, C.; Donato, L.; Alibrandi, S.; Scimone, C.; D’Angelo, R.; Sidoti, A. Oxidative Stress and the Neurovascular Unit. Life 2021, 11, 767. [Google Scholar] [CrossRef] [PubMed]
- Pauleikhoff, D.; Harper, C.A.; Marshall, J.; Bird, A.C. Aging Changes in Bruch’s Membrane: A Histochemical and Morphologic Study. Ophthalmology 1990, 97, 171–178. [Google Scholar] [CrossRef]
- Spaide, R.F.; Jaffe, G.J.; Sarraf, D.; Freund, K.B.; Sadda, S.R.; Staurenghi, G.; Waheed, N.K.; Chakravarthy, U.; Rosenfeld, P.J.; Holz, F.G.; et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology 2020, 127, 616–636. [Google Scholar] [CrossRef] [PubMed]
- Sulzbacher, F.; Pollreisz, A.; Kaider, A.; Kickinger, S.; Sacu, S.; Schmidt-Erfurth, U.; The Vienna Eye Study Center. Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography. Acta Ophthalmol. 2017, 95, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Syrine, B.M.; Nadia, B.A.; Anis, M.; Karim, Z.; Mohamed, G.; Hachemi, M.; Fethi, K.; Leila, K. Optical coherence tomography angiography features of macular neovascularization in wet age-related macular degeneration: A cross-sectional study. Ann. Med. Surg. 2021, 70, 102826. [Google Scholar] [CrossRef] [PubMed]
- El Ameen, A.; Cohen, S.Y.; Semoun, O.; Miere, A.; Srour, M.; Maftouhi, M.Q.-E.; Oubraham, H.; Blanco-Garavito, R.; Querques, G.; Souied, E.H. Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography. Retina 2015, 35, 2212–2218. [Google Scholar] [CrossRef]
- Kuehlewein, L.; Bansal, M.; Lenis, T.L.; Iafe, N.A.; Sadda, S.R.; Filho, M.A.B.; De Carlo, T.E.; Waheed, N.K.; Duker, J.S.; Sarraf, D. Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. Am. J. Ophthalmol. 2015, 160, 739–748.e2. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Kataoka, K.; Takeuchi, J.; Fujita, A.; Kaneko, H.; Shimizu, H.; Ito, Y.; Terasaki, H. Vascular maturity of type 1 and type 2 choroidal neovascularization evaluated by optical coherence tomography angiography. PLoS ONE 2019, 14, e0216304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sheikh, M.; Iafe, N.A.; Phasukkijwatana, N.; Sadda, S.R.; Sarraf, D. Biomarkers of neovascular activity in age-related macular degeneration using oct angiography. Retina 2017, 38, 220–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faatz, H.; Farecki, M.-L.; Rothaus, K.; Gutfleisch, M.; Pauleikhoff, D.; Lommatzsch, A. Changes in the OCT angiographic appearance of type 1 and type 2 CNV in exudative AMD during anti-VEGF treatment. BMJ Open Ophthalmol. 2019, 4, e000369. [Google Scholar] [CrossRef] [Green Version]
- Cabral, D.; Coscas, F.; Pereira, T.; Laiginhas, R.; Rodrigues, C.; Français, C.; Nogueira, V.; Falcão, M.; Miere, A.; Lupidi, M.; et al. Implications of the morphologic patterns of type 1 macular neovascularization on macular atrophy growth on patients under anti-vascular endothelial growth factor treatment. Retina 2021, 41, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh, M.; Falavarjani, K.G.; Tepelus, T.C.; Sadda, S.R. Quantitative Comparison of Swept-Source and Spectral-Domain OCT Angiography in Healthy Eyes. Ophthalmic Surg. Lasers Imaging Retina 2017, 48, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Faatz, H.; Farecki, M.-L.; Rothaus, K.; Gunnemann, F.; Gutfleisch, M.; Lommatzsch, A.; Pauleikhoff, D. Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: Evaluation of a new quantitative method. Eye 2019, 33, 1466–1471. [Google Scholar] [CrossRef]
- De Oliveira Dias, J.R.; Zhang, Q.; Garcia, J.M.; Zheng, F.; Motulsky, E.H.; Roisman, L.; Miller, A.; Chen, C.-L.; Kubach, S.; de Sisternes, L.; et al. Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. Ophthalmology 2018, 125, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, A.; Lee, C.S.; Lee, A.Y.; Rezaei, K.A.; Roisman, L.; Miller, A.; Zheng, F.; Gregori, G.; Durbin, M.K.; et al. Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. Ophthalmol. Retina 2017, 1, 124–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothaus, K.; Jiang, X. Multi-scale Midline Extraction Using Creaseness. In Pattern Recognition and Image Analysis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 502–511. [Google Scholar]
