Mechanisms of Synaptic Vesicle Exo- and Endocytosis
Abstract
:1. Introduction
2. Structure and Function of Presynaptic Neurotransmitter Release Sites
2.1. AZ Structure
2.2. AZ Proteins Control SV States
2.3. AZ Protein Complex Formation
2.4. A Possible Model for SV Pools Formation
2.5. AZ Assembly Stability
3. Synaptic Vesicle Exocytosis
3.1. SV Fusion Complex—A Model where Ca2+ Releases Inhibition of SV Fusion
3.2. Asynchronous SV Fusion
3.3. Regulation of the Prefusion Complex
3.4. Disassembly of the Postfusion SNAREs
4. Replenishment of Release Site with Synaptic Vesicles
4.1. SV Dynamics after AP
4.2. AZ Proteins
4.3. Motor Proteins
5. Presynaptic Plasticity
5.1. Presynaptic Short-Term Plasticity
5.2. Presynaptic Long-Term Plasticity
5.3. Presynaptic Homeostasis Plasticity
6. Synaptic Vesicle Endocytosis
6.1. Kiss-and-Run
6.2. Clathrin-Mediated Endocytosis
6.3. Ultrafast Endocytosis
6.4. Bulk Endocytosis
6.5. Ca2+-Sensors Link Exocytosis to Endocytosis
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP | action potential |
AZ | active zone |
CAST | cytomatrix at the active zone-associated structural protein |
CaM | calmodulin |
CaV channels | voltage-gated Ca2+ channels |
EPSPs | excitatory postsynaptic potentials |
PKC | protein kinase C |
PTP | post-tetanic potentiation |
RIM | Rab3-interacting molecules |
RIM-BP | RIM-binding protein |
RRP | readily releasable pool |
SNAREs | soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins |
SUVs | small unilamellar vesicles |
SVs | synaptic vesicles |
References
- Südhof, T.C. The presynaptic active zone. Neuron 2012, 75, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Biederer, T.; Kaeser, P.S.; Blanpied, T.A. Transcellular Nanoalignment of Synaptic Function. Neuron 2017, 96, 680–696. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Held, R.G.; Wong, M.Y.; Liu, C.; Karakhanyan, A.; Kaeser, P.S. Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking. Neuron 2016, 91, 777–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochida, S. Stable and Flexible Synaptic Transmission Controlled by the Active Zone Protein Interactions. Int. J. Mol. Sci. 2021, 22, 1775. [Google Scholar] [CrossRef] [PubMed]
- Chanaday, N.L.; Cousin, M.A.; Milosevic, I.; Watanabe, S.; Morgan, J.R. The Synaptic Vesicle Cycle Revisited: New Insights into the Modes and Mechanisms. J. Neurosci. 2019, 39, 8209–8216. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, N.L.; Puchkov, D.; Classen, G.A.; Walter, A.M.; Pechstein, A.; Sawade, L.; Kaempf, N.; Trimbuch, T.; Lorenz, D.; Rosenmund, C.; et al. Clathrin/AP-2 mediate synaptic vesicle reformation from endosome-like vacuoles but are not essential for membrane retrieval at central synapses. Neuron 2014, 82, 981–988. [Google Scholar] [CrossRef] [Green Version]
- Mochida, S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int. J. Mol. Sci. 2020, 22, 327. [Google Scholar] [CrossRef]
- Emperador-Melero, J.; Kaeser, P.S. Assembly of the presynaptic active zone. Curr. Opin. Neurobiol. 2020, 63, 95–103. [Google Scholar] [CrossRef]
- Tang, A.H.; Chen, H.; Li, T.P.; Metzbower, S.R.; MacGillavry, H.D.; Blanpied, T.A. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 2016, 536, 210–214. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, H.; Ariyoshi, T.; Kimpara, N.; Sugao, K.; Taiko, I.; Takikawa, K.; Asanuma, D.; Namiki, S.; Hirose, K. Synaptic weight set by Munc13-1 supramolecular assemblies. Nat. Neurosci. 2018, 21, 41–49. [Google Scholar] [CrossRef]
- Brunger, A.T.; Choi, U.B.; Lai, Y.; Leitz, J.; White, K.I.; Zhou, Q. The pre-synaptic fusion machinery. Curr. Opin. Struct. Biol. 2019, 54, 179–188. [Google Scholar] [CrossRef]
- Bouazza-Arostegui, B.; Camacho, M.; Brockmann, M.M.; Zobel, S.; Rosenmund, C. Deconstructing Synaptotagmin-1’s Distinct Roles in Synaptic Vesicle Priming and Neurotransmitter Release. J. Neurosci. 2022, 42, 2856–2871. [Google Scholar] [CrossRef]
- Kusick, G.F.; Chin, M.; Raychaudhuri, S.; Lippmann, K.; Adula, K.P.; Hujber, E.J.; Vu, T.; Davis, M.W.; Jorgensen, E.M.; Watanabe, S. Synaptic vesicles transiently dock to refill release sites. Nat. Neurosci. 2020, 23, 1329–1338. [Google Scholar] [CrossRef]
- Junge, H.J.; Rhee, J.S.; Jahn, O.; Varoqueaux, F.; Spiess, J.; Waxham, M.N.; Rosenmund, C.; Brose, N. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 2004, 118, 389–401. [Google Scholar] [CrossRef] [Green Version]
- Mochida, S.; Hida, Y.; Tanifuji, S.; Hagiwara, A.; Hamada, S.; Abe, M.; Ma, H.; Yasumura, M.; Kitajima, I.; Sakimura, K.; et al. SAD-B Phosphorylation of CAST Controls Active Zone Vesicle Recycling for Synaptic Depression. Cell Rep. 2016, 16, 2901–2913. [Google Scholar] [CrossRef] [Green Version]
- Dagostin, A.; Kushmerick, C.; von Gersdorff, H. Allegro giusto: Piccolo, bassoon and clarinet set the tempo of vesicle pool replenishment. J. Physiol. 2018, 596, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.; Zhao, K.; Huang, S.; Huang, S.; Yao, A.; Jiang, Y.; Sigrist, S.; Zhao, L.; Zhang, Y.Q. Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis. J. Neurosci. 2020, 40, 2817–2827. [Google Scholar] [CrossRef]
- Müller, M.; Liu, K.S.; Sigrist, S.J.; Davis, G.W. RIM controls homeostatic plasticity through modulation of the readily-releasable vesicle pool. J. Neurosci. 2012, 32, 16574–16585. [Google Scholar] [CrossRef]
