Escalating a Biological Dose of Radiation in the Target Volume Applying Stereotactic Radiosurgery in Patients with Head and Neck Region Tumours
Abstract
:1. Background
2. Methods/Design
2.1. Aims
- Evaluation of the efficacy of the stereotactic boost applied in patients with H&N tumours.
- Evaluation of the safety of the stereotactic boost applied in patients with H&N tumours.
2.2. Setting of the Study
- Main assumption: OTT is shorter or equal compared to standard mult-ifraction conventional radiotherapy realized to a total dose (TD) of 70 Gy in 35 fractions over 49 days.
- A stereotactic radiosurgery boost is given in two cases:
- a.
- Upfront boost—on the first day of OTT (to 6 days before beginning conventional radiotherapy).
The dose of the upfront boost is prescribed on the output volume of the primary (GTVp) or nodal (GTVn) tumour at the early stages of the disease. After an upfront boost, the patient starts conventional radiotherapy to a total dose of 60 Gy.- b.
- Direct boost—on Days 43–49 of OTT in relation to conventional radiotherapy to TD 70 Gy, i.e., up to 6 days after a dose of 60 Gy.
- 3.
- Treatment is conducted as radiotherapy alone or radiochemotherapy based on cisplatin 100 mg/m2 or 40 mg/m2 in a 21-day or 7-day cycle, respectively. To guarantee patient safety, chemotherapy must not be taken 96 h after the stereotactic boost. Indications for radiochemotherapy are as follows:
- a.
- Stage II-III of H&N cancer in definitive treatment.
- b.
- An extracapsular extension in dissected lymph nodes or a positive margin in a histopathological report after surgery.
- 4.
- Patients who start the treatment from induction chemotherapy (three cycles with a 21-day interval) with 75 mg/m2 docetaxel on Day 1, 75 mg/m2 cisplatin on Day 1 and 750 mg/m2 5-fluorouracil by 24-h continuous infusion for 5 days (TPF), or 80–100 mg/m2 cisplatin on Day 1 and 800–1000 mg/m2 5-fluorouracil by 24-h continuous infusion for 5 days (PF) due to a large mass of primary or nodal tumours may have a chance to qualify for an upfront or direct boost, depending the evaluation of the response to systemic treatment [38,39].
- 5.
2.3. Characteristics of the Participants
2.4. Inclusion Criteria
- Patients with squamous cell carcinoma (SCC) or adenoid cystic carcinoma (ACC) of the H&N region qualified for radical treatment with (definitive or adjuvant (adjuvant radiotherapy or radiochemotherapy in postoperative cases of R2 resection or early locoregional recurrence unsuitable for reoperation)) radiotherapy or radiochemotherapy.
- Patients with other malignant tumours of the H&N region (sarcomas, neuroendocrine carcinomas, differentiated carcinomas, undifferentiated carcinomas, or basaloid carcinomas) qualified for radical treatment with (definitive or adjuvant (adjuvant radiotherapy or radiochemotherapy in postoperative cases of R2 resection or early locoregional recurrence unsuitable for reoperation)) radiotherapy or radiochemotherapy.
- Patients with nonmalignant tumours of the H&N region (tumour mixtus or paraganglioma) demanding definitive or adjuvant radiotherapy.
- Age: 18–80 years.
- Performance status: Eastern Cooperative Oncology Group (ECOG) performance status score of 0–2.
- Conscious agreement to participate in the clinical trial.
2.5. Exclusion Criteria
- Do not meet the inclusion criteria.
- Decompensated diabetes mellitus.
- Myocardial infarction occurred up to 6 months before.
- Pregnancy.
- Mental disorder preclusive of making a conscious agreement.
2.6. Preparations for Treatment and Planning Process
- Upfront boost followed by conventional radiotherapy
- 2.