- Luo, L.; Uehara, H.; Zhang, X.; Das, S.K.; Olsen, T.; Holt, D.; Simonis, J.M.; Jackman, K.; Singh, N.; Miya, T.R.; et al. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. Elife 2013, 2, e00324. [Google Scholar] [CrossRef]
- Xu, J.; Li, K.; Zheng, B.; Dai, H. Treatment and longitudinal follow-up of CNV associated with pattern dystrophy with novel PRPH2 variant. Ophthalmic Genet. 2021, 42, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Donato, L.; Abdalla, E.; Scimone, C.; Alibrandi, S.; Rinaldi, C.; Nabil, K.; D’Angelo, R.; Sidoti, A. Impairments of Photoreceptor Outer Segments Renewal and Phototransduction Due to a Peripherin Rare Haplotype Variant: Insights from Molecular Modeling. Int. J. Mol. Sci. 2021, 22, 3484. [Google Scholar] [CrossRef] [PubMed]
- Kuehlewein, L.; Sadda, S.R.; Sarraf, D. OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy. Eye 2015, 29, 932–935. [Google Scholar] [CrossRef] [Green Version]
- Pauleikhoff, D.; Gunnemann, F.; Book, M.; Rothaus, K. Progression of vascular changes in macular telangiectasia type 2, comparison between SD-OCT and OCT angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; You, J.I.; Park, J.R.; Kim, E.S.; Oh, W.-Y.; Yu, S.-Y. Quantification of retinal microvascular parameters by severity of diabetic retinopathy using wide-field swept-source optical coherence tomography angiography. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2103–2111. [Google Scholar] [CrossRef] [PubMed]
- Ryu, G.; Park, D.; Lim, J.; van Hemert, J.; Sagong, M. Macular microvascular changes and their correlation with peripheral non-perfusion in branch retinal vein occlusion. Am. J. Ophthalmol. 2021, 225, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Lommatzsch, C.; Rothaus, K.; Koch, J.; Heinz, C.; Grisanti, S. Vessel Density in Glaucoma of Different Entities as Measured with Optical Coherence Tomography Angiography. Clin. Ophthalmol. 2019, 13, 2527–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phasukkijwatana, N.; Tan, A.C.S.; Chen, X.; Freund, K.B.; Sarraf, D. Optical coherence tomography angiography of type 3 neovascularisation in age-related macular degeneration after antiangiogenic therapy. Br. J. Ophthalmol. 2017, 101, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Yannuzzi, L.A.; Negrão, S.; Iida, T.; Carvalho, C.; Rodriguez-Coleman, H.; Slakter, J.; Freund, K.B.; Sorenson, J.; Orlock, D.; Borodoker, N. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001, 21, 416–434. [Google Scholar] [CrossRef] [PubMed]
- Querques, G.; Miere, A.; Souied, E.H. Optical Coherence Tomography Angiography Features of Type 3 Neovascularization in Age-Related Macular Degeneration. Dev. Ophthalmol. 2016, 56, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, A.; Romano, F.; Aragona, E.; Di Nunzio, C.; Battista, M.; Bandello, F.; Parodi, M.B. Optical coherence tomography angiography can categorize different subgroups of choroidal neovascularization secondary to age-related macular degeneration. Retina 2020, 40, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Coscas, G.; Lupidi, M.; Coscas, F.; Français, C.; Cagini, C.; Souied, E.H. Optical coherence tomography angiography during follow-up: Qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy. Ophthalmic Res. 2015, 54, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Yan, Y.; Chen, M.; Wang, J.; Pan, X.; Liu, X.; Liu, M.; Lou, L.; Wang, Y.; Ye, J. Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmol. 2021, 100, e512–e520. [Google Scholar] [CrossRef] [PubMed]
