An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Heart Rate Variability Measurements
2.3. Assessment of Different Autonomic Indices
2.4. Data Management and Statistical Analyses
3. Results
3.1. Subject Demographics
3.2. Individual Characteristics of HRV Indices
3.3. HRV Indices across the Age Range during the Day and Night
3.3.1. HR
3.3.2. SDNN, RMSSD and pNN50
3.3.3. LF, HF and LF/HF
3.4. Comparisons between Day and Night for HRV Indices
3.5. Scatter Plots for HRV Indices
3.5.1. HR
3.5.2. SDNN, RMSSD and pNN50
3.5.3. LF, HF and LF/HF
4. Discussion
- (A)
- What do age-related changes in HRV indices tell us about the trajectory of autonomic dysregulation in Rett patients?
- (B)
- What other factors may influence HRV in Rett patients?
4.1. What Do Age-Related Changes in HRV Indices Tell Us about the Trajectory of Autonomic Dysregulation in Rett Patients?
4.2. What Other Factors May Influence HRV in Rett Patients?
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bricout, V.A.; Pace, M.; Dumortier, L.; Favre-Juvin, A.; Guinot, M. Autonomic responses to head-up tilt test in children with autism spectrum disorders. J. Abnorm. Child Psychol. 2017, 46, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Axelrod, F.B.; Chelimsk, G.G.; Weese-Mayer, D.E. Pediatric autonomic disorders. Pediatrics 2006, 118, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Task Force of the European Society of Cardiology; North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef] [Green Version]
- Schwerdtfeger, A.R.; Schwarz, G.; Pfurtscheller, K.; Thayer, J.F.; Jarczok, M.N.; Pfurtscheller, G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 2020, 131, 676–693. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Rüdiger, H.; Ziemssen, T. Spectral analysis of heart rate variability: Time window matters. Front. Neurol. 2019, 10, 545. [Google Scholar] [CrossRef] [Green Version]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Sammito, S.; Böckelmann, I. Reference values for time- and frequency-domain heart rate variability measures. Heart Rhythm 2016, 13, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Sammito, S.; Thielmann, B.; Seibt, R.; Klussmann, A.; Weippert, M.; Böckelmann, I. Guideline for the Application of Heart Rate and Heart Rate Variability in Occupational Medicine and Occupational Science. ASU Int. 2015. Available online: https://www.asu-arbeitsmedizin.com/leitlinie-nutzung-der-herzschlagfrequenz-und-der-herzfrequenzvariabilitaet/nutzung-der (accessed on 18 May 2022).
- Lee, Y.; Walsh, R.J.; Fong, M.W.M.; Sykora, M.; Doering, M.M.; Wong, A.W.K. Heart rate variability as a biomarker of functional outcomes in persons with acquired brain injury: Systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 131, 737–754. [Google Scholar] [CrossRef]
- De Looff, P.C.; Cornet, L.J.; De Kogel, C.H.; Fernández-Castilla, B.; Embregts, P.J.; Didden, R.; Nijman, H.L. Heart rate and skin conductance associations with physical aggression, psychopathy, antisocial personality disorder and conduct disorder: An updated meta-analysis. Neurosci. Biobehav. Rev. 2022, 132, 553–582. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, B.R.; Valstad, M.; Elvsåshagen, T.; Jönsson, E.G.; Moberget, T.; Winterton, A.; Haram, M.; Høegh, M.C.; Lagerberg, T.V.; Steen, N.E.; et al. Heart rate variability is associated with disease severity in psychosis spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110108. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Schwerdtfeger, A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A meta-analysis. Psychol. Med. 2020, 50, 1937–1948. [Google Scholar] [CrossRef] [PubMed]
