Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy
Abstract
:1. Introduction
2. Biological Responses Triggered by Blood Contact with Membrane Material during HD
2.1. Adsorption of Plasma Proteins onto the Membrane Surface
2.2. Activation of Blood Cascades and Cells
2.2.1. Coagulation Cascade
2.2.2. Activation of Platelets
2.2.3. Complement Activation
2.2.4. Activation of Leukocytes
3. Effect on In Vivo Biocompatibility of Surface-Modified Membranes
3.1. HD Membranes Surface-Modified via Physicochemical Approaches
3.1.1. Asymmetric Triacetate Membrane
3.1.2. Polymethylmethacrylate NF Membrane
3.1.3. Hydrophilic Polysulfone Membrane
3.1.4. Surface-Modifying Macromolecule—Modified Membrane
3.2. HD Membranes Surface-Modified by Biofunctionalization
3.2.1. Heparin-Coated Membranes
3.2.2. Vitamin E-Coated Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Barraclough, K.A.; John, A.W.M. Green nephrology. Nat. Rev. Nephrol. 2020, 16, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Olczyk, P.; Małyszczak, A.; Kusztal, M. Dialysis membranes: A 2018 update. Polim. Med. 2018, 48, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlová, M.; Amorim, C.G.; Araújo, A.; Santos-Silva, A.; Solich, P.; Montenegro, M.C.B.S.M. The biocompatibility and bioactivity of hemodialysis membranes: Their impact in end-stage renal disease. J. Artif. Organs 2019, 22, 14–28. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Ou, S.-M.; Lin, C.-C. Influence of dialysis membranes on clinical outcomes: From history to innovation. Membranes 2022, 12, 152. [Google Scholar] [CrossRef]
- Chanard, J.; Lavaud, S.; Randoux, C.; Rieu, P. New insights in dialysis membrane biocompatibility: Relevance of adsorption properties and heparin binding. Nephrol. Dial. Transplant. 2003, 18, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Tomo, T. Biocompatibility of hemodiafilters. Contrib. Nephrol. 2017, 189, 210–214. [Google Scholar] [CrossRef]
- Sudhir, K.B.; Kircelli, F.; Himmele, R.; Nigwekar, S.U. Blood-incompatibility in haemodialysis: Alleviating inflammation and effects of coagulation. Clin. Kidney J. 2021, 14, i59–i71. [Google Scholar] [CrossRef]
- Said, N.; Lau, W.J.; Ho, Y.-C.; Lim, S.K.; Zainol Abidin, M.N.; Ismail, A.F. A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application. Membranes 2021, 11, 767. [Google Scholar] [CrossRef]
- Brash, J.L.; Horbett, T.A.; Latour, R.A.; Tengvall, P. The blood compatibility challenge. Part 2: Protein adsorption phenomena governing blood reactivity. Acta Biomater. 2019, 94, 11–24. [Google Scholar] [CrossRef]
- Westphalen, H.; Abdelrasoul, A.; Shoker, A. Protein adsorption phenomena in hemodialysis membranes: Mechanisms, influences of clinical practices, modeling, and challenges. Colloid Interface Sci. Commun. 2021, 40, 100348. [Google Scholar] [CrossRef]
- Florens, N.; Guebre-Egziabher, F.; Juillard, L. Reconsidering adsorption in hemodialysis: Is it just an epiphenomenon? A narrative review. J. Nephrol. 2022, 35, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Latour, R.A. Fundamental principles of the thermodynamics and kinetics of protein adsorption to material surfaces. Colloids Surf. B Biointerfaces 2020, 191, 110992. [Google Scholar] [CrossRef]
- Kim, J.C.; Garzotto, F.; Ronco, C. Dynamic hemodialysis: A potential solution for middle molecule removal. Contrib. Nephrol. 2011, 171, 107–112. [Google Scholar] [CrossRef]
- Andrade, J.D.; Hlady, V.L.; Van Wagenen, R.A. Effects of plasma protein adsorption on protein conformation and activity. Pure Appl. Chem 1984, 56, 1345–1350. [Google Scholar] [CrossRef]
- Bonomini, M. Proteomics and protein adsorption on hemodialysis membranes. Proteom. Clin. Appl. 2017, 11, 1700112. [Google Scholar] [CrossRef] [PubMed]