- Conventional radiotherapy followed by direct boost
- Cyber Knife® VSI or M6 series (Accuray, Sunnyvale, CA, USA)—an acceleration voltage of 6 MV, flattening filter-free (FFF) beams, and a maximal dose rate of 1000 MU/min. The kV imaging to verify the patient’s position during a therapeutic session is performed in the range of 15–150 s. The session time usually ranges from 30 to 60 min.
- EdgeTM radiosurgery accelerator (Varian Medical Systems, Palo Alto, CA, USA)—an acceleration voltage of 6 MV, a flattening filter and FFF beams, and a maximal dose rate of 1400 MU/min. Image-guided radiotherapy (IGRT) is performed before a therapeutic session using ConeBeam CT scans. The session time using volumetric modulated arc therapy (VMAT) usually ranges from 15 to 20 min.
2.7. Doses of Stereotactic Radiosurgery Boost
2.8. Monitoring of Treatment
- Upfront boost—before the boost, one day after the boost, and at the end of the conventional treatment.
- Direct boost—before the conventional treatment, one day before the boost, and one day after the boost.
2.9. Follow Up
2.10. Endpoints Andstatistical Analysis
- The primary endpoint is the response to treatment in imaging tests and clinical examination—local control (LC) and locoregional control (LRC).
- The secondary endpoints are as follows:
- ➢
- Evaluation of efficacy—overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS).
- ➢
- Evaluation of safety—acute and late side effects according to the Common Terminology Criteria for Adverse Events (CTCAE)v4.0.
- ➢
- Evaluation of tolerance—QLQ-C30 and H&N35 questionnaires.
- Statistical analysis: statistical modelling, regression with random effects, Kaplan–Meier estimator, and Cox and Weibull regression models will be used.
3. Discussion
3.1. Conventional Radiotherapy
3.2. Chemotherapy
3.3. Laboratory Test Technology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Adenoid Cystic Carcinoma |
ALT | Alanine Aminotransferase |
AST | Aspartate Aminotransferase |
BED | Biologically Effective Dose |
BT | Brachytherapy |
CT | Computed Tomography |
CRP | C-reactive protein |
CTCAE | Common Terminology Criteria for Adverse Events |
CTV | Clinical Target Volume |
DFS | Disease-Free Survival |
EBRT | External Beam Radiotherapy |
ECOG | Eastern Cooperative Oncology Group |
EPID | Electronic Portal Imaging Devices |
EQD2 | Equivalent Dose in 2 Gy fractions |
FFF | Flattening Filter-Free |
GTV | Gross Tumor Volume |
GTVboost | boost to Gross Tumor Volume |
GTVn | nodal Gross Tumor Volume |
GTVp | primary Gross Tumor Volume |
H&N | Head and Neck |
ICRU | International Commission on Radiation Units and Measurements |
IGRT | Image Guided Radiotherapy |
IMRT | Intensity Modulated Radiation Therapy |
Il-6 | Interleukin 6 |
LC | Local Control |
LRC | Loco-regional Control |
MRI | Magnetic Resonance Imaging |
OS | Overall Survival |
OTT | Overall Treatment Time |
PF | cisplatin + 5-fluorouracil |
PFS | Progression-Free Survival |
PTV | Planning Target Volume |
SBRT | Stereotactic Body Radiotherapy |
sFlt-1 | Fms-related Tyrosine Kinase 1 |
SR | Stereotactic Radiosurgery |
TD | Total Dose |
TK | Thymidine Kinase |
TPF | docetaxel + cisplatin + 5-fluorouracil |
VMAT | Volumetric Modulated Arc Therapy |