- Mendoza Schulz, A.; Jing, Z.; Sánchez Caro, J.M.; Wetzel, F.; Dresbach, T.; Strenzke, N.; Wichmann, C.; Moser, T. Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse. EMBO J. 2014, 33, 512–527. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.R. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 1996, 380, 255–258. [Google Scholar] [CrossRef]
- Wang, C.C.; Weyrer, C.; Fioravante, D.; Kaeser, P.S.; Regehr, W.G. Presynaptic Short-Term Plasticity Persists in the Absence of PKC Phosphorylation of Munc18-1. J. Neurosci. 2021, 41, 7329–7339. [Google Scholar] [CrossRef]
- Brose, N.; Hofmann, K.; Hata, Y.; Südhof, T.C. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J. Biol. Chem. 1995, 270, 25273–25280. [Google Scholar] [CrossRef] [Green Version]
- Fenster, S.D.; Chung, W.J.; Zhai, R.; Cases-Langhoff, C.; Voss, B.; Garner, A.M.; Kaempf, U.; Kindler, S.; Gundelfinger, E.D.; Garner, C.C. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000, 25, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuka, T.; Takao-Rikitsu, E.; Inoue, E.; Inoue, M.; Takeuchi, M.; Matsubara, K.; Deguchi-Tawarada, M.; Satoh, K.; Morimoto, K.; Nakanishi, H.; et al. Cast: A novel protein of the cytomatrix at the active zone of synapses that forms a ternary complex with RIM1 and munc13-1. J. Cell Biol. 2002, 158, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Takao-Rikitsu, E.; Mochida, S.; Inoue, E.; Deguchi-Tawarada, M.; Inoue, M.; Ohtsuka, T.; Takai, Y. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J. Cell Biol. 2004, 164, 301–311. [Google Scholar] [CrossRef] [Green Version]
- tom Dieck, S.; Sanmartí-Vila, L.; Langnaese, K.; Richter, K.; Kindler, S.; Soyke, A.; Wex, H.; Smalla, K.H.; Kämpf, U.; Fränzer, J.T.; et al. Bassoon, a novel zinc-finger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J. Cell Biol. 1998, 142, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, X.; Biederer, T.; Südhof, T.C. A family of RIM-binding proteins regulated by alternative splicing: Implications for the genesis of synaptic active zones. Proc. Natl. Acad. Sci. USA 2002, 99, 14464–14469. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Okamoto, M.; Schmitz, F.; Hofmann, K.; Südhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 1997, 388, 593–598. [Google Scholar] [CrossRef]
- Hibino, H.; Pironkova, R.; Onwumere, O.; Vologodskaia, M.; Hudspeth, A.J.; Lesage, F. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 2002, 34, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Kaeser, P.S.; Deng, L.; Wang, Y.; Dulubova, I.; Liu, X.; Rizo, J.; Südhof, T.C. RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction. Cell 2011, 144, 282–295. [Google Scholar] [CrossRef] [Green Version]
- Butola, T.; Alvanos, T.; Hintze, A.; Koppensteiner, P.; Kleindienst, D.; Shigemoto, R.; Wichmann, C.; Moser, T. RIM-Binding Protein 2 Organizes Ca2+ Channel Topography and Regulates Release Probability and Vesicle Replenishment at a Fast Central Synapse. J. Neurosci. 2021, 41, 7742–7767. [Google Scholar] [CrossRef] [PubMed]
- Kaeser, P.S.; Deng, L.; Chávez, A.E.; Liu, X.; Castillo, P.E.; Südhof, T.C. ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses. Neuron 2009, 64, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, W.; Radulovic, T.; Goral, R.O.; Thomas, C.; Suarez Montesinos, M.; Guerrero-Given, D.; Hagiwara, A.; Putzke, T.; Hida, Y.; Abe, M.; et al. CAST/ELKS Proteins Control Voltage-Gated Ca2+ Channel Density and Synaptic Release Probability at a Mammalian Central Synapse. Cell Rep. 2018, 24, 284–293.e286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- tom Dieck, S.; Specht, D.; Strenzke, N.; Hida, Y.; Krishnamoorthy, V.; Schmidt, K.F.; Inoue, E.; Ishizaki, H.; Tanaka-Okamoto, M.; Miyoshi, J.; et al. Deletion of the presynaptic scaffold CAST reduces active zone size in rod photoreceptors and impairs visual processing. J. Neurosci. 2012, 32, 12192–12203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radulovic, T.; Dong, W.; Goral, R.O.; Thomas, C.I.; Veeraraghavan, P.; Montesinos, M.S.; Guerrero-Given, D.; Goff, K.; Lübbert, M.; Kamasawa, N.; et al. Presynaptic development is controlled by the core active zone proteins CAST/ELKS. J. Physiol. 2020, 598, 2431–2452. [Google Scholar] [CrossRef] [PubMed]
- Emperador-Melero, J.; Wong, M.Y.; Wang, S.S.H.; de Nola, G.; Nyitrai, H.; Kirchhausen, T.; Kaeser, P.S. PKC-phosphorylation of Liprin-α3 triggers phase separation and controls presynaptic active zone structure. Nat. Commun. 2021, 12, 3057. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ganzella, M.; Zhou, J.; Zhu, S.; Jahn, R.; Zhang, M. Vesicle Tethering on the Surface of Phase-Separated Active Zone Condensates. Mol. Cell 2021, 81, 13–24.e17. [Google Scholar] [CrossRef]
- Brunger, A.T.; Leitz, J.; Zhou, Q.; Choi, U.B.; Lai, Y. Ca2+-Triggered Synaptic Vesicle Fusion Initiated by Release of Inhibition. Trends Cell Biol. 2018, 28, 631–645. [Google Scholar] [CrossRef]
- Südhof, T.C. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Hallermann, S.; Fejtova, A.; Schmidt, H.; Weyhersmüller, A.; Silver, R.A.; Gundelfinger, E.D.; Eilers, J. Bassoon Speeds Vesicle Reloading at a Central Excitatory Synapse. Neuron 2010, 68, 710–723. [Google Scholar] [CrossRef] [Green Version]
