Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neural Mass Model of Mice Hippocampal Epilepsy
2.2. Formulation of CSCKF and Bifurcation Analysis
2.3. Animal Preparation and Experiment Setup
2.4. Formulation of Other Quantifying Indicators of Epileptic Activities
2.5. Statistical Analyses
3. Results
3.1. Performance of Quantitative Indicators in Simulated EEG
3.2. Performance of Quantitative Indicators in Simulated Output of the Seizure Model
3.3. Performance of IA/B in the Experimental Data without Electrical Stimulation
3.4. Performance of Four Quantitative Indicators in RNS Experiments
3.5. Performance of the Four Quantitative Indicators in RPS Experiments
3.6. Bifurcation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Parameters | Value |
---|---|
G | 10 |
a | 100 |
b | 50 |
g | 500 |
C | 135 |
Ci, i = 1 to 7 | C1: C, C2: 0.8∙C, C3: 0.25∙C, C4: 0.25∙C, C5: 0.3∙C, C6: 0.1∙C, C7: 0.8∙C |
Cs | 0.29 |
es | 2.5 |
vs | 6 |
hs | 0.56 |
References
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshe, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshe, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellez-Zenteno, J.F.; Hernandez-Ronquillo, L. A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res. Treat. 2012, 2012, 630853. [Google Scholar] [CrossRef]
- Durand, D.M.; Bikson, M. Suppression and control of epileptiform activity by electrical stimulation: A review. Proc. IEEE 2001, 89, 1065–1082. [Google Scholar] [CrossRef]
- Fridley, J.; Thomas, J.G.; Navarro, J.C.; Yoshor, D. Brain stimulation for the treatment of epilepsy. Neurosurg. Focus 2012, 32, E13. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M. Brain stimulation for epilepsy: Can scheduled or responsive neurostimulation stop seizure? Curr. Opinon Neurol. 2006, 19, 164–168. [Google Scholar] [CrossRef]
- Zhong, X.L.; Yu, J.T.; Zhang, Q.; Wang, N.D.; Tan, L. Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res. Bull. 2011, 85, 81–88. [Google Scholar] [CrossRef]
- Jerger, K.; Schiff, S.J. Periodic pacing an in vitro epileptic focus. J. Neurophysiol. 1995, 73, 876–879. [Google Scholar] [CrossRef]
- Weiss, S.R.; Li, X.L.; Rosen, J.B.; Li, H.; Heynen, T.; Post, R.M. Quenching: Inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. Neuroreport 1995, 6, 2171–2176. [Google Scholar] [CrossRef]
- McIntyre, C.C.; Grill, W.M.; Sherman, D.L.; Thakor, N.V. Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. J. Neurophysiol. 2004, 91, 1457–1469. [Google Scholar] [CrossRef]
- Lian, J.; Bikson, M.; Sciortino, C.; Stacey, W.C.; Durand, D.M. Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J. Physiol. 2003, 547, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Beurrier, C.; Bioulac, B.; Audin, J.; Hammond, C. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J. Neurophysiol. 2001, 85, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Schiller, Y.; Bankirer, Y. Cellular mechanisms underlying antiepileptic effects of low- and high-frequency electrical stimulation in acute epilepsy in neocortical brain slices in vitro. J. Neurophysiol. 2007, 97, 1887–1902. [Google Scholar] [CrossRef] [Green Version]
- Cuellar-Herrera, M.; Neri-Bazan, L.; Rocha, L.L. Behavioral effects of high frequency electrical stimulation of the hippocampus on electrical kindling in rats. Epilepsy Res. 2006, 72, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Wyckhuys, T.; Staelens, S.; Van Nieuwenhuyse, B.; Deleye, S.; Hallez, H.; Vonck, K.; Raedt, R.; Wadman, W.; Boon, P. Hippocampal deep brain stimulation induces decreased rCBF in the hippocampal formation of the rat. Neuroimage 2010, 52, 55–61. [Google Scholar] [CrossRef]
- Pavan, A.; Ghin, F.; Contillo, A.; Milesi, C.; Campana, G.; Mather, G. Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): A combined stochastic resonance and equivalent noise approach. Brain Stimul. 2019, 12, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Caporale, N.; Dan, Y. Spike timing–dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Moret, B.; Donato, R.; Nucci, M.; Cona, G.; Campana, G. Transcranial random noise stimulation (tRNS): A wide range of frequencies is needed for increasing cortical excitability. Sci. Rep. 2019, 9, 15150. [Google Scholar] [CrossRef] [Green Version]
- Murphy, O.W.; Hoy, K.E.; Wong, D.; Bailey, N.W.; Fitzgerald, P.B.; Segrave, R.A. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: Behavioural and electrophysiological evidence. Brain Stimul. 2020, 13, 1370–1380. [Google Scholar] [CrossRef]