18F-FDG PET-CT | 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography |
References
- Fu, K.K.; Pajak, T.F.; Trotti, A.; Jones, C.U.; Spencer, S.A.; Phillips, T.L.; Garden, A.S.; Ridge, J.A.; Cooper, J.S.; Ang, K.K. A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: First report of RTOG 9003. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 7–16. [Google Scholar] [CrossRef]
- Beitler, J.J.; Zhang, Q.; Fu, K.K.; Trotti, A.; Spencer, S.A.; Jones, C.U.; Garden, A.S.; Shenouda, G.; Harris, J.; Ang, K.K. Final results of local-regional control and late toxicity of RTOG 9003: A randomized trial of altered fractionation radiation for locally advanced head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.; Hansen, H.S.; Specht, L.; Overgaard, M.; Grau, C.; Andersen, E.; Bentzen, J.; Bastholt, L.; Hansen, O.; Johansen, J.; et al. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6&7 randomised controlled trial. Lancet 2003, 362, 933–940. [Google Scholar] [PubMed]
- Skladowski, K.; Maciejewski, B.; Golen, M.; Tarnawski, R.; Slosarek, K.; Suwinski, R.; Sygula, M.; Wygoda, A. Continuous accelerated 7-days-a-week radiotherapy for head-and-neck cancer: Long-term results of phase III clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 706–713. [Google Scholar] [CrossRef]
- Bourhis, J.; Overgaard, J.; Audry, H.; Ang, K.K.; Saunders, M.; Bernier, J.; Horiot, J.C.; Le Maître, A.; Pajak, T.F.; Poulsen, M.G.; et al. Hyperfractionated or accelerated radiotherapy in head and neck cancer: A meta-analysis. Lancet 2006, 368, 843–854. [Google Scholar] [CrossRef]
- Dische, S.; Saunders, M.; Barrett, A.; Harvey, A.; Gibson, D.; Parmar, M. A randomized multicentre trial of CHART versus conventional radiotherapy in head and neck cancer. Radiother. Oncol. 1997, 44, 123–136. [Google Scholar] [CrossRef]
- Byhardt, R.W.; Greenberg, M.; Cox, J.D. Local control of squamous carcinoma of oral cavity and oropharynx with 3 vs. 5 treatment fractions per week. Int. J. Radiat. Oncol. Biol. Phys. 1974, 2, 415–420. [Google Scholar] [CrossRef]
- Cummings, B.J. Benefit of accelerated hyperfractionation for head and neck cancer. Acta Oncol. 1999, 38, 131–135. [Google Scholar] [CrossRef]
- Ang, K.; Peters, L.J.; Weber, R.S.; Maor, M.H.; Morrison, W.H.; Wendt, C.D.; Brown, B.W. Concomitant boost radiotherapy schedules in the treatment of carcinoma of the oropharynx and nasopharynx. Int. J. Radiat. Oncol. Biol. Phys. 1990, 19, 1339–1345. [Google Scholar] [CrossRef]
- Horiot, J.C.; Le Fur, R.; N’guyen, T.; Chenal, C.; Schraub, S.; Alfonsi, S.; Gardani, G.; Van den Bogaert, W.; Danczak, S.; Bolla, M.; et al. Hyperfractionation versus conventional fractionation in oropharyngeal carcinoma. Final analysis of a randomized trial of the EORTC cooperative group in radiotherapy. Radiother. Oncol. 1992, 25, 231–241. [Google Scholar] [CrossRef]
- Horiot, J.; Le Fur, R.; Schraub, S.; Bogaert, W.V.D.; Van Glabbeke, M.; Pierart, M.; Begg, A. Status of the experience of the EORTC Cooperative Group of Radiotherapy with hyperfractionated and accelerated radiotherapy regimes. Semin. Radiat. Oncol. 1992, 2, 34–37. [Google Scholar] [CrossRef]