- Patriquin, M.A.; Hartwig, E.M.; Friedman, B.H.; Porges, S.W.; Scarpa, A. Autonomic response in autism spectrum disorder: Relationship to social and cognitive functioning. Biol. Psychol. 2019, 145, 185–197. [Google Scholar] [CrossRef]
- Barbier, A.; Chen, J.H.; Huizinga, J.D. Autism Spectrum Disorder in Children Is Not Associated with Abnormal Autonomic Nervous System Function: Hypothesis and Theory. Front. Psychiatry 2022, 13, 830234. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic nervous system dysfunction in psychiatric disorders and the impact of psychotropic medications: A systematic review and meta-analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Lanzarini, E.; Santosh, P. Autonomic dysfunction and sudden death in patients with Rett syndrome: A systematic review. J. Psychiatry Neurosci. 2020, 45, 150–181. [Google Scholar] [CrossRef]
- Gualniera, L.; Singh, J.; Fiori, F.; Santosh, P. Emotional Behavioural and Autonomic Dysregulation (EBAD) in Rett Syndrome—EDA and HRV monitoring using wearable sensor technology. J. Psychiatr. Res. 2021, 138, 186–193. [Google Scholar] [CrossRef]
- Iakovidou, N.; Lanzarini, E.; Singh, J.; Fiori, F.; Santosh, P. Differentiating Females with Rett Syndrome and Those with Multi-Comorbid Autism Spectrum Disorder Using Physiological Biomarkers: A Novel Approach. J. Clin. Med. 2020, 9, 2842. [Google Scholar] [CrossRef]
- Singh, J.; Lanzarini, E.; Santosh, P. Organic features of autonomic dysregulation in paediatric brain injury—Clinical and research implications for the management of patients with Rett syndrome. Neurosci. Biobehav. Rev. 2020, 118, 809–827. [Google Scholar] [CrossRef]
- Pini, G.; Bigoni, S.; Congiu, L.; Romanelli, A.M.; Scusa, M.F.; Di Marco, P.; Benincasa, A.; Morescalchi, P.; Ferlini, A.; Bianchi, F.; et al. Rett syndrome: A wide clinical and autonomic picture. Orphanet J. Rare Dis. 2016, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.; Schanen, N.C.; Zappella, M.; et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- E4 Wristband. Real-Time Physiological Data Streaming and Visualization. Available online: https://www.empatica.com/en-gb/research/e4/ (accessed on 9 May 2022).
- E4 Data—IBI Expected Signal Information. Available online: https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBIexpected-signal (accessed on 9 May 2022).
- Kubios HRV Software. User’s Guide. Available online: https://www.kubios.com/downloads/Kubios_HRV_Users_Guide.pdf (accessed on 3 May 2022).
- readxl: Read Excel Files. Available online: https://cran.r-project.org/web/packages/readxl/index.html (accessed on 29 April 2022).
- tidyverse: Easily Install and Load the ‘Tidyverse’. Available online: https://cran.r-project.org/web/packages/tidyverse/index.html (accessed on 3 May 2022).
- psych: Procedures for Psychological, Psychometric, and Personality Research. Available online: https://cran.r-project.org/web/packages/psych/index.html (accessed on 9 May 2022).
- ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. Available online: https://cran.r-project.org/web/packages/ggplot2/index.html (accessed on 12 May 2022).
