Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice
Abstract
:1. Introduction
2. Medications
2.1. Steroids
2.2. Statins
2.3. Hormones
2.3.1. Melatonin
2.3.2. Growth Hormones
2.4. Carnitine
2.5. Vitamin B12 (Cobalamin)
2.6. Ginkgo Biloba
2.7. Coenzyme Q10
2.8. Nimodipine
2.9. Ozone
2.10. Antiviral Agents
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finsterer, J. Management of peripheral facial nerve palsy. Eur. Arch. Oto-Rhino-Laryngol. 2008, 265, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peitersen, E. Bell’s palsy: The spontaneous course of 2500 peripheral facial nerve palsies of different etiologies. Acta Oto-Laryngol. 2002, 122, 4–30. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, L.; Luo, T.; Wu, F.; Zhao, B.; Li, X. The etiology of Bell’s palsy: A review. J. Neurol. 2020, 267, 1896–1905. [Google Scholar] [CrossRef] [Green Version]
- Escalante, D.A.; Malka, R.E.; Wilson, A.G.; Nygren, Z.S.; Radcliffe, K.A.; Ruhl, D.S.; Vincent, A.G.; Hohman, M.H. Determining the prognosis of Bell’s palsy based on severity at presentation and electroneuronography. Otolaryngol.–Head Neck Surg. 2022, 166, 151–157. [Google Scholar] [CrossRef]
- Engström, M.; Thuomas, K.Å.; Naeser, P.; Stålberg, E.; Jonsson, L. Facial nerve enhancement in Bell’s palsy demonstrated by different gadolinium-enhanced magnetic resonance imaging techniques. Arch. Otolaryngol.–Head Neck Surg. 1993, 119, 221–225. [Google Scholar] [CrossRef]
- Fisch, U.; Esslen, E. Total intratemporal exposure of the facial nerve: Pathologic findings in Bell’s palsy. Arch. Otolaryngol. 1972, 95, 335–341. [Google Scholar] [CrossRef]
- Schwaber, M.K.; Larson, I.I.I.T.C.; Zealear, D.L.; Creasy, J. Gadolinium-enhanced magnetic resonance imaging in Bell’s palsy. Laryngoscope 1990, 100, 1264–1269. [Google Scholar] [CrossRef]
- Bota, O.; Fodor, L. The influence of drugs on peripheral nerve regeneration. Drug Metab. Rev. 2019, 51, 266–292. [Google Scholar] [CrossRef]
- Miyauchi, A.; Kanje, M.; Danielsen, N.; Dahlin, L.B. Role of macrophages in the stimulation and regeneration of sensory nerves by transposed granulation tissue and temporal aspects of the response. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1997, 31, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Madhok, V.B.; Gagyor, I.; Daly, F.; Somasundara, D.; Sullivan, M.; Gammie, F.; Sullivan, F. Corticosteroids for Bell’s palsy (idiopathic facial paralysis). Cochrane Database Syst. Rev. 2016, 2016, CD001942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, W.N.; Harris, E.D.; Ruddy, S.; Sledge, C.B. Textbook of rheumatology. In Textbook of Rheumatology; Sauders: Philadelphia, PA, USA, 1989; p. 2144. [Google Scholar]
- Rhen, T.; Cidlowski, J.A. Antiinflammatory action of glucocorticoids—New mechanisms for old drugs. N. Engl. J. Med. 2005, 353, 1711–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boers, M. Glucocorticoids in rheumatoid arthritis: A senescent research agenda on the brink of rejuvenation? Best Pract. Res. Clin. Rheumatol. 2004, 18, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Na, S.-J. Corticosteroids Treatment in Spinal Cord and Neuromuscular Disorders. J. Neurocritical Care 2017, 10, 76–85. [Google Scholar] [CrossRef]
- Lieberman, D.M.; Jan, T.A.; Ahmad, S.O.; Most, S.P. Effects of corticosteroids on functional recovery and neuron survival after facial nerve injury in mice. Arch. Facial Plast. Surg. 2011, 13, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Longur, E.S.; Yiğit, Ö.; Kalaycık Ertugay, Ç.; Araz Server, E.; Adatepe, T.; Akakın, D.; Orun, O.; Karagöz Köroğlu, A. Effect of Bumetanide on Facial Nerve Regeneration in Rat Model. Otolaryngol.–Head Neck Surg. 2021, 164, 117–123. [Google Scholar] [CrossRef]
- Jang, C.H.; Cho, Y.B.; Choi, C.H.; Jang, Y.S.; Jung, W.-K. Effect of topical dexamethasone in reducing dysfunction after facial nerve crush injury in the rat. Int. J. Pediatric Otorhinolaryngol. 2014, 78, 960–963. [Google Scholar] [CrossRef]
- Suslu, H.; Altun, M.; Erdivanli, B.; Suslu, H.T. Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. Turk. Neurosurg. 2013, 23, 623–629. [Google Scholar]
- Ozturk, O.; Tezcan, A.H.; Adali, Y.; Yıldırım, C.H.; Aksoy, O.; Yagmurdur, H.; Bilge, A. Effect of ozone and methylprednisolone treatment following crush type sciatic nerve injury. Acta Cir. Bras. 2016, 31, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-S.; Tseng, F.-Y.; Tan, C.-T.; Lin-Shiau, S.Y.; Hsu, C.-J. Effects of methylprednisolone on nitric oxide formation and survival of facial motor neurons after axotomy. Brain Res. 2008, 1197, 23–31. [Google Scholar] [CrossRef]
- Sevuk, L.; Vayisoğlu, Y.; Korlu, S.; Çömelekoğlu, Ü.; Arpacı, R.B.; Aktaş, S.; Helvacı, İ.; Ayaz, L.; Dağtekin, A.; Göçer, P. The Effects of Methylprednisolone and vitamin A on the healing of traumatic peripheral nerve paralysis. J. Int. Adv. Otol. 2014, 10, 275–280. [Google Scholar] [CrossRef]
- Yildirim, M.A.; Karlidag, T.; Akpolat, N.; Kaygusuz, I.; Keles, E.; Yalcin, S.; Akyigit, A. The effect of methylprednisolone on facial nerve paralysis with different etiologies. J. Craniofacial Surg. 2015, 26, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Mehrshad, A.; Shahraki, M.; Ehteshamfar, S. Local administration of methylprednisolone laden hydrogel enhances functional recovery of transected sciatic nerve in rat. Bull. Emerg. Trauma 2017, 5, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, X.; Fan, Z.; Han, Y.; Wang, Y.; Li, J.; Chai, R.; Xu, L.; Wang, H. Effects of local application of methylprednisolone delivered by the C/GP-hydrogel on the recovery of facial nerves. Acta Oto-Laryngol. 2015, 135, 1178–1184. [Google Scholar]
- Li, Q.; Li, T.; Cao, X.-c.; Luo, D.-q.; Lian, K.-j. Methylprednisolone microsphere sustained-release membrane inhibits scar formation at the site of peripheral nerve lesion. Neural Regen. Res. 2016, 11, 835. [Google Scholar] [PubMed]
- Engström, M.; Berg, T.; Stjernquist-Desatnik, A.; Axelsson, S.; Pitkäranta, A.; Hultcrantz, M.; Kanerva, M.; Hanner, P.; Jonsson, L. Prednisolone and valaciclovir in Bell’s palsy: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet Neurol. 2008, 7, 993–1000. [Google Scholar] [CrossRef]
- Sullivan, F.M.; Swan, I.R.; Donnan, P.T.; Morrison, J.M.; Smith, B.H.; McKinstry, B.; Davenport, R.J.; Vale, L.D.; Clarkson, J.E.; Hammersley, V. Early treatment with prednisolone or acyclovir in Bell’s palsy. N. Engl. J. Med. 2007, 357, 1598–1607. [Google Scholar] [CrossRef] [Green Version]
- Galloway III, E.B.; Jensen, R.L.; Dailey, A.T.; Gregory Thompson, B.; Shelton, C. Role of topical steroids in reducing dysfunction after nerve injury. Laryngoscope 2000, 110, 1907–1910. [Google Scholar] [CrossRef]
- Nasser, R.M.; Chen, L.E.; Seaber, A.V.; Urbaniak, J.R. Protective effect of 21-aminosteroid pretreatment in peripheral nerve low-load crush injury in mature and immature rats. J. Orthop. Res. 1996, 14, 823–829. [Google Scholar] [CrossRef]
- Al-Bishri, A.; Dahlin, L.; Sunzel, B.; Rosenquist, J. Systemic betamethasone accelerates functional recovery after a crush injury to rat sciatic nerve. J. Oral Maxillofac. Surg. 2005, 63, 973–977. [Google Scholar] [CrossRef]