- Parthier, D.; Kuner, T.; Körber, C. The presynaptic scaffolding protein Piccolo organizes the readily releasable pool at the calyx of Held. J. Physiol. 2018, 596, 1485–1499. [Google Scholar] [CrossRef]
- Butola, T.; Wichmann, C.; Moser, T. Piccolo Promotes Vesicle Replenishment at a Fast Central Auditory Synapse. Front. Synaptic Neurosci. 2017, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, S.M.; Brose, N. Regulation of membrane fusion in synaptic excitation-secretion coupling: Speed and accuracy matter. Neuron 2007, 55, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.; Thakur, P.; Junge, H.J.; Ashery, U.; Rhee, J.S.; Scheuss, V.; Rosenmund, C.; Rettig, J.; Brose, N. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 2001, 30, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Dulubova, I.; Lou, X.; Lu, J.; Huryeva, I.; Alam, A.; Schneggenburger, R.; Südhof, T.C.; Rizo, J. A Munc13/RIM/Rab3 tripartite complex: From priming to plasticity? EMBO J. 2005, 24, 2839–2850. [Google Scholar] [CrossRef]
- Mahoney, T.R.; Liu, Q.; Itoh, T.; Luo, S.; Hadwiger, G.; Vincent, R.; Wang, Z.W.; Fukuda, M.; Nonet, M.L. Regulation of synaptic transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Mol. Biol. Cell 2006, 17, 2617–2625. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Kaeser, P.S.; Südhof, T.C.; Schneggenburger, R. RIM determines Ca²+ channel density and vesicle docking at the presynaptic active zone. Neuron 2011, 69, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, M.M.; Zarebidaki, F.; Camacho, M.; Grauel, M.K.; Trimbuch, T.; Südhof, T.C.; Rosenmund, C. A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Rep. 2020, 32, 107960. [Google Scholar] [CrossRef]
- Deng, L.; Kaeser, P.S.; Xu, W.; Südhof, T.C. RIM Proteins Activate Vesicle Priming by Reversing Autoinhibitory Homodimerization of Munc13. Neuron 2011, 69, 317–331. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.; Choi, U.B.; Leitz, J.; Rhee, H.J.; Lee, C.; Altas, B.; Zhao, M.; Pfuetzner, R.A.; Wang, A.L.; Brose, N.; et al. Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18. Neuron 2017, 95, 591–607.e510. [Google Scholar] [CrossRef]
- Held, R.G.; Liu, C.; Kaeser, P.S. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains. eLife 2016, 5, e14862. [Google Scholar] [CrossRef] [Green Version]
- Pofantis, E.; Neher, E.; Dresbach, T. Regulation of a subset of release-ready vesicles by the presynaptic protein Mover. Proc. Natl. Acad. Sci. USA 2021, 118, e2022551118. [Google Scholar] [CrossRef]
- Augustin, I.; Rosenmund, C.; Südhof, T.C.; Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 1999, 400, 457–461. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Sheng, Y.; Zhang, M.; Zou, W.; Wu, L.; Kang, L.; Rizo, J.; Zhang, R.; Xu, T.; et al. Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming. Nat. Struct. Mol. Biol. 2015, 22, 547–554. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, Y.; Gong, J.; Ye, S.; Yang, X.; Zhang, R.; Ma, C. Munc18 and Munc13 serve as a functional template to orchestrate neuronal SNARE complex assembly. Nat. Commun. 2019, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Shu, T.; Jin, H.; Rothman, J.E.; Zhang, Y. Munc13-1 MUN domain and Munc18-1 cooperatively chaperone SNARE assembly through a tetrameric complex. Proc. Natl. Acad. Sci. USA 2020, 117, 1036–1041. [Google Scholar] [CrossRef]
- Shen, J.; Tareste, D.C.; Paumet, F.; Rothman, J.E.; Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell 2007, 128, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.S.; Siebert, M.; Mertel, S.; Knoche, E.; Wegener, S.; Wichmann, C.; Matkovic, T.; Muhammad, K.; Depner, H.; Mettke, C.; et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 2011, 334, 1565–1569. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Cai, Q.; Shen, Z.; Chen, X.; Zeng, M.; Du, S.; Zhang, M. RIM and RIM-BP Form Presynaptic Active-Zone-like Condensates via Phase Separation. Mol. Cell 2019, 73, 971–984.e975. [Google Scholar] [CrossRef] [Green Version]
- Milovanovic, D.; Wu, Y.; Bian, X.; De Camilli, P. A liquid phase of synapsin and lipid vesicles. Science 2018, 361, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Wu, Y.; Lee, S.E.; Kim, G.; Jeong, S.; Milovanovic, D.; De Camilli, P.; Chang, S. Cooperative function of synaptophysin and synapsin in the generation of synaptic vesicle-like clusters in non-neuronal cells. Nat. Commun. 2021, 12, 263. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Shang, Y.; Araki, Y.; Guo, T.; Huganir, R.L.; Zhang, M. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 2016, 166, 1163–1175.e1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denker, A.; Rizzoli, S.O. Synaptic vesicle pools: An update. Front. Synaptic Neurosci. 2010, 2, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waites, C.L.; Leal-Ortiz, S.A.; Okerlund, N.; Dalke, H.; Fejtova, A.; Altrock, W.D.; Gundelfinger, E.D.; Garner, C.C. Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J. 2013, 32, 954–969. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhou, P.; Wang, A.L.; Wu, D.; Zhao, M.; Südhof, T.C.; Brunger, A.T. The primed SNARE-complexin-synaptotagmin complex for neuronal exocytosis. Nature 2017, 548, 420–425. [Google Scholar] [CrossRef] [Green Version]