- Christou, D.D.; Seals, D.R. Decreased maximal heart rate with aging is related to reduced {beta}-adrenergic responsiveness but is largely explained by a reduction in intrinsic heart rate. J. Appl. Physiol. 2008, 105, 24–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Baudot, M.; Vivas, O.; Moreno, C.M. Slowing down as we age: Aging of the cardiac pacemaker’s neural control. Geroscience 2022, 44, 1–17. [Google Scholar] [CrossRef]
- Larson, E.D.; St. Clair, J.R.; Sumner, W.A.; Bannister, R.A.; Proenza, C. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate. Proc. Natl. Acad. Sci. USA 2013, 110, 18011–18016. [Google Scholar] [CrossRef] [Green Version]
- Ellenbroek, B.A.; Kidwell, M.; Colussi-Mas, J.; Youn, J. Heart Rate Variability as a Translational Biomarker for Emotional and Cognitive Deficits (Chapter 13). In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 29, pp. 199–212. [Google Scholar]
- Weese-Mayer, D.E.; Lieske, S.P.; Boothby, C.M.; Kenny, A.S.; Bennett, H.L.; Ramirez, J.M. Autonomic dysregulation in young girls with Rett syndrome during night time in-home recordings. Pediatr. Pulmonol. 2008, 43, 1045–1060. [Google Scholar] [CrossRef]
- Halbach, N.S.; Smeets, E.E.; Schrander-Stumpel, C.T.; van Schrojenstein Lantman de Valk, H.H.; Maaskant, M.A.; Curfs, L.M. Aging in people with specific genetic syndromes: Rett syndrome. Am. J. Med. Genet. Part A 2008, 146A, 1925–1932. [Google Scholar] [CrossRef]
- Pernice, R.; Faes, L.; Kotiuchyi, I.; Stivala, S.; Busacca, A.; Popov, A.; Kharytonov, V. Time, frequency and information domain analysis of short-term heart rate variability before and after focal and generalized seizures in epileptic children. Physiol. Meas. 2019, 40, 074003. [Google Scholar] [CrossRef]
- Abhishekh, H.A.; Nisarga, P.; Kisan, R.; Meghana, A.; Chandran, S.; Raju, T.; Sathyaprabha, T.N. Influence of age and gender on autonomic regulation of heart. J. Clin. Monit. Comput. 2013, 27, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Vasques, E.R.; de Oliveira Alvim, R.; Mill, J.G.; Andreão, R.V.; Vasques, B.K.; Pereira, A.C.; Krieger, J.E. Age and Sex Differences in Heart Rate Variability and Vagal Specific Patterns—Baependi Heart Study. Glob. Heart 2020, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Harteveld, L.M.; Nederend, I.; Ten Harkel, A.D.J.; Schutte, N.M.; de Rooij, S.R.; Vrijkotte, T.G.M.; Oldenhof, H.; Popma, A.; Jansen, L.M.C.; Suurland, J.; et al. FemNAT-CD collaborators Maturation of the Cardiac Autonomic Nervous System Activity in Children and Adolescents. J. Am. Heart Assoc. 2021, 10, e017405. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Jaryal, A.; Gulati, S.; Chakrabarty, B.; Singh, A.; Deepak, K.K.; Pandey, R.M.; Gupta, N.; Sapra, S.; Kabra, M.; et al. Cardiovascular Autonomic Dysfunction in Children and Adolescents with Rett Syndrome. Pediatr. Neurol. 2017, 70, 61–66. [Google Scholar] [CrossRef]