- Vanholder, R.C.; Eloot, S.; Glorieux, G.L. Future avenues to decrease uremic toxin concentration. Am. J. Kidney Dis. 2016, 67, 664–676. [Google Scholar] [CrossRef]
- Fumagalli, G.; Panichi, V. Biocompatibility of the dialysis system. In Critical Care Nephrology; Ronco, C., Bellomo, R., Kellum, J.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 918–922. [Google Scholar]
- Bonomini, M.; Pieroni, L.; Di Liberato, L.; Sirolli, V.; Urbani, A. Examining hemodialyzer membrane performance using proteomic technologies. Ther. Clin. Risk Manag. 2018, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pieroni, L.; Levi Mortera, S.; Greco, V.; Sirolli, V.; Ronci, M.; Felaco, P.; Fucci, G.; De Fulviis, S.; Massoud, R.; Condò, S.; et al. Biocompatibility assessment of haemodialysis membrane materials by proteomic investigations. Mol. Biosyst. 2015, 11, 1633–1643. [Google Scholar] [CrossRef] [Green Version]
- Bonomini, M.; Sirolli, V.; Pieroni, L.; Felaco, P.; Amoroso, L.; Urbani, A. Proteomic investigations into hemodialysis therapy. Int. J. Mol. Sci. 2015, 16, 29508–29521. [Google Scholar] [CrossRef] [Green Version]
- Ronci, M.; Catanzaro, G.; Pieroni, L.; Po, A.; Besharat, Z.M.; Greco, V.; Levi Mortera, S.; Screpanti, I.; Ferretti, E.; Urbani, A. Proteomic analysis of human Sonic Hedgehog [SHH] medulloblastoma stem-like cells. Mol. Biosyst. 2015, 11, 1603–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, H.J.; Jeffrey, I.W. The blood compatibility challenge. Part 1: Blood-contacting medical devices: The scope of the problem. Acta Biomater. 2019, 94, 2–10. [Google Scholar] [CrossRef]
- Maitz, M.F.; Martins, M.C.L.; Grabow, N.; Matschegewski, C.; Huang, N.; Chaikof, E.L.; Barbosa, M.A.; Werner, C.; Sperling, C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater. 2019, 94, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Gorbet, M.; Sperling, C.; Maitz, M.F.; Siedlecki, C.A.; Werner, C.; Sefton, M.V. The blood compatibility challenge. Part 3: Material associated activation of blood cascades and cells. Acta Biomater. 2019, 94, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Sperling, C.; Fischer, M.; Maitz, M.F.; Werner, C. Blood coagulation on biomaterials requires the combination of distinct activation processes. Biomaterials 2009, 30, 4447–4456. [Google Scholar] [CrossRef]
- Lazrak, H.H.; René, É.; Elftouh, N.; Leblanc, M.; Lafrance, J.P. Safety of low-molecular weight heparin compared to unfractionated heparin in hemodialysis: A systematic review and meta-analysis. BMC Nephrol. 2017, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Ouseph, R.; Ward, R.A. Anticoagulation for intermittent hemodialysis. Semin. Dial. 2000, 13, 181–187. [Google Scholar] [CrossRef]
- Claudel, S.E.; Miles, L.A.; Murea, M. Anticoagulation in hemodialysis: A narrative review. Semin. Dial. 2021, 34, 103–115. [Google Scholar] [CrossRef]
- Kato, C.; Oakes, M.; Kim, M.; Desai, A.; Olson, S.R.; Raghunathan, V.; Shatzel, J.J. Anticoagulation strategies in extracorporeal circulatory devices in adult populations. Eur. J. Haematol. 2021, 106, 19–31. [Google Scholar] [CrossRef]
- Craddock, P.R.; Fehr, J.; Brigham, K.L.; Kronenberg, R.S.; Jacob, H.S. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N. Engl. J. Med. 1977, 296, 769–774. [Google Scholar] [CrossRef]