- Overgaard, J.; Hjelm-Hansen, M.; Johansen, L.V.; Andersen, A.P. Comparison of conventional and split-course radiotherapy as primary treatment in carcinoma of the andom. Acta Oncol. 1988, 27, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.; Sand Hansen, H.; Overgaard, M.; Grau, C.; Bastholt, L.; Jörgensen, K.; Hansen, O.; Specht, L.; Pedersen, M.; Evensen, J. Importance of overall treatment time for the outcome of radiotherapy in head and neck carcinoma. Experience from the Danish Head and Neck Cancer Study. In Progress in radio oncology VI/Ed; Monduzzi Editore.—Salzburg: Bologna, Italy, 1998; pp. 743–752. [Google Scholar]
- Brizel, D.M.; Wasserman, T.H.; Henke, M.; Strnad, V.; Rudat, V.; Monnier, A.; Eschwege, F.; Zhang, J.; Russell, L.; Oster, W.; et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J. Clin. Oncol. 2000, 18, 3339–3345. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, J.; Hansen, H.S.; Overgaard, M.; Bastholt, L.; Berthelsen, A.; Specht, L.; Lindeløv, B.; Jørgensen, K. A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. Radiother. Oncol. 1998, 46, 135–146. [Google Scholar] [CrossRef]
- Hoogsteen, I.J.; Pop, L.A.; Marres, H.A.; Merkx, M.A.; van den Hoogen, F.J.; van der Kogel, A.J.; Kaanders, J.H. Oxygen-modifying treatment with ARCON reduces the prognostic significance of hemoglobin in squamous cell carcinoma of the head and neck. Int. J. Radiat. Oncol. Biol. Phys 2006, 64, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Dörr, W.; Noack, R.; Spekl, K.; Farrell, C.L.; Dörr, R.N.W. Modification of oral mucositis by keratinocyte growth factor: Single radiation exposure. Int. J. Radiat. Oncol. Biol. 2001, 77, 341–347. [Google Scholar] [CrossRef]
- Delanian, S.; Balla-Mekias, S.; Lefaix, J.-L. Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J. Clin. Oncol. 1999, 17, 3283–3290. [Google Scholar] [CrossRef]
- Blanchard, P.; Lee, A.; Marguet, S.; Leclercq, J.; Ng, W.T.; Ma, J.; Chan, A.T.; Huang, P.Y.; Benhamou, E.; Zhu, G.; et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: An update of the MAC-NPC meta-analysis. Lancet Oncol. 2015, 16, 645–655. [Google Scholar] [CrossRef]
- Pignon, J.-P.; le Maître, A.; Maillard, E.; Bourhis, J.; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 93 randomised trials and 17,346 patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef]
- Forastiere, A.A.; Goepfert, H.; Maor, M.; Pajak, T.F.; Weber, R.; Morrison, W.; Glisson, B.; Trotti, A.; Ridge, J.A.; Chao, C.; et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. New Engl. J. Med. 2003, 349, 2091–2098. [Google Scholar] [CrossRef]
- Nutting, C.M.; Morden, J.P.; Harrington, K.J.; Urbano, T.G.; Bhide, S.A.; Clark, C.; Miles, E.A.; Miah, A.B.; Newbold, K.; Tanay, M.; et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre andomized controlled trial. Lancet Oncol. 2011, 12, 127–136. [Google Scholar] [CrossRef]
- Mendenhall, W.M.; Amdur, R.J.; Palta, J.R. Intensity-modulated radiotherapy in the standard management of head and neck cancer: Promises and pitfalls. J. Clin. Oncol. 2006, 24, 2618–2623. [Google Scholar] [CrossRef] [PubMed]