- Suzuki, M.; Hiroshi, T.; Aoyama, T.; Tanaka, M.; Ishii, H.; Kisohara, M.; Iizuka, N.; Murohara, T.; Hayano, J. Nonlinear measures of heart rate variability and mortality risk in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 1454–1460. [Google Scholar] [CrossRef] [Green Version]
- La Rovere, M.T.; Bigger JTJr Marcus, F.I.; Mortara, A.; Schwartz, P.J.; For the ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef]
- Guideri, F.; Acampa, M.; DiPerri, T.; Zappella, M.; Hayek, Y. Progressive cardiac dysautonomia observed in patients affected by classic Rett syndrome and not in the preserved speech variant. J. Child Neurol. 2001, 16, 370–373. [Google Scholar] [CrossRef]
- Guideri, F.; Acampa, M.; Hayek, G.; Zappella, M.; Di Perri, T. Reduced heart rate variability in patients affected with Rett syndrome. A possible explanation for sudden death. Neuropediatrics 1999, 30, 146–148. [Google Scholar] [CrossRef]
- Dotti, M.T.; Guideri, F.; Acampa, M.; Orrico, A.; Battisti, C.; Federico, A. Autonomic dysfunction in mental retardation and spastic paraparesis with MECP2 mutation. J. Child Neurol. 2004, 19, 964–966. [Google Scholar] [CrossRef]
- Hayano, J.; Yuda, E. Assessment of autonomic function by long-term heart rate variability: Beyond the classical framework of LF and HF measurements. J. Physiol. Anthropol. 2021, 40, 21. [Google Scholar] [CrossRef]
- Von Rosenberg, W.; Chanwimalueang, T.; Adjei, T.; Jaffer, U.; Goverdovsky, V.; Mandic, D.P. Resolving Ambiguities in the LF/HF Ratio: LF-HF Scatter Plots for the Categorization of Mental and Physical Stress from HRV. Front. Physiol. 2017, 8, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympathovagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-M.; Huang, S.-C. SDNN/RMSSD as a Surrogate for LF/HF: A Revised Investigation. Model. Simul. Eng. 2012, 2012, 931943. [Google Scholar] [CrossRef] [Green Version]
- Hayano, J.; Yuda, E. Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 2019, 38, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, Y.; Ogasawara, H.; Yuda, E.; Hayano, J. What does LF/HF of heart rate variability in ambulatory ECG mean? Effect of time in lying position during monitoring. Eur. Heart J. 2016, 37 (Suppl. S4), P671. [Google Scholar]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [Green Version]
- Karemaker, J.M. Counterpoint: Respiratory sinus arrhythmia is due to the baroreflex mechanism. J. Appl. Physiol. 2009, 106, 1742–1743. [Google Scholar] [CrossRef]
- Hayano, J.; Mukai, S.; Sakakibara, M.; Okada, A.; Takata, K.; Fujinami, T. Effects of respiratory interval on vagal modulation of heart rate. Am. J. Phys. 1994, 267 Pt 2, H33–H40. [Google Scholar] [CrossRef]
- Taylor, E.W.; Jordan, D.; Coote, J.H. Central control of the cardiovascular and respiratory systems and their interactions in vertebrates. Physiol. Rev. 1999, 79, 855–916. [Google Scholar] [CrossRef]
- Tarquinio, D.C.; Hou, W.; Neul, J.; Berkmen, G.K.; Drummond, J.; Aronoff, E.; Harris, J.; Lane, J.B.; Kaufmann, W.E.; Motil, K.J.; et al. The course of awake breathing disturbances across the lifespan in Rett syndrome. Brain Dev. 2018, 40, 515–529. [Google Scholar] [CrossRef]