- Sirtori, C.R. The pharmacology of statins. Pharmacol. Res. 2014, 88, 3–11. [Google Scholar] [CrossRef]
- Förstermann, U.; Li, H. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling. Br. J. Pharmacol. 2011, 164, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, M.; Zampolli, A.; Scoditti, E.; Carluccio, M.A.; Storelli, C.; Distante, A.; De Caterina, R. Statins inhibit cyclooxygenase-2 and matrix metalloproteinase-9 in human endothelial cells: Anti-angiogenic actions possibly contributing to plaque stability. Cardiovasc. Res. 2010, 86, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundy, G.; Garrett, R.; Harris, S.; Chan, J.; Chen, D.; Rossini, G.; Boyce, B.; Zhao, M.; Gutierrez, G. Stimulation of bone formation in vitro and in rodents by statins. Science 1999, 286, 1946–1949. [Google Scholar] [CrossRef] [PubMed]
- Plenge, J.K.; Hernandez, T.L.; Weil, K.M.; Poirier, P.; Grunwald, G.K.; Marcovina, S.M.; Eckel, R.H. Simvastatin lowers C-reactive protein within 14 days: An effect independent of low-density lipoprotein cholesterol reduction. Circulation 2002, 106, 1447–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto Jr, A.M.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.; Serafim, K.; Higashi, D.; Vanat, N.; Flaiban, K.d.C.; Siqueira, C.; Venâncio, E.; Ramos, S.d.P. Simvastatin improves morphological and functional recovery of sciatic nerve injury in Wistar rats. Injury 2012, 43, 284–289. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, C.; Hai, B.; Ma, T.; Zhang, W.; Tan, J.; Fu, X.; Wang, H.; Xu, Y.; Song, C. Chitosan conduits filled with simvastatin/Pluronic F-127 hydrogel promote peripheral nerve regeneration in rats. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 787–799. [Google Scholar] [CrossRef]
- Pan, H.-C.; Yang, D.-Y.; Ou, Y.-C.; Ho, S.-P.; Cheng, F.-C.; Chen, C.-J. Neuroprotective effect of atorvastatin in an experimental model of nerve crush injury. Neurosurgery 2010, 67, 376–389. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, F.-C.; Rouleau, D.M.; Hébert-Davies, J.; Beaumont, P.H.; Beaumont, E. Atorvastatin is beneficial for muscle reinnervation after complete sciatic nerve section in rats. J. Plast. Surg. Hand Surg. 2013, 47, 446–450. [Google Scholar] [CrossRef]
- Roselló-Busquets, C.; De la Oliva, N.; Martínez-Mármol, R.; Hernaiz-Llorens, M.; Pascual, M.; Muhaisen, A.; Navarro, X.; Del Valle, J.; Soriano, E. Cholesterol depletion regulates axonal growth and enhances central and peripheral nerve regeneration. Front. Cell. Neurosci. 2019, 13, 40. [Google Scholar] [CrossRef] [Green Version]
- Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie 2015, 61, 77–84. [Google Scholar] [CrossRef] [PubMed]
- van der Helm-van Mil, A.H.; van Someren, E.J.; van den Boom, R.; van Buchem, M.A.; de Craen, A.J.; Blauw, G.J. No influence of melatonin on cerebral blood flow in humans. J. Clin. Endocrinol. Metab. 2003, 88, 5989–5994. [Google Scholar]
- Guerrero, J.M.; Reiter, R.J. Melatonin-immune system relationships. Curr. Top. Med. Chem. 2002, 2, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Withyachumnarnkul, B.; Nonaka, K.O.; Santana, C.; Attia, A.M.; Reiter, R.J. Interferon-γ modulates melatonin production in rat pineal glands in organ culture. J. Interferon Res. 1990, 10, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Vico, A.; Guerrero, J.M.; Lardone, P.J.; Reiter, R.J. A review of the multiple actions of melatonin on the immune system. Endocrine 2005, 27, 189–200. [Google Scholar] [CrossRef]
- Lardone, P.J.; Guerrero, J.M.; Fernández-Santos, J.M.; Rubio, A.; Martín-Lacave, I.; Carrillo-Vico, A. Melatonin synthesized by T lymphocytes as a ligand of the retinoic acid-related orphan receptor. J. Pineal Res. 2011, 51, 454–462. [Google Scholar] [CrossRef]
- Sutherland, E.R.; Martin, R.J.; Ellison, M.C.; Kraft, M. Immunomodulatory effects of melatonin in asthma. Am. J. Respir. Crit. Care Med. 2002, 166, 1055–1061. [Google Scholar] [CrossRef]
- Sulli, A.; Maestroni, G.; Villaggio, B.; Hertens, E.; Craviotto, C.; Pizzorni, C.; Briata, M.; Seriolo, B.; Cutolo, M. Melatonin serum levels in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 2002, 966, 276–283. [Google Scholar] [CrossRef]
- Reiter, R.J.; Paredes, S.D.; Manchester, L.C.; Tan, D.-X. Reducing oxidative/nitrosative stress: A newly-discovered genre for melatonin. Crit. Rev. Biochem. Mol. Biol. 2009, 44, 175–200. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and the theories of aging: A critical appraisal of melatonin’s role in antiaging mechanisms. J. Pineal Res. 2013, 55, 325–356. [Google Scholar] [CrossRef]
- Hardeland, R. Atioxidative protection by melatonin. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef]
- Bartsch, H.; Bartsch, C. Effect of melatonin on experimental tumors under different photoperiods and times of administration. J. Neural Transm. 1981, 52, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Lissoni, P.; Chilelli, M.; Villa, S.; Cerizza, L.; Tancini, G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial. J. Pineal Res. 2003, 35, 12–15. [Google Scholar] [CrossRef]
- Yanilmaz, M.; Akduman, D.; Sagun, Ö.F.; Haksever, M.; Yazicilar, O.; Orhan, I.; Akpolat, N.; Gök, U. The effects of aminoguanidine, methylprednisolone, and melatonin on nerve recovery in peripheral facial nerve neurorrhaphy. J. Craniofacial Surg. 2015, 26, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Kaya, Y.; Sarıkcıoğlu, L.; Aslan, M.; Kencebay, C.; Demir, N.; Derin, N.; Angelov, D.N.; Yıldırım, F.B. Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: A combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Child’s Nerv. Syst. 2013, 29, 389–401. [Google Scholar] [CrossRef]
- Kaya, Y.; Savas, K.; Sarikcioglu, L.; Yaras, N.; N Angelov, D. Melatonin leads to axonal regeneration, reduction in oxidative stress, and improved functional recovery following sciatic nerve injury. Curr. Neurovascular Res. 2015, 12, 53–62. [Google Scholar] [CrossRef]
- Kaya, Y.; Sarikcioglu, L.; Yildirim, F.B.; Aslan, M.; Demir, N. Does circadian rhythm disruption induced by light-at-night has beneficial effect of melatonin on sciatic nerve injury? J. Chem. Neuroanat. 2013, 53, 18–24. [Google Scholar] [CrossRef]
- Guo, W.-L.; Qi, Z.-P.; Yu, L.; Sun, T.-W.; Qu, W.-R.; Liu, Q.-Q.; Zhu, Z.; Li, R. Melatonin combined with chondroitin sulfate ABC promotes nerve regeneration after root-avulsion brachial plexus injury. Neural Regen. Res. 2019, 14, 328. [Google Scholar]
- Yazar, U.; Çakır, E.; Boz, C.; Çobanoğlu, Ü.; Baykal, S. Electrophysiological, functional and histopathological assessments of high dose melatonin on regeneration after blunt sciatic nerve injury. J. Clin. Neurosci. 2020, 72, 370–377. [Google Scholar] [CrossRef]
- Stazi, M.; Negro, S.; Megighian, A.; D’Este, G.; Solimena, M.; Jockers, R.; Lista, F.; Montecucco, C.; Rigoni, M. Melatonin promotes regeneration of injured motor axons via MT1 receptors. J. Pineal Res. 2021, 70, e12695. [Google Scholar] [CrossRef]