- Kam, M.K.; Leung, S.-F.; Zee, B.C.-Y.; Chau, R.M.; Suen, J.J.; Mo, F.; Lai, M.; Ho, R.; Cheung, K.-Y.; Yu, B.K.; et al. Prospective randomized study of intensity- modulated radiotherapy on salivary gland function in early-stage nasopharyngeal carcinoma patients. J. Clin. Oncol. 2007, 25, 4873–4879. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Xia, P.; Quivey, J.M.; Sultanem, K.; Poon, I.; Akazawa, C.; Akazawa, P.; Weinberg, V.; Fu, K.K. Intensity-modulated radiotherapy in the treatment of nasopharyngeal carcinoma: An update of the UCSF experience. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 12–22. [Google Scholar] [CrossRef]
- Romanelli, P.; Schaal, D.W.; Adler, J.R. Image-guided radiosurgical ablation of intra- and extra-cranial lesions. Technol. Cancer Res. Treat. 2006, 5, 421–428. [Google Scholar] [CrossRef]
- Muacevic, A.; Kufeld, M.; Wowra, B.; Kreth, F.-W.; Tonn, J.-C. Feasibility, safety, and outcome of frameless image-guided robotic radiosurgery for brain metastases. J. Neurooncol. 2010, 97, 267–274. [Google Scholar] [CrossRef]
- Rockhill, J.; Halasz, L. Stereotactic radiosurgery and stereotactic radiotherapy for brain metastases. Surg. Neurol. Int. 2013, 4, S185–S191. [Google Scholar] [CrossRef]
- Adler, J.R., Jr.; Chang, S.D.; Murphy, M.J.; Doty, J.; Geis, P.; Hancock, S.L. The CyberKnife: A frameless robotic system for radiosurgery. Stereotact. Funct. Neurosurg. 1997, 69, 124–128. [Google Scholar] [CrossRef]
- Adler, J.R., Jr.; Murphy, M.J.; Chang, S.D.; Hancock, S.L. Image-guided robotic radiosurgery. Neurosurgery 1999, 44, 1299–1307. [Google Scholar]
- Kawaguchi, K.; Sato, K.; Horie, A.; Iketani, S.; Yamada, H.; Nakatani, Y.; Sato, J.; Hamada, Y. Stereotactic radiosurgery may contribute to overall survival for patients with recurrent head and neck carcinoma. Radiat. Oncol. 2010, 5, 51. [Google Scholar] [CrossRef]
- Baker, S.; Verduijn, G.M.; Petit, S.; Sewnaik, A.; Mast, H.; Koljenović, S.; Nuyttens, J.J.; Heemsbergen, W.D. Long-term outcomes following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Acta Oncol. 2019, 58, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Tsai, S.-T.; Wang, M.-S.; Wu, Y.-H.; Hsueh, W.-T.; Yang, M.-W.; Yeh, I.-C.; Lin, J.-C. Experience in fractionated stereotactic body radiation therapy boost for newly diagnosed nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1408–1414. [Google Scholar] [CrossRef]
- Hara, W.; Loo, B.W.; Goffinet, D.R.; Chang, S.D.; Adler, J.R.; Pinto, H.A.; Fee, W.E.; Kaplan, M.J.; Fischbein, N.J.; Le, Q.-T. Excellent local control with stereotactic radiotherapy boost after external beam radiotherapy in patients with nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamgani, A.; Van Rooij, P.; Sewnaik, A.; Mehilal, R.; Tans, L.; Verduijn, G.M.; de Jong, R.J.B. Brachytherapy or stereotactic body radiotherapy boost for early-stage oropharyngeal cancer: Comparable outcomes of two different approaches. Oral Oncol. 2013, 49, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.-K.; Sze, W.-M.; Lee, W.-M.; Yeung, M.-W.; Leung, K.-C.; Hung, W.-M.; Chan, W.-I. Effectiveness of brachytherapy and fractionated stereotactic radiotherapy boost for persistent nasopharyngeal carcinoma. Head Neck 2004, 26, 1024–1030. [Google Scholar] [CrossRef]
- Qi, X.S.; Yang, Q.; Lee, S.P.; Li, X.A.; Wang, D. An Estimation of Radiobiological Parameters for Head-and-Neck Cancer Cells and the Clinical Implications. Cancers 2012, 4, 566–580. [Google Scholar] [CrossRef]