- Faatz, H.; Gunnemann, M.-L.; Rothaus, K.; Book, M.; Gutfleisch, M.; Lommatzsch, A.; Pauleikhoff, D. Influence of CNV vascular morphology in exudative age-related macular degeneration on development of visual acuity and need for anti-VEGF therapy after 1 year. Ophthalmologe 2021, 118, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Ammar, M.J.; Hsu, J.; Chiang, A.; Ho, A.C.; Regillo, C.D. Age-related macular degeneration therapy: A review. Curr. Opin. Ophthalmol. 2020, 31, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Faatz, H.; Rothaus, K.; Gunnemann, M.-L.; Book, M.; Wilming, P.; Gutfleisch, M.; Spital, G.; Lommatzsch, A.; Pauleikhoff, D. Morphologic analysis of macular neovascularizations by OCT angiography-Technical limitations in the comparison of 3 × 3 mm and 6 × 6 mm images. PLoS ONE 2020, 15, e0237785. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Moult, E.M.; Waheed, N.K.; Adhi, M.; Lee, B.; Lu, C.D.; de Carlo, T.E.; Jayaraman, V.; Rosenfeld, P.J.; Duker, J.S.; et al. Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology 2015, 122, 2532–2544. [Google Scholar] [CrossRef] [PubMed]
Variable | Classification | Minimum | 1. Quartil | Median | 3. Quartil | Maximum | Mean | SD |
---|---|---|---|---|---|---|---|---|
area in mm2 | total | 0.02 | 0.26 | 0.87 | 2.37 | 9.51 | 1.56 | 1.9 |
area in mm2 | type 1 | 0.13 | 0.53 | 1.49 | 3.18 | 9.51 | 2.38 | 2.33 |
area in mm2 | type 2 | 0.15 | 0.36 | 1.01 | 1.7 | 5.37 | 1.38 | 1.3 |
area in mm2 | type 3 | 0.02 | 0.06 | 0.1 | 0.22 | 0.86 | 0.19 | 0.21 |
FD | total | 0.95 | 1.21 | 1.29 | 1.41 | 1.52 | 1.29 | 0.14 |
FD | type 1 | 1.04 | 1.26 | 1.39 | 1.45 | 1.52 | 1.35 | 0.12 |
FD | type 2 | 1.13 | 1.26 | 1.31 | 1.39 | 1.48 | 1.32 | 0.09 |
FD | type 3 | 0.95 | 1.01 | 1.08 | 1.2 | 1.29 | 1.1 | 0.11 |
numN 1/mm2 | total | 265.31 | 437.36 | 469.55 | 497.59 | 712 | 470 | 67.82 |
numN 1/mm2 | type 1 | 365.04 | 455.96 | 475.64 | 505.64 | 584.17 | 480 | 46.06 |
numN 1/mm2 | type 2 | 309.03 | 424.84 | 452.67 | 470.42 | 498.59 | 444 | 40.3 |
numN 1/mm2 | type 3 | 265.31 | 427.54 | 508.77 | 572.97 | 712 | 494 | 115.7 |
Flowdensity | total | 26.1 | 38.76 | 40.77 | 42.75 | 64.03 | 40.9 | 5.3 |
Flowdensity | type 1 | 31.1 | 38.99 | 40.31 | 41.53 | 46.59 | 40 | 2.94 |
Flowdensity | type 2 | 29.53 | 39.43 | 40.9 | 42.6 | 50.07 | 40.6 | 4.04 |
Flowdensity | type 3 | 26.1 | 38.03 | 41.99 | 47.68 | 64.03 | 43.3 | 9.18 |
sumL in mm | total | 0.2 | 2.94 | 10.36 | 29.32 | 107.44 | 18.3 | 22.55 |
sumL in mm | type 1 | 1.66 | 6.7 | 20 | 34.3 | 107.44 | 28.3 | 27.8 |
sumL in mm | type 2 | 1.47 | 4.38 | 11.45 | 18.99 | 55.76 | 15.7 | 14.72 |
sumL in mm | type 3 | 0.2 | 0.7 | 1.08 | 2.61 | 10.48 | 2.21 | 2.57 |
avgW in µm | total | 11.42 | 20.26 | 21.88 | 24.32 | 54.11 | 22.8 | 5.37 |
avgW in µm | type 1 | 16.83 | 20.07 | 21.29 | 22.31 | 29.05 | 21.5 | 2.2 |
avgW in µm | type 2 | 17.69 | 21.09 | 22.13 | 23.92 | 29.02 | 22.5 | 2.72 |
avgW in µm | type 3 | 11.42 | 19.76 | 24.96 | 29.1 | 54.11 | 25.8 | 10.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faatz, H.; Rothaus, K.; Ziegler, M.; Book, M.; Heimes-Bussmann, B.; Pauleikhoff, D.; Lommatzsch, A. Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding. Biomedicines 2022, 10, 694. https://doi.org/10.3390/biomedicines10030694
Faatz H, Rothaus K, Ziegler M, Book M, Heimes-Bussmann B, Pauleikhoff D, Lommatzsch A. Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding. Biomedicines. 2022; 10(3):694. https://doi.org/10.3390/biomedicines10030694
Chicago/Turabian StyleFaatz, Henrik, Kai Rothaus, Martin Ziegler, Marius Book, Britta Heimes-Bussmann, Daniel Pauleikhoff, and Albrecht Lommatzsch. 2022. "Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding" Biomedicines 10, no. 3: 694. https://doi.org/10.3390/biomedicines10030694
APA StyleFaatz, H., Rothaus, K., Ziegler, M., Book, M., Heimes-Bussmann, B., Pauleikhoff, D., & Lommatzsch, A. (2022). Vascular Analysis of Type 1, 2, and 3 Macular Neovascularization in Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Angiography Shows New Insights into Differences of Pathologic Vasculature and May Lead to a More Personalized Understanding. Biomedicines, 10(3), 694. https://doi.org/10.3390/biomedicines10030694