- Mohrmann, R.; Dhara, M.; Bruns, D. Complexins: Small but capable. Cell Mol. Life Sci. 2015, 72, 4221–4235. [Google Scholar] [CrossRef] [Green Version]
- Trimbuch, T.; Rosenmund, C. Should I stop or should I go? The role of complexin in neurotransmitter release. Nat. Rev. Neurosci. 2016, 17, 118–125. [Google Scholar] [CrossRef]
- Perin, M.S.; Fried, V.A.; Mignery, G.A.; Jahn, R.; Südhof, T.C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 1990, 345, 260–263. [Google Scholar] [CrossRef]
- Perin, M.S.; Johnston, P.A.; Ozcelik, T.; Jahn, R.; Francke, U.; Südhof, T.C. Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J. Biol. Chem. 1991, 266, 615–622. [Google Scholar] [CrossRef]
- Zhou, Q.; Lai, Y.; Bacaj, T.; Zhao, M.; Lyubimov, A.Y.; Uervirojnangkoorn, M.; Zeldin, O.B.; Brewster, A.S.; Sauter, N.K.; Cohen, A.E.; et al. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 2015, 525, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.P.; Sun, J.; Rizo, J.; Maximov, A.; Südhof, T.C. Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J. 2006, 25, 2039–2050. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Arai, I.; Satterfield, R.; Young, S.M., Jr.; Jonas, P. Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse. Cell Rep. 2017, 18, 723–736. [Google Scholar] [CrossRef] [Green Version]
- Bacaj, T.; Wu, D.; Yang, X.; Morishita, W.; Zhou, P.; Xu, W.; Malenka, R.C.; Südhof, T.C. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron 2013, 80, 947–959. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, B.L.; Regehr, W.G. Timing of synaptic transmission. Annu. Rev. Physiol. 1999, 61, 521–542. [Google Scholar] [CrossRef] [Green Version]
- Goda, Y.; Stevens, C.F. Two components of transmitter release at a central synapse. Proc. Natl. Acad. Sci. USA 1994, 91, 12942–12946. [Google Scholar] [CrossRef] [Green Version]
- Kaeser, P.S.; Regehr, W.G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 2014, 76, 333–363. [Google Scholar] [CrossRef] [Green Version]
- Otsu, Y.; Shahrezaei, V.; Li, B.; Raymond, L.A.; Delaney, K.R.; Murphy, T.H. Competition between phasic and asynchronous release for recovered synaptic vesicles at developing hippocampal autaptic synapses. J. Neurosci. 2004, 24, 420–433. [Google Scholar] [CrossRef] [Green Version]
- Iremonger, K.J.; Bains, J.S. Asynchronous presynaptic glutamate release enhances neuronal excitability during the post-spike refractory period. J. Physiol. 2016, 594, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Südhof, T.C. Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse. Neuron 2017, 94, 826–839.e823. [Google Scholar] [CrossRef]
- Yao, J.; Gaffaney, J.D.; Kwon, S.E.; Chapman, E.R. Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 2011, 147, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Groffen, A.J.; Martens, S.; Díez Arazola, R.; Cornelisse, L.N.; Lozovaya, N.; de Jong, A.P.; Goriounova, N.A.; Habets, R.L.; Takai, Y.; Borst, J.G.; et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 2010, 327, 1614–1618. [Google Scholar] [CrossRef] [Green Version]
- Hui, E.; Bai, J.; Wang, P.; Sugimori, M.; Llinas, R.R.; Chapman, E.R. Three distinct kinetic groupings of the synaptotagmin family: Candidate sensors for rapid and delayed exocytosis. Proc. Natl. Acad. Sci. USA 2005, 102, 5210–5214. [Google Scholar] [CrossRef] [Green Version]
- Xue, R.; Gaffaney, J.D.; Chapman, E.R. Structural elements that underlie Doc2β function during asynchronous synaptic transmission. Proc. Natl. Acad. Sci. USA 2015, 112, E4316–E4325. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Satterfield, R.; Young, S.M., Jr.; Jonas, P. Triple Function of Synaptotagmin 7 Ensures Efficiency of High-Frequency Transmission at Central GABAergic Synapses. Cell Rep. 2017, 21, 2082–2089. [Google Scholar] [CrossRef] [Green Version]
- Turecek, J.; Regehr, W.G. Synaptotagmin 7 Mediates Both Facilitation and Asynchronous Release at Granule Cell Synapses. J. Neurosci. 2018, 38, 3240–3251. [Google Scholar] [CrossRef]
- Deng, S.; Li, J.; He, Q.; Zhang, X.; Zhu, J.; Li, L.; Mi, Z.; Yang, X.; Jiang, M.; Dong, Q.; et al. Regulation of Recurrent Inhibition by Asynchronous Glutamate Release in Neocortex. Neuron 2020, 105, 522–533.e524. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Krout, M.; Richmond, J.E.; Wang, Y.; Bai, J.; Weeratunga, S.; Collins, B.M.; Ventimiglia, D.; Yu, Y.; et al. A novel dual Ca2+ sensor system regulates Ca2+-dependent neurotransmitter release. J. Cell Biol. 2021, 220, e202008121. [Google Scholar] [CrossRef]
- Hikima, T.; Witkovsky, P.; Khatri, L.; Chao, M.V.; Rice, M.E. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J. Neurosci. 2022, 42, 3919–3930. [Google Scholar] [CrossRef]
- Gaffaney, J.D.; Xue, R.; Chapman, E.R. Mutations that disrupt Ca2+-binding activity endow Doc2β with novel functional properties during synaptic transmission. Mol. Biol. Cell 2014, 25, 481–494. [Google Scholar] [CrossRef]