- Hill, L.K.; Siebenbrock, A. Are all measures created equal? Heart rate variability and respiration—Biomed 2009. Biomed. Sci. Instrum. 2009, 45, 71–76. [Google Scholar] [PubMed]
- Singh, J.; Santosh, P. Key issues in Rett syndrome: Emotional, behavioural and autonomic dysregulation (EBAD)—A target for clinical trials. Orphanet J. Rare. Dis. 2018, 13, 128. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Ali, M.K.; Mathewson, K.J.; Sharma, K.; Faiyaz, M.; Tan, W.; Parsons, S.P.; Zhang, K.K.; Milkova, N.; Liu, L.; et al. Associations between colonic motor patterns and autonomic nervous system activity assessed by high-resolution manometry and concurrent heart rate variability. Front. Neurosci. 2020, 13, 1447. [Google Scholar] [CrossRef]
- Buchanan, C.B.; Stallworth, J.L.; Joy, A.E.; Dixon, R.E.; Scott, A.E.; Beisang, A.A.; Benke, T.A.; Glaze, D.G.; Haas, R.H.; Heydemann, P.T.; et al. Anxiety-like behavior and anxiolytic treatment in the Rett syndrome natural history study. J. Neurodev. Disord. 2022, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Ishaque, S.; Khan, N.; Krishnan, S. Trends in Heart-Rate Variability Signal Analysis. Front. Digit. Health 2021, 3, 639444. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.; Ham, J.; Oh, J.; Park, J.; Kim, S.; Lee, N.-K.; Lee, B. Detection of stress levels from biosignals measured in virtual reality environments using a kernel-based extreme learning machine. Sensors 2017, 17, 2435. [Google Scholar] [CrossRef]
- Schmidt, P.; Reiss, A.; Duerichen, R.; Marberger, C.; Van Laerhoven, K. Introducing WESAD, a multimodal dataset for wearable stress and affect detection. In Proceedings of the 20th ACM International Conference on Multimodal Interaction, Boulder, CO, USA, 16–20 October 2018; pp. 400–408. [Google Scholar]
- Gupta, C.; Chandrashekar, P.; Jin, T.; He, C.; Khullar, S.; Chang, Q.; Wang, D. Bringing machine learning to research on intellectual and developmental disabilities: Taking inspiration from neurological diseases. J. Neurodev. Disord. 2022, 14, 28. [Google Scholar] [CrossRef]
- Movaghar, A.; Page, D.; Scholze, D.; Hong, J.; Da Walt, L.S.; Kuusisto, F.; Stewart, R.; Brilliant, M.; Mailick, M. Artificial intelligence-assisted phenotype discovery of fragile X syndrome in a population-based sample. Genet. Med. 2021, 23, 1273–1280. [Google Scholar] [CrossRef]
- Michels, N.; Clays, E.; De Buyzere, M.; Huybrechts, I.; Marild, S.; Vanaelst, B.; De Henauw, S.; Sioen, I. Determinants and reference values of short-term heart rate variability in children. Eur. J. Appl. Physiol. 2013, 113, 1477–1488. [Google Scholar] [CrossRef]
- Sharma, V.K.; Subramanian, S.K.; Arunachalam, V.; Rajendran, R. Heart Rate Variability in Adolescents - Normative Data Stratified by Sex and Physical Activity. J. Clin. Diagn. Res. 2015, 9, CC08-13. [Google Scholar] [CrossRef]