- Pointreau, Y.; Garaud, P.; Chapet, S.; Sire, C.; Tuchais, C.; Tortochaux, J.; Faivre, S.; Guerrif, S.; Alfonsi, M.; Calais, G. Randomized trial of induction chemotherapy with cisplatin and 5-fluorouracil with or without docetaxel for larynx preservation. J. Natl. Cancer Inst. 2009, 101, 498–506. [Google Scholar] [CrossRef]
- Posner, M.R.; Hershock, D.M.; Blajman, C.R.; Mickiewicz, E.; Winquist, E.; Gorbounova, V.; Tjulandin, S.; Shin, D.M.; Cullen, K.; Ervin, T.J.; et al. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N. Engl. J. Med. 2007, 357, 1705–1715. [Google Scholar] [CrossRef]
- Timmerman, R.D. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin. Radiat. Oncol. 2008, 18, 215–222. [Google Scholar] [CrossRef]
- Menzel, H.G. The International Commission on Radiation Units and Measurements. J. Int. Comm. Radiat. Units Meas. 2010, 10, NP.2. [Google Scholar] [CrossRef]
- Grégoire, V.; Evans, M.; Le, Q.-T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother. Oncol. 2018, 126, 3–24. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Ng, W.T.; Pan, J.; Poh, S.S.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; Grégoire, V.; Harrington, K.; et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother. Oncol. 2018, 126, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Doerr, W.; Gahbauer, R.; Howell, R.; Joiner, M.C.; Jones, B.; Jones, D.T.; van der Kogel, A.J.; Wambersie, A.; Whitmore, G. Bioeffect modeling and equieffective dose concepts in radiation oncology--terminology, quantities and units. Radiother. Oncol. 2012, 105, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F. How worthwhile are short schedules in radiotherapy? A series of exploratory calculations. Radiother. Oncol. 1990, 18, 165–181. [Google Scholar] [CrossRef]
Serial Tissue | Volume | Volume Max (Gy) | Max Point Dose (Gy) | Endpoint (≥Grade 3) |
---|---|---|---|---|
Optic Pathway | <0.2 cc | 8 Gy | 10 Gy | neuritis |
Cochlea | 9 Gy | hearing loss | ||
Brainstem (not medulla) | <0.5 cc | 10 Gy | 15 Gy | cranial neuropathy |
Spinal Cord and medulla | <0.35 cc <1.2 cc | 10 Gy 8 Gy | 14 Gy | myelitis |
Spinal Cord Subvolume (5–6 mm above and below level treated per Ryu) | <10% of subvolume | 10 Gy | 14 Gy | myelitis |
Cauda Equina | <5 cc | 14 Gy | 16 Gy | neuritis |
Sacral Plexus | <5 cc | 14.4 Gy | 16 Gy | neuropathy |
Esophagus | <5 cc | 11.9 Gy | 15.4 Gy | stenosis/fistula |
Brachial Plexus | <3 cc | 13.6 Gy | 16.4 Gy | neuropathy |
Heart/Pericardium | <15 cc | 16 Gy | 22 Gy | pericarditis |
Great vessels | <10 cc | 31 Gy | 37 Gy | aneurysm |
Trachea and Large Bronchus | <4 cc | 17.4 Gy | 20.2 Gy | stenosis/fistula |
Bronchus- smaller airways | <0.5 cc | 12.4 Gy | 13.3 Gy | stenosis with atelectasis |
Rib | <5 cc | 28 Gy | 33 Gy | Pain or fracture |
Skin | <10 cc | 25.5 Gy | 27.5 Gy | ulceration |
Stomach | <5 cc | 17.4 Gy | 22 Gy | ulceration/fistula |
Bile duct | 30 Gy | stenosis | ||
Duodenum | <5 cc <10 cc | 11.2 Gy 9 Gy | 17 Gy | ulceration |
Jejunum/Ileum | <30 cc | 12.5 Gy | 22 Gy | enteritis/obstruction |
Colon | <20 cc | 18 Gy | 29.2 Gy | colitis/fistula |
Rectum | <3.5 cc <20 cc | 39 Gy 22 Gy | 44.2 Gy | proctitis/fistula |
Ureter | 35 Gy | stenosis | ||
Bladder wall | <15 cc | 12 Gy | 25 Gy | cystitis/fistula |
Penile bulb | <3 cc | 16 Gy | impotence | |