- Xue, R.; Ruhl, D.A.; Briguglio, J.S.; Figueroa, A.G.; Pearce, R.A.; Chapman, E.R. Doc2-mediated superpriming supports synaptic augmentation. Proc. Natl. Acad. Sci. USA 2018, 115, E5605–E5613. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Regehr, W.G. Loss of Doc2b does not influence transmission at Purkinje cell to deep nuclei synapses under physiological conditions. eLife 2020, 9, e55165. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Kusick, G.F.; Raychaudhuri, S.; Itoh, K.; Chapman, E.R.; Watanabe, S. Synaptotagmin 7 docks synaptic vesicles for Doc2α-triggered asynchronous neurotransmitter release. bioRxiv 2022, 489101. [Google Scholar] [CrossRef]
- Misura, K.M.; Scheller, R.H.; Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 2000, 404, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, P.; Hattendorf, D.A.; Weis, W.I.; Fasshauer, D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 2008, 27, 923–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, J.; Shen, N.; Dulubova, I.; Lu, J.; Guan, R.; Guryev, O.; Grishin, N.V.; Rosenmund, C.; Rizo, J. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 2005, 12, 1017–1018. [Google Scholar] [CrossRef]
- Ma, C.; Su, L.; Seven, A.B.; Xu, Y.; Rizo, J. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science 2013, 339, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Li, W.; Xu, Y.; Rizo, J. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 2011, 18, 542–549. [Google Scholar] [CrossRef] [Green Version]
- Sitarska, E.; Xu, J.; Park, S.; Liu, X.; Quade, B.; Stepien, K.; Sugita, K.; Brautigam, C.A.; Sugita, S.; Rizo, J. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion. eLife 2017, 6, e24278. [Google Scholar] [CrossRef]
- Söllner, T.; Bennett, M.K.; Whiteheart, S.W.; Scheller, R.H.; Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993, 75, 409–418. [Google Scholar] [CrossRef]
- Mayer, A.; Wickner, W.; Haas, A. Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 1996, 85, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Hanson, P.I.; Roth, R.; Morisaki, H.; Jahn, R.; Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 1997, 90, 523–535. [Google Scholar] [CrossRef] [Green Version]
- White, K.I.; Zhao, M.; Choi, U.B.; Pfuetzner, R.A.; Brunger, A.T. Structural principles of SNARE complex recognition by the AAA+ protein NSF. eLife 2018, 7, e38888. [Google Scholar] [CrossRef]
- Lipstein, N.; Sakaba, T.; Cooper, B.H.; Lin, K.H.; Strenzke, N.; Ashery, U.; Rhee, J.S.; Taschenberger, H.; Neher, E.; Brose, N. Dynamic control of synaptic vesicle replenishment and short-term plasticity by Ca2+-calmodulin-Munc13-1 signaling. Neuron 2013, 79, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.; Genç, Ö.; Davis, G.W. RIM-binding protein links synaptic homeostasis to the stabilization and replenishment of high release probability vesicles. Neuron 2015, 85, 1056–1069. [Google Scholar] [CrossRef] [Green Version]
- Davydova, D.; Marini, C.; King, C.; Klueva, J.; Bischof, F.; Romorini, S.; Montenegro-Venegas, C.; Heine, M.; Schneider, R.; Schröder, M.S.; et al. Bassoon specifically controls presynaptic P/Q-type Ca2+ channels via RIM-binding protein. Neuron 2014, 82, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Zarebidaki, F.; Camacho, M.; Brockmann, M.M.; Trimbuch, T.; Herman, M.A.; Rosenmund, C. Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission. J. Neurosci. 2020, 40, 9372–9385. [Google Scholar] [CrossRef]
- Rizzoli, S.O. Synaptic vesicle recycling: Steps and principles. EMBO J. 2014, 33, 788–822. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, S.O.; Betz, W.J. Synaptic vesicle pools. Nat. Rev. Neurosci. 2005, 6, 57–69. [Google Scholar] [CrossRef]
- Lee, J.S.; Ho, W.K.; Lee, S.H. Post-tetanic increase in the fast-releasing synaptic vesicle pool at the expense of the slowly releasing pool. J. Gen. Physiol. 2010, 136, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Miki, T.; Malagon, G.; Pulido, C.; Llano, I.; Neher, E.; Marty, A. Actin- and Myosin-Dependent Vesicle Loading of Presynaptic Docking Sites Prior to Exocytosis. Neuron 2016, 91, 808–823. [Google Scholar] [CrossRef] [Green Version]
- Neher, E.; Sakaba, T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 2008, 59, 861–872. [Google Scholar] [CrossRef] [Green Version]
- Takagishi, Y.; Futaki, S.; Itoh, K.; Espreafico, E.M.; Murakami, N.; Murata, Y.; Mochida, S. Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J. Physiol. 2005, 569, 195–208. [Google Scholar] [CrossRef]
- Hayashida, M.; Tanifuji, S.; Ma, H.; Murakami, N.; Mochida, S. Neural activity selects myosin IIB and VI with a specific time window in distinct dynamin isoform-mediated synaptic vesicle reuse pathways. J. Neurosci. 2015, 35, 8901–8913. [Google Scholar] [CrossRef] [Green Version]
- Tanifuji, S.; Funakoshi-Tago, M.; Ueda, F.; Kasahara, T.; Mochida, S. Dynamin isoforms decode action potential firing for synaptic vesicle recycling. J. Biol. Chem. 2013, 288, 19050–19059. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Cai, Q.; Lu, W.; Sheng, Z.H.; Mochida, S. KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J. Neurosci. 2009, 29, 13019–13029. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.B.; Ma, H.; Sheng, Z.H.; Mochida, S. Dynamin and Activity Regulate Synaptic Vesicle Recycling in Sympathetic Neurons. J. Biol. Chem. 2009, 284, 1930–1937. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Tanifuji, S.; Mochida, S. Kinetic organization of Ca2+ signals that regulate synaptic release efficacy in sympathetic neurons. Mol. Pharmacol. 2014, 86, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [Green Version]