- Poppelaars, F.; Faria, B.; Gaya da Costa, M.; Franssen, C.F.M.; van Son, W.J.; Berger, S.P.; Daha, M.R.; Seelen, M.A. The complement system in dialysis: A forgotten story? Front. Immunol. 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engberg, A.E.; Rosengren-Holmberg, J.P.; Chen, H.; Nilsson, B.; Lambris, J.D.; Nicholls, I.A.; Ekdahl, K.N. Blood protein-polymer adsorption: Implications for understanding complement-mediated hemoincompatibility. J. Biomed Mater. Res. A 2011, 97, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomini, M.; Sirolli, V.; Stuard, S.; Settefrati, N. Interactions between platelets and leukocytes during hemodialysis. Artif. Organs 1999, 23, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Kourtzelis, I.; Markiewski, M.M.; Doumas, M.; Rafail, S.; Kambas, K.; Mitroulis, I.; Panagoutsos, S.; Passadakis, P.; Vargemezis, V.; Magotti, P.; et al. Complement anaphylatoxin C5a contributes to hemodialysis-associated thrombosis. Blood 2010, 116, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Wiegner, R.; Chakraborty, S.; Huber-Lang, M. Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology 2016, 221, 1073–1079. [Google Scholar] [CrossRef]
- Lines, S.W.; Richardson, V.R.; Thomas, B.; Dunn, E.J.; Wright, M.J.; Carter, A.M. Complement and cardiovascular disease—The missing link in haemodialysis patients. Nephron 2015, 132, 5–14. [Google Scholar] [CrossRef]
- Ghasemzadeh, M.; Hosseini, E. Platelet-leukocyte crosstalk: Linking proinflammatory responses to procoagulant state. Thromb Res. 2013, 131, 191–197. [Google Scholar] [CrossRef]
- Klee, D.; Höcker, H. Polymers for biomedical applications: Improvement of the interface compatibility. Adv. Polym. Sci. 2000, 149, 1–57. [Google Scholar]
- Mollahosseini, A.; Abdelrasoul, A.; Shoker, A. A critical review of recent advances in hemodialysis membranes hemocompatibility and guidelines for future development. Mater. Chem. Phys. 2020, 248, 122911. [Google Scholar] [CrossRef]
- Sun, W.; Liu, W.; Wu, Z.; Chen, H. Chemical surface modification of polymeric biomaterials for biomedical applications. Macromol. Rapid Commun. 2020, 41, e1900430. [Google Scholar] [CrossRef] [PubMed]
- Hoseinpour, V.; Noori, L.; Mahmoodpour, S.; Shariatinia, Z. A review on surface modification methods of poly[arylsulfone] membranes for biomedical applications. J. Biomater. Sci. Polym. Ed. 2021, 32, 906–965. [Google Scholar] [CrossRef] [PubMed]
- Sunohara, T.; ·Masuda, T. Fundamental characteristics of the newly developed ATA TM membrane dialyzer. Contrib. Nephrol. 2017, 189, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, S.; Abe, K.; Yamagishi, T.; Iwai, H.; Yamaguchi, S.; Sunohara, T. Evaluation of blood adsorption onto dialysis membranes by time-of-flight secondary ion mass spectrometry and near-field infrared microscopy. Anal. Bioanal. Chem. 2017, 409, 6387–6396. [Google Scholar] [CrossRef]
- Ronci, M.; Leporini, L.; Felaco, P.; Sirolli, V.; Pieroni, L.; Greco, V.; Aceto, A.; Urbani, A.; Bonomini, M. Proteomic characterization of a new asymmetric cellulose triacetate membrane for hemodialysis. Proteom. Clin. Appl. 2018, 12, e1700140. [Google Scholar] [CrossRef]
- Vanommeslaeghe, F.; De Somer, F.; Josipovic, I.; Boone, M.; Van Biesen, W.; Eloot, S. Evaluation of different dialyzers and the impact of predialysis albumin priming in intermittent hemodialysis with reduced anticoagulation. Kidney Int. Rep. 2019, 4, 1538–1545. [Google Scholar] [CrossRef] [Green Version]
- Vanommeslaeghe, F.; Van Biesen, W.; Dierick, M.; Boone, M.; Dhondt, A.; Eloot, S. Microcomputed tomography for the quantification of blocked fibers in hemodialyzers. Sci. Rep. 2018, 8, 2677. [Google Scholar] [CrossRef] [Green Version]
- Vanommeslaeghe, F.; Josipovic, I.; Boone, M.; Dhondt, A.; Van Biesen, W.; Eloot, S. A randomized cross-over study with objective quantification of the performance of an asymmetric triacetate and a polysulfone dialysis membrane using different anticoagulation strategies. Clin. Kidney J. 2021, 14, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Vanommeslaeghe, F.; Josipovic, I.; Boone, M.; van der Tol, A.; Dhondt, A.; Van Biesen, W.; Eloot, S. How biocompatible haemodialysers can conquer the need for systemic anticoagulation even in post-dilution haemodiafiltration: A cross-over study. Clin. Kidney J. 2020, 14, 1752–1759. [Google Scholar] [CrossRef]