Femoral Heads | <10 cc | 15 Gy | necrosis | |
Renal hilum/vascular trunk | 15 cc | 14 Gy | malignant hypertension | |
Parallel Tissue | Critical Volume (cc) | Critical Volume Dose Max (Gy) | Endpoint (≥Grade 3) | |
Lung (Right & Left) | 1500 cc | 7 Gy | Basic Lung Function | |
Lung (Right & Left) | 1000 cc | 7.6 Gy | V-8 Gy < 37% | Pneumonitis |
Liver | 700 cc | 11 Gy | Basic Liver Function | |
Renal cortex (Right & Left) | 200 cc | 9.5 Gy | Basic renal function |
Serial Tissue | Contouring Instructions | Volume | Volume Max (Gy) | Max Point Dose (Gy) | Endpoint (≥Grade 3) |
---|---|---|---|---|---|
Optic Pathway | One structure both sides from posterior globe, including chiasm, to proximal optic radiations | <0.5 cc | 44 Gy | 52 Gy | neuritis |
Eye (retina) | Each side separately, entire globe | Mean dose | <38 Gy | 45 Gy | retinitis |
Lens | Each side separately | 10 Gy | cataract | ||
Eyelid—Meibomian glands (one side) | Each side separately, upper and lower lid as one structure | 32 Gy | dry eye syndrome | ||
Lacrimal gland (one side) | Each side separately | <1 cc | 20 Gy | 36 Gy | lack of tears |
Cochlea | Each side separately, include at least 3 CT slices | <0.5 cc | 36 Gy | 40 Gy | hearing loss |
Brainstem (not medulla) | Superiorly from incisura, midbrain and pons only, one structure | <2 cc | 50 Gy | 60 Gy | cranial neuropathy |
Spinal Cord and medulla | For medulla: starting at inferior pons to foramen magnum. For cord: entire bony canal including at least 10 cm superior and inferior to PTV | <5 cc | 44 Gy | 50 Gy | myelitis |
Salivary gland (one side) | Each parotid gland separately | <7 cc Mean dose | 20 Gy <26 Gy | 32 Gy | xerostomia |
Larynx | Starting 1 cm above first appearance of true vocal cord including entire cord, arytenoid muscles, corniculate and arytenoid cartilages, and portions of thyroid cartilage abutting these structures ending at the first appearance of the cricothyroid ligament. | <3 cc | 40 Gy | 46 Gy | necrosis/edema |
Temporomandibular joint | Each side separately starting at the superior articular surface near the zygoma bone and ending at the notch at the superior part of the ramus of the mandible. | <1 cc | 60 Gy | 65 Gy | inflammation |
Esophagus | Include the mucosal, submucosa, and all muscular layers out to the fatty adventitia at least 10 cm superior and inferior to PTV | <5 cc | 55 Gy | 60 Gy | stenosis/fistula |
Brachial Plexus | Each side separately from the spinal nerves exiting the neuroforamina from around C5 to T2 to include only the major trunks of the brachial plexus using the subclavian and axillary vessels as a surrogate for identifying its location, extending proximally at the bifurcation of the brachiocephalic trunk into the jugular/subclavian veins (or carotid/subclavian arteries), and following along the route of the subclavian vein to the axillary vein ending after the neurovascular structures cross the second rib. | <3 cc | 62 Gy | 66 Gy | neuropathy |
Heart/Pericardium | Contoured along with the pericardial sac. The superior aspect (or base) for purposes of contouring will begin at the level of the inferior aspect of the aortic arch (aorto-pulmonary window) and extend inferiorly to the apex of the heart. | <15 cc | 60 Gy | 60 Gy | pericarditis |