- Liu, C.-H.; Chang, H.-M.; Yang, Y.-S.; Lin, Y.-T.; Ho, Y.-J.; Tseng, T.-J.; Lan, C.-T.; Li, S.-T.; Liao, W.-C. Melatonin promotes nerve regeneration following end-to-side neurorrhaphy by accelerating cytoskeletal remodeling via the melatonin receptor-dependent pathway. Neuroscience 2020, 429, 282–292. [Google Scholar] [CrossRef]
- Qian, Y.; Han, Q.; Zhao, X.; Song, J.; Cheng, Y.; Fang, Z.; Ouyang, Y.; Yuan, W.E.; Fan, C. 3D melatonin nerve scaffold reduces oxidative stress and inflammation and increases autophagy in peripheral nerve regeneration. J. Pineal Res. 2018, 65, e12516. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, A.R.; Holt, R.I. Growth hormone and insulin-like growth factor-1. Sports Endocrinol. 2016, 47, 101–114. [Google Scholar]
- Sonntag, W.E.; Ramsey, M.; Carter, C.S. Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res. Rev. 2005, 4, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, D.R. Metabolic actions of insulin-like growth factor-I in normal physiology and diabetes. Endocrinol. Metab. Clin. 2012, 41, 425–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohlsson, C.; Bengtsson, B.-A.k.; Isaksson, O.G.; Andreassen, T.T.; Slootweg, M.C. Growth hormone and bone. Endocr. Rev. 1998, 19, 55–79. [Google Scholar] [PubMed] [Green Version]
- Mohan, S.; Richman, C.; Guo, R.; Amaar, Y.; Donahue, L.R.; Wergedal, J.; Baylink, D.J. Insulin-like growth factor regulates peak bone mineral density in mice by both growth hormone-dependent and-independent mechanisms. Endocrinology 2003, 144, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Landin-Wilhelmsen, K.; Nilsson, A.; Bosaeus, I.; Bengtsson, B.Å. Growth hormone increases bone mineral content in postmenopausal osteoporosis: A randomized placebo-controlled trial. J. Bone Miner. Res. 2003, 18, 393–405. [Google Scholar] [CrossRef]
- Weissberger, A.J.; Anastasiadis, A.D.; Sturgess, I.; Martin, F.C.; Smith, M.A.; Sönksen, P.H. Recombinant human growth hormone treatment in elderly patients undergoing elective total hip replacement. Clin. Endocrinol. 2003, 58, 99–107. [Google Scholar] [CrossRef]
- Lopez, J.; Quan, A.; Budihardjo, J.; Xiang, S.; Wang, H.; Koshy, K.; Cashman, C.; Lee, W.; Hoke, A.; Tuffaha, S. Growth hormone improves nerve regeneration, muscle re-innervation, and functional outcomes after chronic denervation injury. Sci. Rep. 2019, 9, 3117. [Google Scholar] [CrossRef] [Green Version]
- Tuffaha, S.H.; Budihardjo, J.D.; Sarhane, K.A.; Khusheim, M.; Song, D.; Broyles, J.M.; Salvatori, R.; Means, K.R.; Higgins, J.P.; Shores, J.T. Growth hormone therapy accelerates axonal regeneration, promotes motor reinnervation, and reduces muscle atrophy following peripheral nerve injury. Plast. Reconstr. Surg. 2016, 137, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Saceda, J.; Isla, A.; Santiago, S.; Morales, C.; Odene, C.; Hernández, B.; Deniz, K. Effect of recombinant human growth hormone on peripheral nerve regeneration: Experimental work on the ulnar nerve of the rat. Neurosci. Lett. 2011, 504, 146–150. [Google Scholar] [CrossRef]
- Nagata, K.; Itaka, K.; Baba, M.; Uchida, S.; Ishii, T.; Kataoka, K. Muscle-targeted hydrodynamic gene introduction of insulin-like growth factor-1 using polyplex nanomicelle to treat peripheral nerve injury. J. Control. Release 2014, 183, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apel, P.J.; Ma, J.; Callahan, M.; Northam, C.N.; Alton, T.B.; Sonntag, W.E.; Li, Z. Effect of locally delivered IGF-1 on nerve regeneration during aging: An experimental study in rats. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2010, 41, 335–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, S.E.; Evans, A.M. Carnitine and acylcarnitines. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef]
- Seim, H.; Ezold, R.; Kleber, H.P.; Strack, E.; Seim, H. Stoffwechsel des l-Carnitins bei Enterobakterien. Z. Für Allg. Mikrobiol. 1980, 20, 591–594. [Google Scholar] [CrossRef]
- Pekala, J.; Patkowska-Sokola, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochynski, S.; Librowski, T. L-carnitine-metabolic functions and meaning in humans life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef]
- Liu, J.; Head, E.; Gharib, A.M.; Yuan, W.; Ingersoll, R.T.; Hagen, T.M.; Cotman, C.W.; Ames, B.N. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid. Proc. Natl. Acad. Sci. USA 2002, 99, 2356–2361. [Google Scholar] [CrossRef] [Green Version]
- Barhwal, K.; Hota, S.; Jain, V.; Prasad, D.; Singh, S.; Ilavazhagan, G. Acetyl-l-carnitine (ALCAR) prevents hypobaric hypoxia–induced spatial memory impairment through extracellular related kinase–mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience 2009, 161, 501–514. [Google Scholar] [CrossRef]
- Brooks, J.O.; Yesavage, J.A.; Carta, A.; Bravi, D. Acetyl L-carnitine slows decline in younger patients with Alzheimer’s disease: A reanalysis of a double-blind, placebo-controlled study using the trilinear approach. Int. Psychogeriatr. 1998, 10, 193–203. [Google Scholar] [CrossRef]
- Brevetti, G.; di Lisa, F.; Perna, S.; Menaboó, R.; Barbato, R.; Domenico Martone, V.; Siliprandi, N. Carnitine-related alterations in patients with intermittent claudication: Indication for a focused carnitine therapy. Circulation 1996, 93, 1685–1689. [Google Scholar] [CrossRef]
- Lenzi, A.; Lombardo, F.; Sgrò, P.; Salacone, P.; Caponecchia, L.; Dondero, F.; Gandini, L. Use of carnitine therapy in selected cases of male factor infertility: A double-blind crossover trial. Fertil. Steril. 2003, 79, 292–300. [Google Scholar] [CrossRef]
- Cavazza, C. Composition for the Prevention and/or Treatment of Osteoporosis and Alterations Due to Menopause Syndrome. Google Patents US 6,335,038 B1, 1 January 2002. [Google Scholar]
- Hooshmand, S.; Balakrishnan, A.; Clark, R.M.; Owen, K.Q.; Koo, S.I.; Arjmandi, B.H. Dietary l-carnitine supplementation improves bone mineral density by suppressing bone turnover in aged ovariectomized rats. Phytomedicine 2008, 15, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Abd-Allah, A.R.; Al-Majed, A.A.; Al-Yahya, A.A.; Fouda, S.I.; Al-Shabana, O.A. L-Carnitine halts apoptosis and myelosuppression induced by carboplatin in rat bone marrow cell cultures (BMC). Arch. Toxicol. 2005, 79, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Koverech, A.; Zallone, A. Use of Isovaleryl L-carnitine to Increase Healing of Bone Fractures. Google Patents US 6,906,102 B2, 14 January 2005. [Google Scholar]
- Jirillo, E.; Altamura, M.; Marcuccio, C.; Tortorella, C.; De Simone, C.; Antonaci, S. Immunological responses in patients with tuberculosis and in vivo effects of acetyl-L-carnitine oral administration. Mediat. Inflamm. 1993, 2, S17–S20. [Google Scholar] [CrossRef] [PubMed]
- Onger, M.E.; Kaplan, S.; Deniz, Ö.G.; Altun, G.; Altunkaynak, B.Z.; Balcı, K.; Raimondo, S.; Geuna, S. Possible promoting effects of melatonin, leptin and alcar on regeneration of the sciatic nerve. J. Chem. Neuroanat. 2017, 81, 34–41. [Google Scholar] [CrossRef]
- Hart, A.M.; Wiberg, M.; Youle, M.; Terenghi, G. Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy: A new clinical approach in the management of peripheral nerve trauma. Exp. Brain Res. 2002, 145, 182–189. [Google Scholar] [CrossRef]