- Vandenbosch, I.; Dejongh, S.; Claes, K.; Bammens, B.; De Vusser, K.; Van Craenenbroeck, A.; Kuypers, D.; Evenepoel, P.; Meijers, B. Strategies for asymmetrical triacetate dialyser heparin-free effective haemodialysis: The SAFE study. Clin. Kidney J. 2020, 14, 1901–1907. [Google Scholar] [CrossRef]
- Aoike, I. Clinical significance of protein adsorbable membranes—Long-term clinical effects and analysis using a proteomic technique. Nephrol. Dial. Transplant. 2007, 22, v13–v19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshihara, W.; Fujieda, H.; Ueno, Y. A new poly[methyl methacrylate] membrane dialyzer, NF, with adsorptive and antithrombotic properties. Contrib. Nephrol. 2017, 189, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Masakane, I.; Esashi, S.; Yoshida, A.; Chida, T.; Fujieda, H.; Ueno, Y.; Sugaya, H. A new polymethylmetacrylate membrane improves the membrane adhesion of blood components and clinical efficacy. Ren. Replace Ther. 2017, 3, 32. [Google Scholar] [CrossRef] [Green Version]
- Uchiumi, N.; Sakuma, K.; Sato, S.; Matsumoto, Y.; Kobayashi, H.; Toriyabe, K.; Hayashi, K.; Kawasaki, T.; Watanabe, T.; Itohisa, A.; et al. The clinical evaluation of novel polymethyl methacrylate membrane with a modified membrane surface: A multicenter pilot study. Ren. Replace Ther. 2018, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Shinzato, T.; Nakai, S.; Miwa, M.; Iwayama, N.; Takai, I.; Matsumoto, Y.; Morita, H.; Maeda, K. New method to calculate creatinine generation rate using pre- and postdialysis creatinine concentrations. Artif. Organs 1997, 21, 864–872. [Google Scholar] [CrossRef]
- Wang, C.; Lin, B.; Qiu, Y. Enhanced hydrophilicity and anticoagulation of polysulfone materials modified via dihydroxypropyl, sulfonic groups and chitosan. Colloids Surf. B Biointerfaces 2022, 210, 112243. [Google Scholar] [CrossRef]
- Oshihara, W.; Ueno, Y.; Fujieda, H. A new polysulfone membrane dialyzer, NV, with low-fouling and antithrombotic properties. Contrib. Nephrol. 2017, 189, 222–229. [Google Scholar] [CrossRef]
- Yamaka, T.; Ichikawa, K.; Saito, M.; Watanabe, K.; Nakai, A.; Higuchi, N.; Igarashi, N.; Yoshimoto, H. Biocompatibility of the new anticoagulant dialyzer TORAYLIGHT® NV. Sci. Postprint 2014, 1, 1–5. [Google Scholar] [CrossRef]
- Hidaka, S.; Kobayashi, S.; Maesato, K.; Mochida, Y.; Ishioka, K.; Oka, M.; Moriya, H.; Ohtake, T.; Nomura, S. Hydrophilic polymer-coated polysulfone membrane improves endothelial function of hemodialysis patients: A pilot study. J. Clin. Nephrol. Res. 2015, 2, 1020. [Google Scholar]
- Koga, Y.; Fujieda, H.; Meguro, H.; Ueno, Y.; Aoki, T.; Miwa, K.; Kainoh, M. Biocompatibility of polysulfone hemodialysis membranes and its mechanisms: Involvement of fibrinogen and its integrin receptors in activation of platelets and neutrophils. Artif. Organs 2018, 42, E246–E258. [Google Scholar] [CrossRef]
- Koga, Y.; Meguro, H.; Fujieda, H.; Ueno, Y.; Miwa, K.; Kainoh, M. A new hydrophilic polysulfone hemodialysis membrane can prevent platelet–neutrophil interactions and successive neutrophil activation. Int. J. Artif. Organs 2019, 42, 175–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; Brendolan, A.; Nalesso, F.; Zanella, M.; De Cal, M.; Corradi, V.; Virzì, G.M.; Ferrari, F.; Garzotto, F.; Lorenzin, A.; et al. Prospective, randomized, multicenter, controlled trial [TRIATHRON 1] on a new antithrombogenic hydrophilic dialysis membrane. Int. J. Artif. Organs 2017, 40, 234–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kooman, J.; Basci, A.; Pizzarelli, F.; Canaud, B.; Haage, P.; Fouque, D.; Konner, K.; Martin-Malo, A.; Pedrini, L.; Tattersall, J.; et al. EBPG guideline on haemodynamic instability. Nephrol. Dial. Transplant. 