- Kaeser, P.S.; Südhof, T.C. RIM function in short- and long-term synaptic plasticity. Biochem. Soc. Trans. 2005, 33, 1345–1349. [Google Scholar] [CrossRef]
- Kintscher, M.; Wozny, C.; Johenning, F.W.; Schmitz, D.; Breustedt, J. Role of RIM1α in short- and long-term synaptic plasticity at cerebellar parallel fibres. Nat. Commun. 2013, 4, 2392. [Google Scholar] [CrossRef]
- Nakajima, Y.; Mochida, S.; Okawa, K.; Nakanishi, S. Ca2+-dependent release of Munc18-1 from presynaptic mGluRs in short-term facilitation. Proc. Natl. Acad. Sci. USA 2009, 106, 18385–18389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, J.S.; Betz, A.; Pyott, S.; Reim, K.; Varoqueaux, F.; Augustin, I.; Hesse, D.; Südhof, T.C.; Takahashi, M.; Rosenmund, C.; et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002, 108, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Wierda, K.D.; Toonen, R.F.; de Wit, H.; Brussaard, A.B.; Verhage, M. Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 2007, 54, 275–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orlando, M.; Dvorzhak, A.; Bruentgens, F.; Maglione, M.; Rost, B.R.; Sigrist, S.J.; Breustedt, J.; Schmitz, D. Recruitment of release sites underlies chemical presynaptic potentiation at hippocampal mossy fiber boutons. PLoS Biol. 2021, 19, e3001149. [Google Scholar] [CrossRef] [PubMed]
- Vandael, D.; Borges-Merjane, C.; Zhang, X.; Jonas, P. Short-Term Plasticity at Hippocampal Mossy Fiber Synapses Is Induced by Natural Activity Patterns and Associated with Vesicle Pool Engram Formation. Neuron 2020, 107, 509–521.e507. [Google Scholar] [CrossRef] [PubMed]
- Oldani, S.; Moreno-Velasquez, L.; Faiss, L.; Stumpf, A.; Rosenmund, C.; Schmitz, D.; Rost, B.R. SynaptoPAC, an optogenetic tool for induction of presynaptic plasticity. J. Neurochem. 2021, 156, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, R.; Maglione, M.; Sigrist, S.J.; Sakaba, T. Rapid Ca2+ channel accumulation contributes to cAMP-mediated increase in transmission at hippocampal mossy fiber synapses. Proc. Natl. Acad. Sci. USA 2021, 118, e2016754118. [Google Scholar] [CrossRef]
- Castillo, P.E.; Schoch, S.; Schmitz, F.; Südhof, T.C.; Malenka, R.C. RIM1alpha is required for presynaptic long-term potentiation. Nature 2002, 415, 327–330. [Google Scholar] [CrossRef]
- Vandael, D.; Okamoto, Y.; Jonas, P. Transsynaptic modulation of presynaptic short-term plasticity in hippocampal mossy fiber synapses. Nat. Commun. 2021, 12, 2912. [Google Scholar] [CrossRef]
- Kittel, R.J.; Wichmann, C.; Rasse, T.M.; Fouquet, W.; Schmidt, M.; Schmid, A.; Wagh, D.A.; Pawlu, C.; Kellner, R.R.; Willig, K.I.; et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 2006, 312, 1051–1054. [Google Scholar] [CrossRef] [Green Version]
- Wagh, D.A.; Rasse, T.M.; Asan, E.; Hofbauer, A.; Schwenkert, I.; Dürrbeck, H.; Buchner, S.; Dabauvalle, M.C.; Schmidt, M.; Qin, G.; et al. Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 2006, 49, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Pozo, K.; Goda, Y. Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 2010, 66, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Davis, G.W.; Müller, M. Homeostatic control of presynaptic neurotransmitter release. Annu. Rev. Physiol. 2015, 77, 251–270. [Google Scholar] [CrossRef]
- Böhme, M.A.; McCarthy, A.W.; Grasskamp, A.T.; Beuschel, C.B.; Goel, P.; Jusyte, M.; Laber, D.; Huang, S.; Rey, U.; Petzoldt, A.G.; et al. Rapid active zone remodeling consolidates presynaptic potentiation. Nat. Commun. 2019, 10, 1085. [Google Scholar] [CrossRef] [Green Version]
- Cull-Candy, S.G.; Miledi, R.; Trautmann, A.; Uchitel, O.D. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J. Physiol. 1980, 299, 621–638. [Google Scholar] [CrossRef]
- Goel, P.; Dickman, D. Synaptic homeostats: Latent plasticity revealed at the Drosophila neuromuscular junction. Cell Mol. Life Sci. 2021, 78, 3159–3179. [Google Scholar] [CrossRef]
- Ceccarelli, B.; Hurlbut, W.P.; Mauro, A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J. Cell Biol. 1973, 57, 499–524. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, B.; Hurlbut, W.P.; Mauro, A. Depletion of vesicles from frog neuromuscular junctions by prolonged tetanic stimulation. J. Cell Biol. 1972, 54, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Fesce, R.; Grohovaz, F.; Valtorta, F.; Meldolesi, J. Neurotransmitter release: Fusion or ‘kiss-and-run’? Trends Cell Biol. 1994, 4, 1–4. [Google Scholar] [CrossRef]
- Heuser, J.E.; Reese, T.S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 1973, 57, 315–344. [Google Scholar] [CrossRef]
- Watanabe, S.; Rost, B.R.; Camacho-Pérez, M.; Davis, M.W.; Söhl-Kielczynski, B.; Rosenmund, C.; Jorgensen, E.M. Ultrafast endocytosis at mouse hippocampal synapses. Nature 2013, 504, 242–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, S.; Liu, Q.; Davis, M.W.; Hollopeter, G.; Thomas, N.; Jorgensen, N.B.; Jorgensen, E.M. Ultrafast endocytosis at Caenorhabditis elegans neuromuscular junctions. eLife 2013, 2, e00723. [Google Scholar] [CrossRef] [PubMed]