- Wilson, A.D.; Hart, A.; Wiberg, M.; Terenghi, G. Acetyl-l-carnitine increases nerve regeneration and target organ reinnervation–a morphological study. J. Plast. Reconstr. Aesthetic Surg. 2010, 63, 1186–1195. [Google Scholar] [CrossRef]
- Farahpour, M.R.; Ghayour, S.J. Effect of in situ delivery of acetyl-L-carnitine on peripheral nerve regeneration and functional recovery in transected sciatic nerve in rat. Int. J. Surg. 2014, 12, 1409–1415. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare Mannelli, L.; Ghelardini, C.; Calvani, M.; Nicolai, R.; Mosconi, L.; Vivoli, E.; Pacini, A.; Bartolini, A. Protective effect of acetyl-L-carnitine on the apoptotic pathway of peripheral neuropathy. Eur. J. Neurosci. 2007, 26, 820–827. [Google Scholar] [CrossRef]
- Chitambar, C. Nutritional aspects of hematologic diseases. Mod. Nutr. Health Dis. 2005, 1436–1461. [Google Scholar]
- Antony, A.C. Vegetarianism and vitamin B-12 (cobalamin) deficiency. Am. J. Clin. Nutr. 2003, 78, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romain, M.; Sviri, S.; Linton, D.; Stav, I.; van Heerden, P.V. The role of Vitamin B12 in the critically ill—A review. Anaesth. Intensive Care 2016, 44, 447–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanger, O.; Herrmann, W.; Pietrzik, K.; Fowler, B.; Geisel, J.; Dierkes, J.; Weger, M. DACH-LIGA homocystein (german, austrian and swiss homocysteine society): Consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: Guidelines and recommendations. Clin. Chem. Lab. Med. 2003, 41, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Solomon, L.R. Cobalamin-responsive disorders in the ambulatory care setting: Unreliability of cobalamin, methylmalonic acid, and homocysteine testing. Blood 2005, 105, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Stabler, S.P. Vitamin B12 deficiency. N. Engl. J. Med. 2013, 368, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, C. A scarlet pimpernel for the resolution of inflammation? The role of supra-therapeutic doses of cobalamin, in the treatment of systemic inflammatory response syndrome (SIRS), sepsis, severe sepsis, and septic or traumatic shock. Med. Hypotheses 2006, 67, 124–142. [Google Scholar] [CrossRef]
- Manzanares, W.; Hardy, G. Vitamin B12: The forgotten micronutrient for critical care. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 662–668. [Google Scholar] [CrossRef]
- Tamaddonfard, E.; Farshid, A.; Samadi, F.; Eghdami, K. Effect of vitamin B12 on functional recovery and histopathologic changes of tibial nerve-crushed rats. Drug Res. 2014, 64, 470–475. [Google Scholar] [CrossRef]
- Altun, I.; Kurutaş, E.B. Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regen. Res. 2016, 11, 842. [Google Scholar] [CrossRef]
- Shibuya, K.; Misawa, S.; Nasu, S.; Sekiguchi, Y.; Beppu, M.; Iwai, Y.; Mitsuma, S.; Isose, S.; Arimura, K.; Kaji, R. Safety and efficacy of intravenous ultra-high dose methylcobalamin treatment for peripheral neuropathy: A phase I/II open label clinical trial. Intern. Med. 2014, 53, 1927–1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, L.; Qian, M.; Shi, K.; Chen, G.; Gu, Y.; Du, W.; Zhu, G. Restorative effect and mechanism of mecobalamin on sciatic nerve crush injury in mice. Neural Regen. Res. 2014, 9, 1979. [Google Scholar] [PubMed]
- Okada, K.; Tanaka, H.; Temporin, K.; Okamoto, M.; Kuroda, Y.; Moritomo, H.; Murase, T.; Yoshikawa, H. Methylcobalamin increases Erk1/2 and Akt activities through the methylation cycle and promotes nerve regeneration in a rat sciatic nerve injury model. Exp. Neurol. 2010, 222, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Oken, B.S.; Storzbach, D.M.; Kaye, J.A. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch. Neurol. 1998, 55, 1409–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pittler, M.H.; Ernst, E. Ginkgo biloba extract for the treatment of intermittent claudication: A meta-analysis of randomized trials. Am. J. Med. 2000, 108, 276–281. [Google Scholar] [CrossRef]
- Ernst, E.; Stevinson, C. Ginkgo biloba for tinnitus: A review. Clin. Otolaryngol. Allied Sci. 1999, 24, 164–167. [Google Scholar] [CrossRef]
- Oberpichler, H.; Sauer, D.; Roßberg, C.; Mennel, H.-D.; Krieglstein, J. PAF antagonist ginkgolide B reduces postischemic neuronal damage in rat brain hippocampus. J. Cereb. Blood Flow Metab. 1990, 10, 133–135. [Google Scholar] [CrossRef] [Green Version]
- Sastre, J.; Millan, A.; de la Asuncion, J.G.; Pla, R.; Juan, G.; Pallardo, F.V.; O’Connor, E.; Martin, J.A.; Droy-Lefaix, M.-T.; Viña, J. A Ginkgo biloba extract (EGb 761) prevents mitochondrial aging by protecting against oxidative stress. Free Radic. Biol. Med. 1998, 24, 298–304. [Google Scholar] [CrossRef]
- Van Beek, T.A.; Bombardelli, E.; Morazzoni, P.; Peterlongo, F. Ginkgo biloba L. Fitoterapia Milano 1998, 69, 195–244. [Google Scholar]
- Ahlemeyer, B.; Krieglstein, J. Neuroprotective effects of Ginkgo biloba extract. Cell. Mol. Life Sci. CMLS 2003, 60, 1779–1792. [Google Scholar] [CrossRef]
- Klein, J.; Chatterjee, S.S.; Löffelholz, K. Phospholipid breakdown and choline release under hypoxic conditions: Inhibition by bilobalide, a constituent of Ginkgo biloba. Brain Res. 1997, 755, 347–350. [Google Scholar] [CrossRef]
- Bastianetto, S.; Zheng, W.H.; Quirion, R. The Ginkgo biloba extract (EGb 761) protects and rescues hippocampal cells against nitric oxide-induced toxicity: Involvement of its flavonoid constituents and protein kinase C. J. Neurochem. 2000, 74, 2268–2277. [Google Scholar] [CrossRef] [PubMed]
- Krieglstein, J.; Ausmeier, F.; El-Abhar, H.; Lippert, K.; Welsch, M.; Rupalla, K.; Henrich-Noack, P. Neuroprotective effects of Ginkgo biloba constituents. Eur. J. Pharm. Sci. 1995, 3, 39–48. [Google Scholar] [CrossRef]
- Smith, J.; Luo, Y. Studies on molecular mechanisms of Ginkgo biloba extract. Appl. Microbiol. Biotechnol. 2004, 64, 465–472. [Google Scholar] [PubMed]
- Simons, M.; Keller, P.; De Strooper, B.; Beyreuther, K.; Dotti, C.G.; Simons, K. Cholesterol depletion inhibits the generation of β-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 1998, 95, 6460–6464. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zhou, X.; He, B.; Dai, T.; Zheng, C.; Yang, C.; Zhu, S.; Zhu, J.; Zhu, Q.; Liu, X. Ginkgo biloba extract (EGb 761) promotes peripheral nerve regeneration and neovascularization after acellular nerve allografts in a rat model. Cell. Mol. Neurobiol. 2015, 35, 273–282. [Google Scholar] [CrossRef]
- Lin, H.; Wang, H.; Chen, D.; Gu, Y. A dose-effect relationship of Ginkgo biloba extract to nerve regeneration in a rat model. Microsurg. Off. J. Int. Microsurg. Soc. Eur. Fed. Soc. Microsurg. 2007, 27, 673–677. [Google Scholar]
- Hsu, S.-H.; Chang, C.-J.; Tang, C.-M.; Lin, F.-T. In vitro and in vivo effects of Ginkgo biloba extract EGb 761 on seeded Schwann cells within poly (DL-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. J. Biomater. Appl. 2004, 19, 163–182. [Google Scholar] [CrossRef]
- Jang, C.H.; Cho, Y.B.; Choi, C.H. Effect of ginkgo biloba extract on recovery after facial nerve crush injury in the rat. Int. J. Pediatric Otorhinolaryngol. 2012, 76, 1823–1826. [Google Scholar] [CrossRef]