- Sharanreddy, M.; Kulkarni, P.K. Automated EEG signal analysis for identification of epilepsy seizures and brain tumour. J. Med. Eng. Technol. 2013, 37, 511–519. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, T.; Li, T. Detecting Epileptic Seizures in EEG Signals with Complementary Ensemble Empirical Mode Decomposition and Extreme Gradient Boosting. Entropy 2020, 22, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, V.; Eswaran, C.; Sriraam, N. Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 2005, 29, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, V.; Eswaran, C.; Sriraam, N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.J.; Chang, W.P.; Shyu, B.C. Suppression of cortical seizures by optic stimulation of the reticular thalamus in PV-mhChR2-YFP BAC transgenic mice. Mol. Brain 2017, 10, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, C.C.; Ladas, T.P.; Gonzalez-Reyes, L.E.; Durand, D.M. Seizure suppression by high frequency optogenetic stimulation using in vitro and in vivo animal models of epilepsy. Brain Stimul. 2014, 7, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.-H.; Ju, M.-S.; Lin, C.-C.K. Suppression of acute and chronic mesial temporal epilepsy by contralateral sensing and closed-loop optogenetic stimulation with proportional-plus-off control. Biomed. Signal Process. Control 2019, 51, 309–317. [Google Scholar] [CrossRef]
- Song, Y.; Crowcroft, J.; Zhang, J. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. J. Neurosci. Method 2012, 210, 132–146. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Cui, W.G.; Guo, Y.Z.; Huang, H.; Hu, Z.Y. Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 782–794. [Google Scholar] [CrossRef]
- Siddiqui, M.K.; Morales-Menendez, R.; Huang, X.; Hussain, N. A review of epileptic seizure detection using machine learning classifiers. Brain Inform. 2020, 7, 5. [Google Scholar] [CrossRef]
- Wendling, F.; Bellanger, J.J.; Bartolomei, F. Computational modeling of depth-EEG signals observed in interictal to ictal transition in human temporal lobe epilepsy. In Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Houston, TX, USA, 23–26 October 2002; pp. 230–231. [Google Scholar] [CrossRef]
- Wendling, F.; Hernandez, A.; Bellanger, J.J.; Chauvel, P.; Bartolomei, F. Interictal to ictal transition in human temporal lobe epilepsy: Insights from a computational model of intracerebral EEG. J. Clin. Neurophysiol. 2005, 22, 343–356. [Google Scholar]
- Arasaratnam, I.; Haykin, S. Cubature Kalman filters. IEEE Trans. Autom. Control 2009, 54, 1254–1269. [Google Scholar] [CrossRef] [Green Version]
- López-Cuevas, A.; Castillo-Toledo, B.; Medina-Ceja, L.; Ventura-Mejía, C. State and parameter estimation of a neural mass model from electrophysiological signals during the status epilepticus. NeuroImage 2015, 113, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Wendling, F.; Bartolomei, F.; Bellanger, J.J.; Chauvel, P. Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 2002, 15, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Dhooge, A.; Govaerts, W.; Kuznetsov, Y.A. Matcont. ACM Trans. Math. Softw. 2003, 29, 141–164. [Google Scholar] [CrossRef]
- Plotkin, E.I.; Swamy, M.N.S. Signal processing based on parameter structural modeling and separation of highly correlated signals of known structure. Circuits Syst. Signal Process. 1998, 17, 51–68. [Google Scholar] [CrossRef]
- Richardson, M.L.; Balise, R.R.; Comiter, C.V. Chronic sacral nerve stimulation as a novel treatment for stress urinary incontinence-A rat model. Neurourol. Urodyn. 2015, 34, 270–273. [Google Scholar] [CrossRef]
- Nagaraj, V.; Lee, S.T.; Krook-Magnuson, E.; Soltesz, I.; Benquet, P.; Irazoqui, P.P.; Netoff, T.I. Future of seizure prediction and intervention: Closing the loop. J. Clin. Neurophysiol. 2015, 32, 194–206. [Google Scholar] [CrossRef]
- Li, P.; Karmakar, C.; Yearwood, J.; Venkatesh, S.; Palaniswami, M.; Liu, C. Detection of epileptic seizure based on entropy analysis of short-term EEG. PLoS ONE 2018, 13, e0193691. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Grigorovsky, V.; Bardakjian, B. Excitation and Inhibition Balance Underlying Epileptiform Activity. IEEE Trans. Biomed. Eng. 2020, 67, 2473–2481. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-H.; Wang, P.-H.; Ju, M.-S.; Lin, C.-C.K. Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice. Biomedicines 2022, 10, 1588. https://doi.org/10.3390/biomedicines10071588
Huang C-H, Wang P-H, Ju M-S, Lin C-CK. Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice. Biomedicines. 2022; 10(7):1588. https://doi.org/10.3390/biomedicines10071588
Chicago/Turabian StyleHuang, Chih-Hsu, Peng-Hsiang Wang, Ming-Shaung Ju, and Chou-Ching K. Lin. 2022. "Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice" Biomedicines 10, no. 7: 1588. https://doi.org/10.3390/biomedicines10071588
APA StyleHuang, C. -H., Wang, P. -H., Ju, M. -S., & Lin, C. -C. K. (2022). Using Constrained Square-Root Cubature Kalman Filter for Quantifying the Severity of Epileptic Activities in Mice. Biomedicines, 10(7), 1588. https://doi.org/10.3390/biomedicines10071588