- Avram, R.; Tison, G.H.; Aschbacher, K.; Kuhar, P.; Vittinghoff, E.; Butzner, M.; Runge, R.; Wu, N.; Pletcher, M.J.; Marcus, G.M.; et al. Real-world heart rate norms in the Health eHeart study. NPJ. Digit. Med. 2019, 2, 58. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Meehan, Z.M.; Zerr, C.L. A Critical Review of Ultra-Short-Term Heart Rate Variability Norms Research. Front. Neurosci. 2020, 14, 594880. [Google Scholar] [CrossRef] [PubMed]
Subject No. | Age (Years) | Mutation ^ | Diagnoses | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Epilepsy | GAD | Dystonia | Scoliosis | Constipation | ASD | ADHD | GERD | Autonomic Dysregulation | |||
1 | 10.1 | MECP2 c.473C>T-T158M | No | No | No | Yes | No | No | No | No | No |
2 | 3.4 | c.1160_*5215del-p.Pro387_Ser486delinsGln | Yes | No | Yes | No | No | No | No | No | Yes |
3 | 15.6 | Unknown | No | Yes | No | No | No | Yes | No | No | No |
4 | 19.6 | Unknown | Yes | No | No | No | Yes | No | Yes | No | No |
5 | 15.2 | MEPC2 c.674C>G (p.Pro225Arg) | No | Yes | No | No | No | No | No | No | No |
6 | 5.6 | MECP2 heterozygote c.491C>G | Yes | No | No | No | Yes | No | No | No | No |
7 | 21 | Clinically diagnosed | No | No | No | No | No | No | No | No | No |
8 | 11.5 | c.455>G (p.Pro152Arg) in exon 4 MECP2 | No | No | No | No | No | No | No | No | Yes |
9 | 24.6 | Partial deletion of exon 4 of MECP2 gene | Yes | No | No | Yes | No | Yes | No | Yes | No |
10 | 23.7 | c.301C>T (p.Pro101Ser) | Yes | Yes | Yes | No | Yes | No | No | No | No |
11 | 41.1 | Unknown | Yes | No | No | No | No | No | No | No | No |
12 | 5.5 | Heterozygous for MECP2 c.806delG | No | No | No | No | No | Yes | No | No | Yes |
13 | 10.1 | c.808C>T-p.Arg.270 | Yes | No | No | No | Yes | No | Yes | Yes | No |
14 | 4.7 | Heterozygous c.763C>T p.(Arg225*) in MECP2 | No | No | No | No | No | No | No | No | No |
15 | 10.3 | Heterozygous for the deletion of exons 3i to 4iii* of MECP2 gene-22kb Xq28 deletion on a CGH with MECP2 | Yes | No | Yes | No | Yes | No | No | No | No |
16 | 16.2 | 1157del41 | No | No | No | No | No | Yes | Yes | No | No |
17 | 17.11 | MECP2 c.397C>T-R133C | Yes | No | Yes | No | No | No | No | No | No |
18 | 25.8 | MECP2 R306C | No | No | No | No | No | No | No | No | No |
19 | 20.2 | MECP2 c.455C>G-P152R | Yes | No | No | No | No | No | No | No | No |
20 | 13.7 | c.422A>C in exon 4 of MECP2 gene | No | No | No | No | No | No | No | No | No |
21 | 29.6 | Unknown | No | No | No | No | No | No | No | No | No |
22 | 28.1 | MECP2 | No | No | No | No | No | No | No | No | No |
23 | 18.8 | Unknown | No | No | No | No | Yes | No | No | No | No |
24 | 8.7 | Deletions on exons 2 and 4 | No | No | No | No | No | Yes | Yes | No | No |
25 | 24.5 | Unknown | Yes | Yes | No | No | No | No | No | No | No |
26 | 33.6 | Unknown | No | No | No | No | No | No | No | No | No |
27 | 7.3 | Heterozygous for c.759_760insT (p.Lys254*) mutation sequence in MECP2 gene | No | No | No | No | Yes | No | No | Yes | No |
28 | 14.8 | General E92 MEPC2 c.674C>G (p.Pro225Arg) | No | Yes | No | No | No | No | No | No | No |
29 | 14.1 | Unknown | No | No | No | Yes | No | No | No | No | No |