2007, 22, ii22–ii44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuchida, K.; Hashimoto, H.; Kawahara, K.; Hayashi, I.; Fukata, Y.; Kashiwagi, M.; Yamashita, A.C.; Mineshima, M.; Tomo, T.; Masakane, I.; et al. Effects of hydrophilic polymer-coated polysulfone membrane dialyzers on intradialytic hypotension in diabetic hemodialysis patients [ATHRITE BP Study]: A pilot study. Ren. Replace Ther. 2017, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Portolés, J.; Martín, L.; Broseta, J.J.; Cases, A. Anemia in chronic kidney disease: From pathophysiology and current treatments, to future agents. Front. Med. 2021, 8, 642296. [Google Scholar] [CrossRef]
- Koulouridis, I.; Alfayez, M.; Trikalinos, T.A.; Balk, E.M.; Jaber, B.L. Dose of erythropoiesis stimulating agents and adverse outcomes in CKD: A metaregression analysis. Am. J. Kidney Dis. 2013, 61, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Anemia of inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef]
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Pergola, P.E.; Devalaraja, M.; Fishbane, S.; Chonchol, M.; Mathur, V.S.; Smith, M.T.; Lo, L.; Herzog, K.; Kakkar, R.; Davidson, M.H. Ziltivekimab for treatment of anemia of inflammation in patients on hemodialysis: Results from a phase 1/2 multicenter, randomized, double-blind, placebo-controlled trial. J. Am. Soc. Nephrol. 2021, 32, 211–222. [Google Scholar] [CrossRef]
- Raichoudhury, R.; Spinowitz, B.S. Treatment of anemia in difficult-to-manage patients with chronic kidney disease. Kidney Int. Suppl. 2021, 11, 26–34. [Google Scholar] [CrossRef]
- Kakuta, T.; Komaba, H.; Takagi, N.; Takahashi, Y.; Suzuki, H.; Hyodo, T.; Nagaoka, M.; Tanaka, R.; Iwao, S.; Ishida, M.; et al. A prospective multicenter randomized controlled study on interleukin-6 removal and induction by a new hemodialyzer with improved biocompatibility in hemodialysis patients—A pilot study. Ther. Apher. Dial. 2016, 20, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, T.; Ishida, M.; Komaba, H.; Suzuki, H.; Fukagawa, M. A Retrospective Study on Erythropoiesis Stimulating Agent Dose Reducing Potential of an Anti-Platelet Activation Membrane Dialyzer in Hemodialysis Patients. Ther. Apher. Dial. 2019, 23, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.; Shao, H.; Ho, C.-H. Improved hemocompatibility of polysulfone hemodialyzers with Endexo® surface modifying molecules. J. Biomed. Mater. Res. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Meyer, J.M.; Steer, D.; Weber, L.A.; Zeitone, A.A.; Thakuria, M.; Ho, C.-H.; Aslam, S.; Mullon, C.; Kossmann, R.J. Safety of a novel dialyzer containing a fluorinated polyurethane surface-modifying macromolecule in patients with end-stage kidney disease. Blood Purif. 2021, 50, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Donaire, M.L.; Santerre, J.P. Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J. Appl. Polym. Sci. 2014, 131, 40328. [Google Scholar] [CrossRef]
- Kleidon, T.; Ullman, A.J.; Zhang, L.; Mihala, G.; Chaseling, B.; Schoutrop, J.; Rickard, C.M. How does your PICCOMPARE? A pilot randomized controlled trial comparing various PICC materials in pediatrics. J. Hosp. Med. 2018, 13, 517–525. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services; Food and Drug Administration; Center for Devices and Radiological Health. Guidance for Industry and CDRH Reviewers: Guidance for the Content of Premarket Notifications for Conventional and High Permeability Hemodialyzers. Available online: https://www.fda.gov/media/72577/download (accessed on 18 February 2022).