- Clayton, E.L.; Evans, G.J.O.; Cousin, M.A. Bulk Synaptic Vesicle Endocytosis Is Rapidly Triggered during Strong Stimulation. J. Neurosci. 2008, 28, 6627–6632. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Trimbuch, T.; Camacho-Pérez, M.; Rost, B.R.; Brokowski, B.; Söhl-Kielczynski, B.; Felies, A.; Davis, M.W.; Rosenmund, C.; Jorgensen, E.M. Clathrin regenerates synaptic vesicles from endosomes. Nature 2014, 515, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Gan, Q.; Watanabe, S. Synaptic Vesicle Endocytosis in Different Model Systems. Front. Cell Neurosci. 2018, 12, 171. [Google Scholar] [CrossRef]
- He, L.; Wu, X.S.; Mohan, R.; Wu, L.G. Two modes of fusion pore opening revealed by cell-attached recordings at a synapse. Nature 2006, 444, 102–105. [Google Scholar] [CrossRef]
- Xu, J.; McNeil, B.; Wu, W.; Nees, D.; Bai, L.; Wu, L.G. GTP-independent rapid and slow endocytosis at a central synapse. Nat. Neurosci. 2008, 11, 45–53. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Tsien, R.W. The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 2009, 323, 1448–1453. [Google Scholar] [CrossRef] [Green Version]
- Stevens, C.F.; Williams, J.H. “Kiss and run” exocytosis at hippocampal synapses. Proc. Natl. Acad. Sci. USA 2000, 97, 12828–12833. [Google Scholar] [CrossRef] [Green Version]
- Alabi, A.A.; Tsien, R.W. Perspectives on kiss-and-run: Role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 2013, 75, 393–422. [Google Scholar] [CrossRef]
- Saheki, Y.; De Camilli, P. Synaptic vesicle endocytosis. Cold Spring Harb. Perspect. Biol. 2012, 4, a005645. [Google Scholar] [CrossRef]
- Milosevic, I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front. Cell Neurosci. 2018, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Kononenko, N.L.; Haucke, V. Molecular mechanisms of presynaptic membrane retrieval and synaptic vesicle reformation. Neuron 2015, 85, 484–496. [Google Scholar] [CrossRef] [Green Version]
- Delvendahl, I.; Vyleta, N.P.; von Gersdorff, H.; Hallermann, S. Fast, Temperature-Sensitive and Clathrin-Independent Endocytosis at Central Synapses. Neuron 2016, 90, 492–498. [Google Scholar] [CrossRef] [Green Version]
- Soykan, T.; Kaempf, N.; Sakaba, T.; Vollweiter, D.; Goerdeler, F.; Puchkov, D.; Kononenko, N.L.; Haucke, V. Synaptic Vesicle Endocytosis Occurs on Multiple Timescales and Is Mediated by Formin-Dependent Actin Assembly. Neuron 2017, 93, 854–866.e854. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Ryan, T.A. Synaptic Vesicle Recycling at CNS Synapses without AP-2. J. Neurosci. 2009, 29, 3865–3874. [Google Scholar] [CrossRef]
- Kokotos, A.C.; Peltier, J.; Davenport, E.C.; Trost, M.; Cousin, M.A. Activity-dependent bulk endocytosis proteome reveals a key presynaptic role for the monomeric GTPase Rab11. Proc. Natl. Acad. Sci. USA 2018, 115, E10177–E10186. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Baumgart, T. Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 2015, 6, 5974. [Google Scholar] [CrossRef]
- Sakaba, T.; Schneggenburger, R.; Neher, E. Estimation of quantal parameters at the calyx of Held synapse. Neurosci. Res. 2002, 44, 343–356. [Google Scholar] [CrossRef]
- Jäpel, M.; Gerth, F.; Sakaba, T.; Bacetic, J.; Yao, L.; Koo, S.J.; Maritzen, T.; Freund, C.; Haucke, V. Intersectin-Mediated Clearance of SNARE Complexes Is Required for Fast Neurotransmission. Cell Rep. 2020, 30, 409–420.e406. [Google Scholar] [CrossRef]
- Verstreken, P.; Koh, T.W.; Schulze, K.L.; Zhai, R.G.; Hiesinger, P.R.; Zhou, Y.; Mehta, S.Q.; Cao, Y.; Roos, J.; Bellen, H.J. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 2003, 40, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Milosevic, I.; Giovedi, S.; Lou, X.; Raimondi, A.; Collesi, C.; Shen, H.; Paradise, S.; O’Toole, E.; Ferguson, S.; Cremona, O.; et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 2011, 72, 587–601. [Google Scholar] [CrossRef] [Green Version]
- Clayton, E.L.; Cousin, M.A. The molecular physiology of activity-dependent bulk endocytosis of synaptic vesicles. J. Neurochem. 2009, 111, 901–914. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, E.M.; Morton, A.; Ebert, K.; Welzel, O.; Kornhuber, J.; Cousin, M.A.; Groemer, T.W. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses. PLoS ONE 2012, 7, e38188. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.G.; Ryan, T.A.; Lagnado, L. Modes of vesicle retrieval at ribbon synapses, calyx-type synapses, and small central synapses. J. Neurosci. 2007, 27, 11793–11802. [Google Scholar] [CrossRef] [Green Version]
- Körber, C.; Horstmann, H.; Sätzler, K.; Kuner, T. Endocytic structures and synaptic vesicle recycling at a central synapse in awake rats. Traffic 2012, 13, 1601–1611. [Google Scholar] [CrossRef]
- Cheung, G.; Jupp, O.J.; Cousin, M.A. Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J. Neurosci. 2010, 30, 8151–8161. [Google Scholar] [CrossRef]
- Wu, X.S.; Lee, S.H.; Sheng, J.; Zhang, Z.; Zhao, W.D.; Wang, D.; Jin, Y.; Charnay, P.; Ervasti, J.M.; Wu, L.G. Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron 2016, 92, 1020–1035. [Google Scholar] [CrossRef] [Green Version]