30 | 8.1 | MECP2 c.916C>T-R306C | No | No | No | No | No | No | No | No | No |
31 | 12.9 | Unknown | Yes | No | No | Yes | No | No | No | No | No |
32 | 9.5 | c397T (R113C) | No | Yes | No | No | Yes | Yes | Yes | No | No |
33 | 20.1 | Unknown | Yes | No | No | No | No | No | No | No | No |
34 | 4.11 | Unknown | Yes | No | No | No | Yes | No | No | No | Yes |
35 | 20.4 | R294X in MECP2 | Yes | No | No | No | No | Yes | No | No | No |
36 | 26.2 | Unknown | Yes | No | Yes | No | Yes | No | No | No | No |
37 | 28.7 | Unknown | Yes | No | Yes | Yes | Yes | No | No | Yes | No |
38 | 31.1 | R168X in MECP2 | No | Yes | No | No | No | No | No | No | No |
39 | 26.2 | MECP2 c.808C>T-R270* | No | No | No | No | No | No | No | No | No |
40 | 3.4 | MECP2 c.1160_*5215del (p.Pro387_Ser486delinsGln) | Yes | No | No | No | No | No | No | No | Yes |
41 | 10.2 | c.799C>T heterozygote, (p.ARG267*) | Yes | Yes | No | Yes | No | Yes | No | Yes | No |
42 | 22.3 | MECP2 | Yes | No | No | Yes | No | No | No | No | No |
43 | 5.2 | Atypical Rett syndrome-GABBR-2-related | No | No | No | No | No | No | No | No | No |
44 | 14.8 | Heterozygous for the c.880C>T mutation-p.Arg294X | Yes | No | Yes | Yes | Yes | No | No | No | No |
45 | 3.1 | MECP2 1157del41 | No | No | No | No | No | No | No | No | No |
Day (A) | ||||||||
Age | n | Mean HR (bpm) ± SD (Med. [Min:Max]) | Mean SDNN (ms) ± SD (Med. [Min:Max]) | Mean RMSSD (ms) ± SD (Med. [Min:Max]) | Mean pNN50 (%) ± SD (Med. [Min:Max]) | Mean LF (nu) ± SD (Med. [Min:Max]) | Mean HF (nu) ± SD (Med. [Min:Max]) | Mean LF/HF Ratio ± SD (Med. [Min:Max]) |
<5 | 6 | 116.1 ± 13.4 (116, [94:132]) | 30.0 ± 14.5 (29.4, [12.3:50.9]) | 31.9 ± 13.7 (27.3, [19.4:50.6]) | 8.4 ± 8.09 (4.89, [1.34:18.6]) | 48.6 ± 21.6 (55.6, [19.2:70.3]) | 51.2 ± 21.5 (44.2, [29.5:80.3]) | 1.24 ± 0.86 (1.26, [0.23:2.38]) |
6–10 | 10 | 97.6 ± 9.7 (98, [80:110]) | 50.2 ± 13.8 (46.5, [36.6:78.6]) | 50.7 ± 15.8 (46.7, [31.6:87.3]) | 20.1 ± 10.5 (18.6, [7.4:44.1]) | 60.2 ± 11.9 (60.0, [45.7:76.5]) | 39.6 ± 11.8 (39.8, [23.3:54.0]) | 1.75 ± 0.90 (1.50, [0.84:3.27]) |
11–15 | 7 | 94.7 ± 17.7 (93, [80:110]) | 48.7 ± 29.6 (34.8, [14:98.9]) | 51.4 ± 28.5 (41.4, [18.8:103.1]) | 19.2 ± 16.1 (16.1, [1.6:48.1]) | 59.7 ± 6.49 (62.3, [49.2:66.3]) | 40.1 ± 6.45 (37.5, [33.5:50.5]) | 1.54 ± 0.38 (1.66, [0.97:1.97]) |
16–20 | 8 | 88.6 ± 9.1 (89.5, [75:102]) | 44.5 ± 12.1 (46.3, [27:66.3]) | 44.3 ± 12.7 (43.2, [25.2:63.5]) | 15.7 ± 8.85 (13.0, [3.86:28.4]) | 59.0 ± 11.6 (59.6, [35.8:74.2]) | 40.8 ± 11.6 (40.2, [25.4:64.0]) | 1.61 ± 0.71 (1.48, [0.55:2.92]) |
>21 | 14 | 80.9 ± 12.5 (79.5, [62:104]) | 51.2 ± 21.0 (46.3, [19:95.3]) | 57.9 ± 25.5 (52.2, [20.3:108.9]) | 23.0 ± 15.9 (20.4, [1.76:57.2]) | 52.0 ± 14.9 (51.1 [25.3:86.0]) | 47.8 ± 14.9 (48.8 [13.8:74.3]) | 1.44 ± 1.44 (1.04, [0.34:6.2]) |
Night (B) | ||||||||
Age | n | Mean HR (bpm) ± SD (med. [min:max]) | Mean SDNN (ms) ± SD (med. [min:max]) | Mean RMSSD (ms) ± SD (med. [min:max]) | Mean pNN50 (%) ± SD (med. [min:max]) | Mean LF (nu) ± SD (med. [min:max]) | Mean HF (nu) ± SD (med. [min:max]) | Mean LF/HF Ratio ± SD (med. [min:max]) |