- De Mel, A.; Cousins, B.G.; Seifalian, A.M. Surface modification of biomaterials: A quest for blood compatibility. Int. J. Biomater. 2012, 2012, 707863. [Google Scholar] [CrossRef]
- Chanard, J.; Lavaud, S.; Paris, B.; Toure, F.; Rieu, P.; Renaux, J.-L.; Thomas, M. Assessment of heparin binding to the AN69 ST hemodialysis membrane: I. preclinical studies. ASAIO J. 2005, 51, 342–347. [Google Scholar] [CrossRef]
- Chanard, J.; Lavaud, S.; Maheut, H.; Kazes, I.; Vitry, F.; Rieu, P. The clinical evaluation of low-dose heparin in haemodialysis: A prospective study using the heparin-coated AN69 ST membrane. Nephrol. Dial. Transplant. 2008, 23, 2003–2009. [Google Scholar] [CrossRef] [Green Version]
- Lavaud, S.; Paris, B.; Maheut, H.; Randoux, C.; Renaux, J.-L.; Rieu, P.; Chanard, J. Assessment of the heparin-binding AN69 ST hemodialysis membrane: II. Clinical studies without heparin administration. ASAIO J. 2005, 51, 348–351. [Google Scholar] [CrossRef]
- Laville, M.; Dorval, M.; Fort Ros, J.; Fay, R.; Cridlig, J.; Nortier, J.; Juillard, L.; Dębska-Ślizień, A.; Fernández Lorente, L.; Thibaudin, D.; et al. Results of the HepZero study comparing heparin-grafted membrane and standard care show that heparin-grafted dialyzer is safe and easy to use for heparin-free dialysis. Kidney Int. 2014, 86, 1260–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guery, B.; Alberti, C.; Servais, A.; Harrami, E.; Bererhi, L.; Zins, B.; Touam, M.; Joly, D. Hemodialysis without systemic anticoagulation: A prospective randomized trial to evaluate 3 strategies in patients at risk of bleeding. PLoS ONE 2014, 9, e97187. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hassan, Z.A.; Chalmin, F.; Vido, S.; Berrada, M.; Verhelst, D.; Donnadieu, P.; Moranne, O.; Esnault, V.L. Vitamin E-coated and heparin-coated dialyzer membranes for heparin-free hemodialysis: A multicenter, randomized, crossover trial. Am. J. Kidney Dis. 2016, 68, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, F.; De Somer, F.; Josipovic, I.; Boone, M.; Dhondt, A.; Van Biesen, W.; Eloot, S. Evaluation with micro-CT of different anticoagulation strategies during hemodialysis in patients with thrombocytopenia: A randomized crossover study. Artif. Organs 2019, 43, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Evenepoel, P.; Dejagere, T.; Verhamme, P.; Claes, K.; Kuypers, D.; Bammens, B.; Vanrenterghem, Y. Heparin-coated polyacrylonitrile membrane versus regional citrate anticoagulation: A prospective randomized study of 2 anticoagulation strategies in patients at risk of bleeding. Am. J. Kidney Dis. 2007, 49, 642–649. [Google Scholar] [CrossRef]
- Skagerlind, M.S.E.; Stegmayr, B.G. An evaluation of four modes of low dose anticoagulation during intermittent haemodialysis. Eur. J. Clin. Pharmacol. 2018, 74, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Meijers, B.; Metalidis, C.; Vanhove, T.; Poesen, R.; Kuypers, D.; Evenepoel, P. A noninferiority trial comparing a heparin-grafted membrane plus citrate-containing dialysate versus regional citrate anticoagulation: Results of the CiTED study. Nephrol. Dial. Transplant. 2017, 32, 707–714. [Google Scholar] [CrossRef]
- Rydzewska-Rosolowska, A.; Gozdzikiewicz-Lapinska, J.; Borawski, J.; Koc-Zorawska, E.; Mysliwiec, M.; Naumnik, B. Unexpected and striking effect of heparin-free dialysis on cytokine release. Int. Urol. Nephrol. 2017, 49, 1447–1452. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, L.; Locatelli, F. What do we know about oxidative stress in patients with chronic kidney disease on dialysis? Clinical effects, potential treatment, and prevention. Semin. Dial. 2011, 24, 56–64. [Google Scholar] [CrossRef]