- Fiorella, P.L.; Bargossi, A.M.; Grossi, G.; Motta, R.; Senaldi, R.; Battino, M.; Sassi, S.; Sprovieri, G.; Lubich, T.; Folkers, K.; et al. Metabolic effects of coenzyme Q10 treatment in high level athletes. In Biomedical and Clinical Aspects of Coenzyme Q.; Folkers, K., Littarru, G.P., Yamagami, T., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1991; pp. 513–520. [Google Scholar]
- Yamabe, H.; Fukuzaki, H. The beneficial effect of coenzyme Q10 on the impaired aerobic function in middle aged women without organic disease. In Biomedical and Clinical Aspects of Coenzyme Q.; Folkers, K., Littarru, G.P., Yamagami, T., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1991; pp. 535–540. [Google Scholar]
- Yildirim, G.; Kumral, T.L.; Berkiten, G.; Saltürk, Z.; Sünnetçi, G.; Öztürkçü, Y.; Uyar, Y.; Kamali, G. The effect of coenzyme Q10 on the regeneration of crushed facial nerve. J. Craniofacial Surg. 2015, 26, 277–280. [Google Scholar] [CrossRef]
- Moradi, Z.; Azizi, S.; Hobbenaghi, R. The effect of ubiquinone on functional recovery and morphometric indices of sciatic nerve regeneration. Iran. J. Vet. Res. 2014, 15, 392. [Google Scholar] [PubMed]
- Van der Zee, C.; Schuurman, T.; Traber, J.; Gispen, W. Oral administration of nimodipine accelerates functional recovery following peripheral nerve damage in the rat. Neurosci. Lett. 1987, 83, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Van der Zee, C.; Schuurman, T.; Van der Hoop, R.G.; Traber, J.; Gispen, W. Beneficial effect of nimodipine on peripheral nerve function in aged rats. Neurobiol. Aging 1990, 11, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Angelov, D.N.; Neiss, W.F.; Streppel, M.; Andermahr, J.; Mader, K.; Stennert, E. Nimodipine accelerates axonal sprouting after surgical repair of rat facial nerve. J. Neurosci. 1996, 16, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Scheller, K.; Scheller, C. Nimodipine promotes regeneration of peripheral facial nerve function after traumatic injury following maxillofacial surgery: An off label pilot-study. J. Cranio-Maxillofac. Surg. 2012, 40, 427–434. [Google Scholar] [CrossRef]
- Zheng, X.-s.; Ying, T.-t.; Yuan, Y.; Li, S.-t. Nimodipine-mediated re-myelination after facial nerve crush injury in rats. J. Clin. Neurosci. 2015, 22, 1661–1668. [Google Scholar]
- Park, E.S. Clinical Application of Oxygen-Ozone Therapy. J. Korean Acad. Fam. Med. 2003, 24, 1078–1084. [Google Scholar]
- Ozbay, I.; Ital, I.; Kucur, C.; Akcılar, R.; Deger, A.; Aktas, S.; Oghan, F. Effects of ozone therapy on facial nerve regeneration☆. Braz. J. Otorhinolaryngol. 2017, 83, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Ogut, E.; Yildirim, F.B.; Sarikcioglu, L.; Aydin, M.A.; Demir, N. Neuroprotective effects of ozone therapy after sciatic nerve cut injury. Kurume Med. J. 2019, 65, MS654002. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.-P.; Yao, L.-Y.; Wu, Y.-Y.; Liu, X.; Peng, L.-H.; Tian, Y.-L.; Ding, J.-H.; Li, K.-H.; He, Q.-G. Critical Review of Synthesis, Toxicology and Detection of Acyclovir. Molecules 2021, 26, 6566. [Google Scholar] [CrossRef]
- Álvarez, D.M.; Castillo, E.; Duarte, L.F.; Arriagada, J.; Corrales, N.; Farías, M.A.; Henríquez, A.; Agurto-Muñoz, C.; González, P.A. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Front. Microbiol. 2020, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Hato, N.; Honda, N.; Kisaki, H.; Wakisaka, H.; Matsumoto, S.; Gyo, K. Effects of acyclovir on facial nerve paralysis induced by herpes simplex virus type 1 in mice. Auris Nasus Larynx 2003, 30, 1–5. [Google Scholar] [CrossRef]
- Sauerbrei, A. Varicella-zoster virus infections–antiviral therapy and diagnosis. GMS Infect. Dis. 2016, 4, Doc01. [Google Scholar] [CrossRef] [PubMed]
- Birks, J.S. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst. Rev. 2006. [Google Scholar] [CrossRef] [PubMed]
- Gumenyuk, A.; Rybalko, S.; Ryzha, A.; Savosko, S.; Labudzynskyi, D.; Levchuk, N.; Chaikovsky, Y. Nerve regeneration in conditions of HSV-infection and an antiviral drug influence. Anat. Rec. 2018, 301, 1734–1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Glucocorticoid | Equivalent Dose (mg) | Relative Anti-Inflammatory Activity | Duration of Action (h) | Plasma Half-Life (h) |
---|---|---|---|---|
Short-acting | ||||
Cortisone | 25 | 0.8 | 8–12 | 0.5 |
Cortisol | 20 | 1 | 8–12 | 1.5–2.0 |
Intermediate-acting | ||||
Prednisone | 5 | 4 | 12–36 | 3.4–3.8 |
Prednisolone | 5 | 4 | 12–36 | 2.1–3.5 |
Methylprednisolone | 4 | 5 | 12–36 | >3.5 |
Triamcinolone | 4 | 5 | 12–36 | 2–5 |
Long-acting | ||||
Dexamethasone | 0.75 | 20–30 | 36–72 | 3–4.5 |
Betamethasone | 0.6 | 20–30 | 36–72 | 3–5 |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Dexamethasone | Lieberman et al. [15] | Animal study | C57BL/Ka Mice | Crush injury Intraperitoneal injection | Facial nerve | Low-dose dexamethasone (1 mg/kg/day) for 7 days enhanced functional recovery after injury, while a high dose (10 mg/kg/day) did not 28% decrease in total white blood cell count, 58% decrease in lymphocyte percentage, and 71% decrease in absolute lymphocyte count |
Dexamethasone | Longur et al. [16] | Animal study | Wistar rats | Transection injury Intraperitoneal injection Group 1: controls Group 2: bumetanide Group 3: dexamethasone Group 4: bumetanide + dexamethasone | Facial nerve | Electroneurography latency difference in Group 1 was significantly higher than those in Groups 2–4. Electroneurography latency increases in Groups 2 and 3 were higher than that in Group 4 Higher axon number and intensity in Group 4 than in Groups 2 and 3 |
Dexamethasone | Jang et al. [17] | Animal study | Sprague–Dawley rats | Crush injury Topical dexamethasone | Facial nerve | Significantly lower recovery of the threshold of muscle action potentials in the experimental group than in the control group No statistical significance in nerve conduction velocity Dexamethasone treatment groups showed a larger axon diameter and thicker myelin sheath compared to the control group |
Dexamethasone | Suslu et al. [18] | Animal study | Sprague–Dawley rats | Crush injury Intraperitoneal injection | Sciatic nerve | Statistically significant different changes in sciatic functional index measurements of all animals at days 7, 14, 21, and 28 The changes in the group treated with local dexamethasone were more remarkable than those in the group treated with systemic dexamethasone |
Methylprednisolone | Ozturk et al. [19] | Animal study | Sprague–Dawley male rats | Crush injury Intraperitoneal injection Group I: ozone Group II: methylprednisolone Group III: ozone and methylprednisolone Group IV: isotonic saline | Sciatic nerve | Remarkably low degeneration in Group III, with no change in nerve sheath cells in Group II Degeneration, nerve sheath cell atrophy, intraneural inflammatory cellular infiltration, perineural granulation tissue formation, perineural vascular proliferation, perineural inflammatory cellular infiltration, and inflammation in peripheral tissue were observed |