Great vessels | The wall and lumen of the named vessel at least 10 cm superior and inferior to PTV | <10 cc | 60 Gy | 76 Gy | aneurysm |
Trachea and Large Bronchus | Contour the trachea and cartilage rings starting 10 cm superior to the PTV extending inferiorly to the bronchi ending at the first bifurcation of the named lobar bronchus. | <5 cc | 60 Gy | 66 Gy | stenosis/fistula |
Skin | The outer 0.5 cm of the body surface anywhere within the whole body contour. | <10 cc | 70 Gy | 76 Gy | ulceration |
Parallel Tissue | Critical Volume (cc) | Critical Volume Dose Max (Gy) | Other Constraints | Endpoint (≥Grade 3) | |
Lung (Right & Left) minus GTV | Contour right and left lung as one structure including all parenchymal lung tissue but exluding the GTV and major airways (trachea and main/lobar bronchi) | 1500 cc | 14 Gy | Basic Lung Function | |
Lung (Right & Left) minus GTV | Contour right and left lung as one structure including all parenchymal lung tissue but exluding the GTV and major airways (trachea and main/lobar bronchi) | 1000 cc | 15 Gy | Mean dose < 20 Gy, V-20 Gy < 37% | Pneumonitis |
Tumour Volume GTVboost | Range of Stereotactic Boost Doses |
---|---|
≥17 cm3 | 10–12 Gy |
7–16.9 cm3 | 13–15 Gy |
<7 cm3 | 16–18 Gy |
Physical Dose | BED α/β = 10 | EQD2α/β = 10 | BED α/β = 6.5 | EQD2α/β = 6.5 | BED α/β = 3 | EQD2α/β = 3 |
---|---|---|---|---|---|---|
1 × 10 Gy = 10 Gy | 20.0 | 16.7 | 25.4 | 19.4 | 43.3 | 26.0 |
1 × 12 Gy = 12 Gy | 26.4 | 22.0 | 34.2 | 26.1 | 60.0 | 36.0 |
1 × 15 Gy = 15 Gy | 37.5 | 31.2 | 49.6 | 37.9 | 90.0 | 54.0 |
1 × 18 Gy = 18 Gy | 50.4 | 42.0 | 67.8 | 51.9 | 126.0 | 75.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polanowski, P.; Składowski, K.; Księżniak-Baran, D.; Grządziel, A.; Amrogowicz, N.; Mrochem-Kwarciak, J.; Pietruszka, A.; Kentnowski, M.; Polanowska, K. Escalating a Biological Dose of Radiation in the Target Volume Applying Stereotactic Radiosurgery in Patients with Head and Neck Region Tumours. Biomedicines 2022, 10, 1484. https://doi.org/10.3390/biomedicines10071484
Polanowski P, Składowski K, Księżniak-Baran D, Grządziel A, Amrogowicz N, Mrochem-Kwarciak J, Pietruszka A, Kentnowski M, Polanowska K. Escalating a Biological Dose of Radiation in the Target Volume Applying Stereotactic Radiosurgery in Patients with Head and Neck Region Tumours. Biomedicines. 2022; 10(7):1484. https://doi.org/10.3390/biomedicines10071484
Chicago/Turabian StylePolanowski, Paweł, Krzysztof Składowski, Dorota Księżniak-Baran, Aleksandra Grządziel, Natalia Amrogowicz, Jolanta Mrochem-Kwarciak, Agnieszka Pietruszka, Marek Kentnowski, and Katarzyna Polanowska. 2022. "Escalating a Biological Dose of Radiation in the Target Volume Applying Stereotactic Radiosurgery in Patients with Head and Neck Region Tumours" Biomedicines 10, no. 7: 1484. https://doi.org/10.3390/biomedicines10071484
APA StylePolanowski, P., Składowski, K., Księżniak-Baran, D., Grządziel, A., Amrogowicz, N., Mrochem-Kwarciak, J., Pietruszka, A., Kentnowski, M., & Polanowska, K. (2022). Escalating a Biological Dose of Radiation in the Target Volume Applying Stereotactic Radiosurgery in Patients with Head and Neck Region Tumours. Biomedicines, 10(7), 1484. https://doi.org/10.3390/biomedicines10071484