- Cervantes Gracia, K.; Llanas-Cornejo, D.; Husi, H. CVD and oxidative stress. J. Clin. Med. 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Panth, N.; Paudel, K.R.; Parajuli, K. Reactive oxygen species: A key hallmark of cardiovascular disease. Adv. Med. 2016, 5, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtaszek, E.; Oldakowska-Jedynak, U.; Kwiatkowska, M.; Glogowski, T.; Malyszko, J. Uremic toxins, oxidative stress, atherosclerosis in chronic kidney disease, and kidney transplantation. Oxidative Med. Cell Longev. 2021, 2021, 6651367. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.U.; Yeom, J.-H.; Kim, W. Beneficial effects of vitamin E supplementation on endothelial dysfunction, inflammation, and oxidative stress biomarkers in patients receiving hemodialysis: A systematic review and meta analysis of randomized controlled trials. Int. J. Mol. Sci. 2021, 22, 11923. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Golembiewska, E.; Lindholm, B.; Stenvinkel, P. End-stage renal disease, inflammation and cardiovascular outcomes. Contrib. Nephrol. 2017, 191, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Singh, P.; Khurana, S.; Ganguly, N.K.; Kukreti, R.; Saso, L.; Rana, D.S.; Taneja, V.; Bhargava, V. Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pract 2021, 40, 183–193. [Google Scholar] [CrossRef]
- Jiang, Q. Metabolism of natural forms of vitamin E and biological actions of vitamin E metabolites. Free Radic. Biol. Med. 2022, 179, 375–387. [Google Scholar] [CrossRef]
- Bergin, P.; Leggett, A.; Cardwell, C.R.; Woodside, J.V.; Thakkinstian, A.; Maxwell, A.P.; McKay, G.J. The effects of vitamin E supplementation on malondialdehyde as a biomarker of oxidative stress in haemodialysis patients: A systematic review and meta-analysis. BMC Nephrol. 2021, 22, 126. [Google Scholar] [CrossRef]
- Mydlik, M.; Derzsiova, K.; Racz, O.; Sipulova, A.; Lovasova, E.; Petrovicova, J. A modified diayzer with vitamin E and antioxidant defense parameters. Kidney Int. 2001, 59, 144–147. [Google Scholar] [CrossRef]
- Galli, F.; Rovidati, S.; Chiarantini, L.; Campus, G.; Canestrari, F.; Buoncristiani, U. Bioreactivity and biocompatibility of a vitamin E-modified multi-layer hemodialysis filter. Kidney Int. 1998, 54, 580–589. [Google Scholar] [CrossRef] [Green Version]
- Floridi, A.; Piroddi, M.; Pilolli, F.; Matsumoto, Y.; Aritomi, M.; Galli, F. Analysis method and characterization of the antioxidant capacity of vitamin E-interactive polysulfone hemodialyzers. Acta Biomater. 2009, 5, 2974–2982. [Google Scholar] [CrossRef]
- D’Arrigo, G.; Baggetta, R.; Tripepi, G.; Galli, F.; Bolignano, D. Effects of vitamin E-coated versus conventional membranes in chronic hemodialysis patients: A systematic review and meta-Analysis. Blood Purif. 2017, 43, 101–122. [Google Scholar] [CrossRef] [PubMed]
- Himmelfarb, J. Oxidative stress in hemodialysis. Contrib. Nephrol. 2008, 161, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Rusu, C.C.; Racasan, S.; Kacso, I.M.; Moldovan, D.; Potra, A.; Patiu, I.M.; Vladutiu, D.; Caprioara, M.G. Malondialdehyde can predict survival in hemodialysis patients. Clujul Med. 2015, 89, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ribera, L.; Corredor, Z.; Silva, I.; Díaz, J.M.; Ballarín, J.; Marcos, R.; Pastor, S.; Coll, E. Vitamin E-coated dialysis membranes reduce the levels of oxidative genetic damage in hemodialysis patients. Mutat. Res. 2017, 815, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Schupp, N.; Schinzel, R.; Heidland, A.; Stopper, H. Genotoxicity of advanced glycation end products: Involvement of oxidative stress and of angiotensin II type 1 receptors. Ann. N. Y. Acad. Sci. 2005, 1043, 685–695. [Google Scholar] [CrossRef]
- Djuric, P.; Suvakov, S.; Simic, T.; Markovic, D.; Jerotic, D.; Jankovic, A.; Bulatovic, A.; Tosic Dragovic, J.; Damjanovic, T.; Marinkovic, J.; et al. Vitamin E-bonded membranes do not influence markers of oxidative stress in hemodialysis patients with homozygous glutathione transferase M1 gene deletion. Toxins 2020, 12, 352. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Hung, S.C.; Wei, Y.H.; Tarng, D.C. GST M1 polymorphism associates with DNA oxidative damage and mortality among hemodialysis patients. J. Am. Soc. Nephrol. 2009, 20, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Sepe, V.; Gregorini, M.; Rampino, T.; Esposito, P.; Coppo, R.; Galli, F.; Libetta, C. VitaminE-loaded membrane dialyzers reduce hemodialysis inflammaging. BMC Nephrol. 2019, 20, 412. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Bailey, K.L.; Smith, L.M.; Heires, A.J.; Katafiasz, D.M.; Romberger, D.J.; LeVan, T.D. Aging leads to dysfunctional innate immune responses to TLR2 and TLR4 agonists. Aging Clin. Exp. Res. 2019, 31, 1185–1193. [Google Scholar] [CrossRef]