Methylprednisolone | Chao et al. [24] | Animal study | Wistar rats | Crush injury Topical dexamethasone | Facial nerve | Locally injected MP delivered by C/GP-hydrogel effectively accelerated facial functional recovery Regenerated facial nerves in the C/GP-MP group were more mature than those in the other groups The expression of GAP-43 protein was also improved by MP, particularly in the C/GP-MP group |
Methylprednisolone | Mehrshad et al. [23] | Animal study | White Wistar rats | 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/CGP-Hydrogel) filled with CGP-hydrogel or methylprednisolone (CHIT/MP) | Sciatic nerve | Faster recovery of regenerated axons in the methylprednisolone-treated group than in the CHIT/Hydrogel group |
Methylprednisolone | Li et al. [25] | Animal study | Sprague–Dawley male rats | The anastomotic ends of the sciatic nerve were wrapped with a methylprednisolone sustained-release membrane. Comparison between methylprednisone alone or methylprednisone microspheres | Sciatic nerve | Methylprednisolone microsphere sustained-release membrane reduced tissue adhesion, inhibited scar tissue formation at the site of anastomosis, and increased the sciatic nerve function index and thickness of the myelin sheath |
Methylprednisolone | Chen et al. [20] | Animal study | Guinea pig | Transection injury Intramuscular injection | Facial nerve | High-dose methylprednisolone elicited a delayed increase in nitric oxide formation and, thus, may concomitantly enhance the survival time of motor neurons after facial nerve transection |
Methylprednisolone | Sevuk et al. [21] | Animal study | Female Wistar albino rats | Crush injury Intraperitoneal injection of high-dose methylprednisolone (30 mg/kg/day), and normal-dose methylprednisolone (1 mg/kg/day), and oral intake of vitamin A (10,000 IU/kg/day) | Sciatic nerve | Significantly lower serum nitric oxide and malondialdehyde levels after high-dose methylprednisolone, normal-dose methylprednisolone, high-dose methylprednisolone + vitamin A, normal-dose, and methylprednisolone + vitamin A treatment modalities compared to controls |
Methylprednisolone | Yildirim et al. [22] | Animal study | New Zealand rabbits | Transection injury, compression injury, HSV type 1 infection Intramuscular injection | Facial nerve | In the group with a compressive lesion, axonal degeneration, myelin degeneration, and edema were significantly higher in the control group than in the methylprednisolone-treated group Among animals inoculated with Type 1 HSV, the treatment and control groups showed no significant differences in perineural fibrosis, axonal degeneration, myelin degeneration, or Schwann cell proliferation. The only statistically significant advantage of the treatment group was in edema formation |
Prednisolone | Sullivan et al. [27] | Randomized, double-blind, placebo-controlled, factorial trial | Patients with Bell’s palsy | Patients recruited within 72 h after symptom onset Randomly assigned to receive 10 days of treatment with prednisolone, acyclovir, both agents, or placebo | Facial nerve | Early treatment with prednisolone significantly improved the chances of complete recovery at 3 and 9 months No evidence of a benefit of acyclovir alone or an additional benefit of acyclovir in combination with prednisolone |
Prednisolone | Engström et al. [26] | Randomized, double-blind, placebo-controlled, multicenter trial | Patients with Bell’s palsy | Patients randomly assigned in permuted blocks of eight to receive placebo plus placebo; 60 mg prednisolone per day for 5 days then reduced by 10 mg per day plus placebo; 1000 mg valaciclovir three times per day for 7 days plus placebo; or prednisolone (10 days) plus valaciclovir (7 days) | Facial nerve | Significantly shorter time to recovery in the 416 patients who received prednisolone compared to the 413 patients who did not No difference in time to recovery between the 413 patients treated with valaciclovir and the 416 patients who did not receive valaciclovir |
Dexamethasone | Galloway et al. [28] | Animal study | Sprague–Dawley rats | Crush injury Dexamethasone saturated gelfoam placed at the site of injury | Sciatic nerve | More rapid recovery in the steroid group at postoperative days 14, 18, and 22, which reached statistical significance at postoperative day 14 |
21-aminosteroid | Nasser et al. [29] | Animal study | Sprague–Dawley rats | Crush injury Intraperitoneal injection injections of 3 mg/kg U-74006F at 2-h intervals | Sciatic nerve | Significant improvement in motor function compared with the controls on days 14, 21, 25, and 28 for mature rats and on days 11 and 14 for immature rats |
Betamethasone | Al-Bishri et al. [30] | Animal study | Wistar rats | Crush injury Subcutaneous injection betamethasone | Sciatic nerve | Short-term perioperative administration of betamethasone had a beneficial effect on the recovery of injured rat sciatic nerves |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Simvastatin | Xavier et al. [37] | Animal study | Male Wistar rats | Crushing injury Intraperitoneal injection | Sciatic nerve | Simvastatin increased Sciatic Function Index scores and decreased areas of edema and mononuclear cell infiltration during Wallerian degeneration and nerve regeneration |
Simvastatin | Guo et al. [38] | Animal study | Sprague–Dawley rats | Sciatic nerve defects in rats Chitosan conduit filled with 0, 0.5, or 1.0 mg simvastatin in Pluronic F-127 hydrogel | Sciatic nerve | Chitosan conduit filled with simvastatin/Pluronic F-127 hydrogel promoted nerve regeneration |
Atorvastatin | Pan et al. [39] | Animal study | Sprague–Dawley rats | Crush injury Intake orally | Sciatic nerve | Atorvastatin improved damage-associated alterations, including structural disruption, oxidative stress, inflammation, and apoptosis |
Atorvastatin | Cloutier et al. [40] | Animal study | Sprague–Dawley rats | Complete sciatic nerve section Intraperitoneal injection | Sciatic nerve | Better kinematics in atorvastatin-treated rats |
Atorvastatin | Roselló-Busquets et al. [41] | In vitro and in vivo study | Microfluidic system and organotypic model | In vitro and in vivo in both the central and peripheral nervous systems | External granular layer cells as a central nervous system example, dorsal root ganglion neurons as a peripheral nervous system example | Cholesterol depletion promoted axonal growth in developing axons and increased axonal regeneration in vitro and in vivo both in the central and peripheral nervous systems |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Melatonin | Yanilmaz et al. [55] | Animal study | New Zealand rabbits | Transection injury Intraperitoneal injection | Facial nerve | In the nerve conduction study, the latent period was shortened but the amplitudes did not show a significant change in the melatonin group |
Melatonin | Kaya et al. [56] | Animal study | Wistar rats | Transection injury, Crush injury Intraperitoneal injection | Sciatic nerve | Rats treated with melatonin showed better structural preservation of the myelin sheaths than the non-treated group Rats treated with melatonin also showed lower lipid peroxidation and higher superoxide dismutase, catalase, and glutathione peroxidase activities in sciatic nerve samples than the non-treated groups |