<5 | 4 | 97.2 ± 9.06 (97.5, [88:106]) | 34.6 ± 7.32 (33.5, [28.4:43.1]) | 31.2 ± 4.82 (32.0, [25:36]) | 6.98 ± 2.96 (6.8, [3.6:10.6]) | 71.2 ± 7.83 (68.7, [65.0:82.5]) | 28.6 ± 7.85 (31.1, [17.3:34.9]) | 2.76 ± 1.34 (2.21, [1.8:4.7]) |
6–10 | 10 | 84.8 ± 8.74 (84, [71:99]) | 36.8 ± 12.0 (37.2, [20.6:61.2]) | 38.6 ± 13.3 (37.5, [22.2:67.6]) | 12.7 ± 9.99 (10.9, [2.2:36.7]) | 59.2 ± 12.3 (59.8, [40.3:78.5]) | 40.6 ± 12.2 (40.0, [21.3:59.2]) | 1.69 ± 0.94 (1.49, [0.68:3.67]) |
11–15 | 7 | 86.8 ± 18.5 (95, [48:102]) | 38.5 ± 27.6 (28.1, [16.6:97.6]) | 46.2 ± 40.3 (26.3, [19.3:133.9]) | 17.9 ± 25.9 (3.7, [1.03:73.4]) | 60.5 ± 13.5 (63.1, [36.9:77.6]) | 39.3 ± 13.5 (36.4, [22.2:63.0]) | 1.80 ± 0.95 (1.73, [0.58:3.48]) |
16–20 | 8 | 79.3 ± 8.19 (76, [68:91]) | 39.2 ± 9.15 (38.5, [23.7:53.3]) | 36.7 ± 10.4 (36.8, [18.1:53.6]) | 11.3 ± 7.8 (10.1, [0.89:26.4]) | 66.4 ± 13.1 (67.8, [46.5:87.2]) | 33.4 ± 13.1 (32.0, [12.7:53.3]) | 2.57 ± 1.91 (2.12, [0.87:6.86]) |
>21 | 14 | 73.7 ± 10.4 (74.5, [54:90]) | 40.8 ± 21.7 (31.7, [24.1:94.9]) | 45.9 ± 29.8 (37.3, [22.3:114.9]) | 16.7 ± 19.2 (9.9, [2.6:61.3]) | 50.7 ± 18.1 (48.2, [26.0:80.2]) | 49.1 ± 18.0 (51.6, [19.7:73.9]) | 1.38 ± 1.10 (0.94, [0.35:4.07]) |
Index | Mean | SD | Median | Min. | Max. | p-Value | t Value | Degree of Freedom |
---|---|---|---|---|---|---|---|---|
Mean HR (bpm) | 86.69 | 14.69 | 88 | 48 | 118 | <0.001 | 10.18 | 35 |
SDNN (ms) | 41.74 | 16.77 | 39.2 | 14 | 98.9 | <0.001 | 3.682 | 35 |
RMSSD (ms) | 43.53 | 20.70 | 40.4 | 18.1 | 133.9 | 0.006 | 2.899 | 35 |
pNN50 (%) | 15.22 | 13.14 | 12.33 | 0.89 | 73.44 | 0.040 | 2.124 | 35 |
LF (nu) | 59.89 | 13.58 | 61.19 | 25.38 | 87.24 | 0.289 | −1.074 | 35 |
HF (nu) | 40.00 | 13.55 | 38.76 | 12.71 | 74.39 | 0.287 | 1.079 | 35 |
LF/HF ratio | 1.846 | 1.201 | 1.579 | 0.341 | 6.864 | 0.124 | −1.574 | 35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, J.; Ameenpur, S.; Ahmed, R.; Basheer, S.; Chishti, S.; Lawrence, R.; Fiori, F.; Santosh, P. An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines 2022, 10, 1684. https://doi.org/10.3390/biomedicines10071684
Singh J, Ameenpur S, Ahmed R, Basheer S, Chishti S, Lawrence R, Fiori F, Santosh P. An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines. 2022; 10(7):1684. https://doi.org/10.3390/biomedicines10071684
Chicago/Turabian StyleSingh, Jatinder, Shashidhar Ameenpur, Ruksana Ahmed, Salah Basheer, Samiya Chishti, Rosie Lawrence, Federico Fiori, and Paramala Santosh. 2022. "An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome" Biomedicines 10, no. 7: 1684. https://doi.org/10.3390/biomedicines10071684
APA StyleSingh, J., Ameenpur, S., Ahmed, R., Basheer, S., Chishti, S., Lawrence, R., Fiori, F., & Santosh, P. (2022). An Observational Study of Heart Rate Variability Using Wearable Sensors Provides a Target for Therapeutic Monitoring of Autonomic Dysregulation in Patients with Rett Syndrome. Biomedicines, 10(7), 1684. https://doi.org/10.3390/biomedicines10071684