- Bogdan, C. Nitric oxide synthase in innate and adaptive immunity: An update. Trends Immunol. 2015, 36, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Andrulli, S.; Viganò, S.M.; Concetti, M.; Urbini, S.; Giacchino, F.; Broccoli, R.; Aucella, F.; Cossu, M.; Conti, P.; et al. Evaluation of the impact of a new synthetic vitamin E-bonded membrane on the hypo-responsiveness to the erythropoietin therapy in hemodialysis patients: A multicenter study. Blood Purif. 2017, 43, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Kiaii, M.; Aritomi, M.; Nagase, M.; Farah, M.; Jung, B. Clinical evaluation of performance, biocompatibility, and safety of vitamin E-bonded polysulfone membrane hemodialyzer compared to non-vitamin E-bonded hemodialyzer. J. Artif. Organs 2019, 22, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, M.; Sasaki, H.; Sekizuka, K.; Sano, H.; Ogawa, K.; Shimizu, C.; Yoshida, H.; Kobayashi, S.; Koremoto, M.; Aritomi, M.; et al. Improved management of intradialytic hypotension (IDH) using vitamin E-bonded polysulfone membrane dialyzer. Int. J. Artif. Organs 2010, 33, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Kohlová, M.; Rocha, S.; Gomes Amorim, C.; de Nova Araújo, A.; Santos-Silva, A.; Solich, P.; Branco da Silva Montenegro, M.C. Doping polysulfone membrane with alpha-tocopherol and alpha-lipoic acid for suppressing oxidative stress induced by hemodialysis treatment. Macromol. Biosci. 2020, 20, e2000046. [Google Scholar] [CrossRef]
- Mahlicli, F.Y.; Altinkaya, S.A. Immobilization of alpha lipoic acid onto polysulfone membranes to suppress hemodialysis induced oxidative stress. J. Membr. Sci. 2014, 449, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Ronco, C.; Marchionna, N.; Brendolan, A.; Neri, M.; Lorenzin, A.; Martínez Rueda, A.J. Expanded haemodialysis: From operational mechanism to clinical results. Nephrol. Dial. Transplant. 2018, 33, iii41–iii47. [Google Scholar] [CrossRef] [Green Version]
|
|
|
|
|
|
|
Membrane | Surface Modification | Main Findings | Refs. |
---|---|---|---|
Asymmetric triacetate (ATA) | Smoother surface of parent polymer symmetric cellulose triacetate |
| Cross-over study [46] Cross-over studies [47,50] Randomized cross-over studies [49,51] |
Polymethylmethacrylate NF | Reduction in negative charges of parent polymer polymethylmethacrylate |
| Cross-over study [54] Randomized study [55] |
Hydrolink NV | Application of a hydrophilic polymer onto the inner surface of PSF material |
| Prospective sequential study [59] Randomized study [60] Randomized study [63] Stratified-randomized study [65] Randomized study [72] Retrospective study [73] |
Surface modifying molecule-modified membrane | Incorporation of surface modifying molecule 1 into PSF dialyzer fibers |
| Prospective sequential study [75] |
Heparin-coated membrane | Binding of heparin on the blood side of polyacrylonitrile sodium methallylsulfonate copolymer coated with polyethyleneimine before heparin grafting |
| Observational studies [81,82] Randomized controlled studies [83,84,87] Randomized cross-over studies [85,86] Randomized controlled study [90] |
Vitamin E-coated membrane | Coating with vitamin E (alpha-tocopherol) on the blood surface of membrane |
| Meta-analysis [103] Meta-analysis [103] Randomized controlled cross-over study [110] Meta-analysis [103] Randomized controlled study [114] Randomized cross-over study [85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonomini, M.; Piscitani, L.; Di Liberato, L.; Sirolli, V. Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines 2022, 10, 844. https://doi.org/10.3390/biomedicines10040844
Bonomini M, Piscitani L, Di Liberato L, Sirolli V. Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines. 2022; 10(4):844. https://doi.org/10.3390/biomedicines10040844
Chicago/Turabian StyleBonomini, Mario, Luca Piscitani, Lorenzo Di Liberato, and Vittorio Sirolli. 2022. "Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy" Biomedicines 10, no. 4: 844. https://doi.org/10.3390/biomedicines10040844
APA StyleBonomini, M., Piscitani, L., Di Liberato, L., & Sirolli, V. (2022). Biocompatibility of Surface-Modified Membranes for Chronic Hemodialysis Therapy. Biomedicines, 10(4), 844. https://doi.org/10.3390/biomedicines10040844