Melatonin | Kaya et al. [57] | Animal study | Wistar rats | Crush injury Intraperitoneal injection | Sciatic nerve | Functional (sensory-motor, biochemical, and electrophysiological analyses) and morphological (light microscopic and ultrastructural analyses) data in the melatonin group showed beneficial effects of melatonin on axonal regeneration and functional recovery |
Melatonin | Kaya et al. [58] | Animal study | Wistar rats | Transection injury Intraperitoneal injection | Sciatic nerve | Beneficial effect of melatonin in the light period. However, no significant beneficial effect of melatonin on recovery of the cut sciatic nerve in the dark period was observed The effect of melatonin on the recovery of the cut injured sciatic nerve depended on the time of treatment and may be attributed to the circadian rhythm |
Melatonin | Guo et al. [59] | Animal study | Sprague–Dawley rats | C5–7 nerve roots were avulsed. The C6 nerve roots were then replanted to construct the brachial plexus nerve-root avulsion model Intraperitoneal injection | C5–7 nerve roots | Lower levels of C5–7 intramedullary peroxidase and malondialdehyde-melatonin combined with chondroitin sulfate ABC promoted nerve regeneration after nerve-root avulsion injury of the brachial plexus |
Melatonin | Yazar et al. [60] | Animal study | Wistar albino rats | Compression injury Intraperitoneal injection | Sciatic nerve | A single injection of high-dose melatonin (100 mg/kg) preserved the myelin sheath, prevented axonal loss, and accelerated functional recovery during nerve regeneration in peripheral nerve injury |
Melatonin | Stazi et al. [61] | Animal study | C57BL/6 mice | Transection injury, Compression injury Acute and reversible presynaptic degeneration induced by the spider neurotoxin α-Latrotoxin Intraperitoneal injection | Sciatic nerve | Melatonin promoted nerve terminal regeneration |
Melatonin | Liu et al. [62] | Animal study | Male Wistar rats | End-to-side neurorrhaphy (ESN) Melatonin injection for 1 month | Musculocutaneous nerve | Melatonin treatment enhanced functional recovery after ESN compared to the recovery observed in the saline-treated group - Enhanced expression of GAP43 and b3-tubulin - Melatonin may promote functional recovery after peripheral nerve injury by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway |
Melatonin | Qian et al. [63] | Animal study | Sprague–Dawley rat Schwann cell (RSC) | Melatonin /polycaprolactone solution was sprayed onto a tubular mold cell counting kit 8 assay Immunofluorescent staining for actin, Ki67, S100, Tuj1, and MBP | Rat Schwann cell | Increased Schwann cell proliferation and neural expression in vitro and increased functional, electrophysiological, and morphological nerve regeneration in vivo |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Growth hormone | Lopez et al. [71] | Animal study | Lewis rats | Transection injury Subcutaneous injection | Median nerve | Growth hormone-treated animals showed increased median nerve regeneration, as measured by axon density, axon diameter, and myelin thickness; improved muscle re-innervation; reduced muscle atrophy; and greater motor function recovery |
Growth hormone | Saceda et al. [73] | Animal study | Wistar rats | Sectioning of the ulnar nerve in rats. The proximal and distal ends were sutured to either end of a silastic tube Subcutaneous injection | Ulnar nerve | The group receiving recombinant growth hormone showed improved recovery of conduction velocity, a more gradual increase in the amplitude of motor potential, improved architecture of the regenerating nerve, a greater nerve fiber density, and increased myelination with a lower degree of endoneural fibrosis |
IGF-1 | Nagata et al. [74] | Animal study | BALB/c albino mice | Cryo-injury IGF-1 was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle | Sciatic nerve | IGF-1-expressing pDNA promoted early recovery of motor function IGF-1 also promoted early recovery of sensation after sciatic nerve injury |
IGF-1 | Peter et al. [75] | Animal study | Fischer 344 × Brown Norway rats | Transection injury The nerve stumps were placed at opposing ends of a custom-made T-tube, and the middle arm was attached to a minipump. An Alzet 2004 mini-osmotic pump (Durect Corp., Cupertino, California) delivered either normal saline or IGF-1 at a rate of 0.25 µL/h | Tibial nerve | IGF-1 increased the axon number, diameter, and density in regenerated nerves of both young and aged animals IGF-1 increased the myelination and Schwann cell activity in regenerated nerves of both young and aged animals IGF-1 preserved the morphology of postsynaptic neuromuscular junctions in aged animals |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Acetyl-L-carnitine | Onger et al. [89] | Animal study | Wistar albino rats | Transection injury Intraperitoneal injection | Sciatic nerve | Carnitine had a beneficial effect on the regeneration of unmyelinated axons |
Acetyl-L-carnitine | Hart et al. [90] | Animal study | Sprague- Dawley rats | Transection injury Intraperitoneal injection | Sciatic nerve | Neuroprotective effect of high-dose carnitine treatment was preserved after neuron loss |
Acetyl-L-carnitine | Wilson et al. [91] | Animal study | Wistar rats | Transection injury Intraperitoneal injection | Sciatic nerve | Significantly higher mean number of myelinated axons in the carnitine group Greater mean myelin thickness in the carnitine group Carnitine also morphologically improved the quality of regeneration and target organ re-innervation |
Acetyl-L-carnitine | Farahpour et al. [92] | Animal study | Wistar rats | Sciatic nerve defect was bridged using a chitosan conduit filled with 10 μL carnitine (100 ng/mL) | Sciatic nerve | Significant differences between muscle weight ratios. Significantly higher myelinated fiber number and diameter |
Acetyl-L-carnitine | Mannelli et al. [93] | Animal study | Sprague–Dawley rats | Transection injury Cytochrome C (cytosolic fraction extraction) DNA fragmentation (Terminal deoxynucleotidyl transferase dUTP nick end labeling assay) | Sciatic nerve | Significantly decreased expression of the 19-kDa and 16-kDa fragments in a carnitine-treated group, which also showed significantly lower caspase 3 activity |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Vitamin B12 | Tamaddonfard et al. [102] | Animal study | Wistar rats | Crush rush | Tibial nerve | Recovery of tibial function index values were significantly accelerated Wallerian degeneration was reduced, |
Vitamin B12 | Altun et al. [103] | Animal study | Wistar rats | Crush injury | Sciatic nerve | Tissue levels of vitamin B complex and vitamin B12 varied with progression of crush-induced peripheral nerve injury, and supplementation of these vitamins in the acute period may be beneficial for acceleration of nerve regeneration |