- Nicholson-Fish, J.C.; Kokotos, A.C.; Gillingwater, T.H.; Smillie, K.J.; Cousin, M.A. VAMP4 Is an Essential Cargo Molecule for Activity-Dependent Bulk Endocytosis. Neuron 2015, 88, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Hua, Y.; Sinha, R.; Martineau, M.; Kahms, M.; Klingauf, J. A common origin of synaptic vesicles undergoing evoked and spontaneous fusion. Nat. Neurosci. 2010, 13, 1451–1453. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-Y.; Chanaday, N.L.; Horvath, P.M.; Ramirez, D.M.O.; Monteggia, L.M.; Kavalali, E.T. VAMP4 Maintains a Ca2+-Sensitive Pool of Spontaneously Recycling Synaptic Vesicles. J. Neurosci. 2020, 40, 5389–5401. [Google Scholar] [CrossRef]
- Bal, M.; Leitz, J.; Reese, A.L.; Ramirez, D.M.; Durakoglugil, M.; Herz, J.; Monteggia, L.M.; Kavalali, E.T. Reelin mobilizes a VAMP7-dependent synaptic vesicle pool and selectively augments spontaneous neurotransmission. Neuron 2013, 80, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Poskanzer, K.E.; Marek, K.W.; Sweeney, S.T.; Davis, G.W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 2003, 426, 559–563. [Google Scholar] [CrossRef]
- Li, Y.C.; Chanaday, N.L.; Xu, W.; Kavalali, E.T. Synaptotagmin-1- and Synaptotagmin-7-Dependent Fusion Mechanisms Target Synaptic Vesicles to Kinetically Distinct Endocytic Pathways. Neuron 2017, 93, 616–631.e613. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Linhoff, M.W.; McGinley, M.J.; Li, G.L.; Corson, G.M.; Mandel, G.; Brehm, P. Distinct roles for two synaptotagmin isoforms in synchronous and asynchronous transmitter release at zebrafish neuromuscular junction. Proc. Natl. Acad. Sci. USA 2010, 107, 13906–13911. [Google Scholar] [CrossRef] [Green Version]
- Jackman, S.L.; Turecek, J.; Belinsky, J.E.; Regehr, W.G. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature 2016, 529, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Vallee, R.B.; Shpetner, H.S. Cell biology. Dynamin in synaptic dynamics. Nature 1993, 365, 107–108. [Google Scholar] [CrossRef]
- Takamori, S.; Holt, M.; Stenius, K.; Lemke, E.A.; Grønborg, M.; Riedel, D.; Urlaub, H.; Schenck, S.; Brügger, B.; Ringler, P.; et al. Molecular anatomy of a trafficking organelle. Cell 2006, 127, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Virmani, T.; Han, W.; Liu, X.; Südhof, T.C.; Kavalali, E.T. Synaptotagmin 7 splice variants differentially regulate synaptic vesicle recycling. EMBO J. 2003, 22, 5347–5357. [Google Scholar] [CrossRef] [Green Version]
- Mochida, S. Millisecond Ca2+ dynamics activate multiple protein cascades for synaptic vesicle control. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 802–820. [Google Scholar] [CrossRef] [Green Version]
Function | Protein | References | ||
---|---|---|---|---|
AZ protein complex | AZ assembly | CaV channel recruitment | RIM, RIM-BP, CAST/ELKS | [30,31,33] |
liquid droplet formation | RIM, RIM-BP, ELKS | [37,59] | ||
stabilization and degradation | Bassoon, Piccolo | [64] | ||
SV states | tethering | Bassoon, Piccolo | [40,41,42] | |
docking | RIM, CAST/ELKS | [3,15] | ||
priming | ELKS, RIM, RIM-BP, Munc13 | [48,49,50,51] | ||
super-priming | Mover | [52] | ||
fusion | Munc13, Munc18 | [53,54,55,56,57] | ||
Fusion machinery interaction | fusion machinery regulation | Munc13, Munc18 | [53,54,55,56,57] | |
Synaptic vesicle exocytosis | SV fusion complex | fusion machinery | SNAREs | [1,2,11,39] |
Ca2+ sensor | Synaptotagmin-1 Synaptotagmin-2 Synaptotagmin-7 | [1,2,11,38,39,65] [71,72] [73] | ||
regulator | Complexin-1 | [65,66,67,70] | ||
assembly factor | Munc13, Munc18 | [50,53,54,55,56,57,93,94,95,96] | ||
disassembly factor | NSF, SNAP | [99,100,101,102] | ||
Asynchronous SV fusion | Ca2+ sensor | Synaptotagmin-7 Synaptotagmin-3 Doc2α | [73,84,85,86] [87] [80,83,89,90,92] | |
Synaptic vesicle replenishment | AZ proteins | facilitation | RIM-BP, Bassoon, Piccolo, | [31,40,41,104] |
inhibition | CAST phosphorylation | [15] | ||
Motor proteins | facilitation | Myosin II | [109,110,113] | |
facilitation | Myosin VI | [113] | ||
Presynaptic plasticity | Short-term plasticity | short-term plasticity | RIM1α, Munc13 | [14,103,106,119,120,122] |
post-tetanic potentiation | Munc18 | [123] | ||
control of depression | Bassoon, Piccolo | [40,41] | ||
depression | CAST phosphorylation | [15] | ||
Long-term plasticity | cAMP-dependent increase in transmission | RIM1, P/Q-type Ca2+ channel | [119,120,124,126,127,128] | |
homeostatic plasticity | RRP enlargement | RIM | [18,136] | |
promotion of SV priming | RIM-BP | [104] | ||
promotion of SV replenishment | Bassoon | [19] | ||
Synaptic vesicle endocytosis | kiss-and-run | [5,139,146,147,148,149] | ||
clathrin-mediated | Clathrin-associated proteins | [5,140,151,152,153] | ||
ultrafast endocytosis | Synaptojanin-1, endophilin-A Dynamin, Actin | [141,142,145] | ||
bulk endocytosis | Calcineurin, Actin | [153,155,168] | ||
Ca2+ sensors | Synaptotagmin-1 Synaptotagmin-7 | [173,174] [174] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochida, S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022, 10, 1593. https://doi.org/10.3390/biomedicines10071593
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines. 2022; 10(7):1593. https://doi.org/10.3390/biomedicines10071593
Chicago/Turabian StyleMochida, Sumiko. 2022. "Mechanisms of Synaptic Vesicle Exo- and Endocytosis" Biomedicines 10, no. 7: 1593. https://doi.org/10.3390/biomedicines10071593
APA StyleMochida, S. (2022). Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines, 10(7), 1593. https://doi.org/10.3390/biomedicines10071593