Vitamin B12 | Shibuya et al. [104] | Human study | Patients with immune-mediated or hereditary neuropathy | Intravenous injection | Sciatic nerve | Twelve patients were evaluated for the primary outcomes, which improved in seven patients and were unchanged or worsened in the remaining five |
Vitamin B12 | Gan et al. [105] | Animal study | ICR mice | Crush injury Intraperitoneal injection | Sciatic nerve | Vitamin B12 significantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve fibers, and increased the cross-sectional area of target muscle cells Furthermore, mecobalamin upregulated mRNA expression of growth-associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor, and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia |
Vitamin B12 | Okada et al. [106] | Animal study | Wistar rats | Transection injury Subcutaneous injection | Sciatic nerve | Vitamin B12 concentrations >100 nM promoted neurite outgrowth and neuronal survival; these effects were mediated by the methylation cycle, a metabolic pathway involving methylation reactions Vitamin B12 increased Erk1/2 and Akt activities through the methylation cycle In a rat sciatic nerve injury model, continuous administration of high doses of methylcobalamin improved nerve regeneration and functional recovery |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Ginkgo biloba | Zhu et al. [119] | Animal study | Sprague–Dawley rats | Cutting injury Intraperitoneal injection | Sciatic nerve | Ginkgo biloba significantly increased the number of myelinated fibers and the average diameter of the nerves within the graft |
Ginkgo biloba | CH Jang et al. [122] | Animal study | Sprague–Dawley rats | Crush injury Intraperitoneal injection | Facial nerve | Ginkgo biloba significantly accelerated the recovery of vibrissae orientation |
Ginkgo biloba | H Lin et al. [120] | Animal study | Sprague–Dawley rats | Transection injury Intake orally | Sciatic nerve | Sensory regeneration distance, sciatic functional index, motor nerve conduction velocity, compound muscle action potential, axon regeneration index, and muscle mass were significantly increased in the ginkgo biloba groups |
Ginkgo biloba | Hsu et al. [121] | In vivo and in vitro study | Sprague–Dawley rats | Schwann cells in serum-deprived culture medium Different doses of ginkgo biloba (0, 1, 10, 20, 50, 100, 200 mg/mL) | Sciatic nerve Schwann cell | Thickened myelin sheath and increased cross-sectional area of target muscle cells Upregulated mRNA expression of growth-associated protein 43 in nerve tissue ipsilateral to the injury and neurotrophic factors in the L4-6 dorsal root ganglia |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Coenzyme Q10 | Yildirim et al. [125] | Animal study | Sprague–Dawley albino rats | Crush injury Intraperitoneal injection | Facial nerve | Significantly lower nerve stimulation thresholds in the coenzyme Q10 injection group Significant differences in vascular congestion, macrovacuolization, and myelin thickness between the coenzyme Q10 and control groups identified by light microscopy |
Coenzyme Q10 | Moradi et al. [126] | Animal study | Sprague–Dawley rats | Crush injury Intraperitoneal injection | Sciatic nerve | Faster recovery of regenerated axons in the coenzyme Q10 treatment group Regenerated fibers showed significantly higher myelinated fiber number and diameter in the coenzyme Q10 treatment group |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Nimodipine | Zee et al. [127] | Animal study | Wistar rats | Crush injury Intake orally | Sciatic nerve | Oral administration of the Ca2+-entry blocker nimodipine accelerated the recovery of sensorimotor function in a dose-dependent manner |
Nimodipine | Zee et al. [128] | Animal study | Wistar rats | Walking pattern analysis Oral intake | Walking pattern | Nimodipine delayed the onset of age-related motor deficits and could also counteract the deficits already present |
Nimodipine | Angelov et al. [129] | Animal study | Wistar rats | Transection injury Food pellets containing 1000 ppm nimodipine | Facial nerve | Nimodipine accelerated axonal sprouting Nimodipine reduced the polyneuronal innervation of target muscles |
Nimodipine | Scheller et al. [130] | Human study | Patients with a peripheral facial nerve paresis after maxillofacial surgery | House–Brackmann (HB) grade Intake orally | Facial nerve | Positive effect of nimodipine on the acceleration of peripheral facial nerve regeneration after surgically caused trauma |
Nimodipine | Zheng et al. [131] | Animal study | Sprague–Dawley rats | Crush injury Oral intake | Facial nerve | Apparent recovery of electroconductivity. Higher amplitude and shorter latency time in the surgery plus nimodipine group compared to those in the surgery-only group Obvious recovery of myelination and reduction in the number of infiltrating cells in rats treated with nimodipine |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Ozone | Ozbay et al. [133] | Animal study | Wistar albino rats | Crush injury Intraperitoneal injection | Facial nerve | Lower stimulation thresholds in the zone-treated group Significant differences in vascular congestion, macrovacuolization, and myelin thickness |
Ozone | Ogut et al. [134] | Animal study | Wistar albino rats | Transection injury Intraperitoneal injection | Sciatic nerve | Significant differences in plasma superoxide dismutase, catalase, and glutathione peroxidase activities Significant functional improvement |
Drug | Author. Year [Reference] | Study Design | Species and/or Sample | Detection Method | Sample | Results/Conclusion |
---|---|---|---|---|---|---|
Acyclovir | Gumenyuk et al. [140] | Animal study | BALB/c line mice | Crush injury HSV-1 infection Intraperitoneal injection | Sciatic nerve | Acyclovir increased the nerve fiber thickness and muscle re-innervation |
Acyclovir | Takahashi et al. [137] | Animal study | BALB/c AJcl mice | HSV-1 infection Intraperitoneal injection | Facial nerve | The incidence of facial nerve paralysis was significantly lower in the group given acyclovir before the paralysis than in the controls, and the duration of facial nerve paralysis was shorter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.Y.; Kim, J.M.; Jung, J.; Park, D.C.; Yoo, M.C.; Kim, S.S.; Kim, S.H.; Yeo, S.G. Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice. Biomedicines 2022, 10, 1678. https://doi.org/10.3390/biomedicines10071678
Choi SY, Kim JM, Jung J, Park DC, Yoo MC, Kim SS, Kim SH, Yeo SG. Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice. Biomedicines. 2022; 10(7):1678. https://doi.org/10.3390/biomedicines10071678
Chicago/Turabian StyleChoi, Soo Young, Jung Min Kim, Junyang Jung, Dong Choon Park, Myung Chul Yoo, Sung Soo Kim, Sang Hoon Kim, and Seung Geun Yeo. 2022. "Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice" Biomedicines 10, no. 7: 1678. https://doi.org/10.3390/biomedicines10071678
APA StyleChoi, S. Y., Kim, J. M., Jung, J., Park, D. C., Yoo, M. C., Kim, S. S., Kim, S. H., & Yeo, S. G. (2022). Review of Drug Therapy for Peripheral Facial Nerve Regeneration That Can Be Used in Actual Clinical Practice. Biomedicines, 10(7), 1678. https://doi.org/10.3390/biomedicines10071678