The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Design and Patient Population
2.1.2. Treatment Identification
2.2. Methods
2.2.1. Determination of CV Risk Factors and Co-Morbidities
2.2.2. Anthropometric Measurements and Clinical Examinations
2.2.3. B-Mode Transthoracic and Doppler Examination
2.2.4. Estimating Glomerular Filtration Rate
2.2.5. Insulin Resistance Determination
2.2.6. Blood Sampling and Biomarker Measurement
2.2.7. Baselines and End-Point Measurements
2.2.8. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Changes in Serum Levels of Apelin in Comparison with NT-proBNP during Dapagliflozin Administration
3.3. Changes in Clinical Data and Hemodynamics Characteristics during Dapagliflozin Administration
3.4. Association of the Changes in Apelin Levels with Hemodynamics Characteristics after Administration of Dapagliflozin
3.5. Reproducibility of Apelin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Lehrke, M.; Marx, N. Diabetes Mellitus and Heart Failure. Am. J. Med. 2017, 130, S40–S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aune, D.; Schlesinger, S.; Neuenschwander, M.; Feng, T.; Janszky, I.; Norat, T.; Riboli, E. Diabetes mellitus, blood glucose and the risk of heart failure: A systematic review and meta-analysis of prospective studies. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1081–1091. [Google Scholar] [CrossRef]
- Jankauskas, S.S.; Kansakar, U.; Varzideh, F.; Wilson, S.; Mone, P.; Lombardi, A.; Gambardella, J.; Santulli, G. Heart failure in diabetes. Metabolism 2021, 125, 154910. [Google Scholar] [CrossRef]
- Kristensen, S.L.; CHARM Investigators and Committees; Jhund, P.; Lee, M.; Køber, L.; Solomon, S.D.; Granger, C.B.; Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; et al. Prevalence of Prediabetes and Undiagnosed Diabetes in Patients with HFpEF and HFrEF and Associated Clinical Outcomes. Cardiovasc. Drugs Ther. 2017, 31, 545–549. [Google Scholar] [CrossRef]
- McHugh, K.; DeVore, A.D.; Wu, J.; Matsouaka, R.A.; Fonarow, G.C.; Heidenreich, P.A.; Yancy, C.W.; Green, J.B.; Altman, N.; Hernandez, A.F. Heart Failure with Preserved Ejection Fraction and Diabetes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 602–611. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Dunlay, S.M.; Givertz, M.M.; Aguilar, D.; Allen, L.A.; Chan, M.; Desai, A.S.; Deswal, A.; Dickson, V.V.; Kosiborod, M.N.; Lekavich, C.L.; et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement from the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/HFSA heart failure guideline update. Circulation 2019, 140, e294–e324. [Google Scholar] [CrossRef]
- Myhre, P.L.; Vaduganathan, M.; Claggett, B.; Packer, M.; Desai, A.S.; Rouleau, J.L.; Zile, M.; Swedberg, K.; Lefkowitz, M.; Shi, V.; et al. B-Type Natriuretic Peptide During Treatment with Sacubitril/Valsartan: The PARADIGM-HF Trial. J. Am. Coll. Cardiol. 2019, 73, 1264–1272. [Google Scholar] [CrossRef]
- Nougué, H.; Pezel, T.; Picard, F.; Sadoune, M.; Arrigo, M.; Beauvais, F.; Launay, J.; Cohen-Solal, A.; Vodovar, N.; Logeart, D. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: A mechanistic clinical study. Eur. J. Heart Fail. 2019, 21, 598–605. [Google Scholar] [CrossRef]
- Buchan, T.A.; Ching, C.; Foroutan, F.; Malik, A.; Daza, J.F.; Hing, N.N.F.; Siemieniuk, R.; Evaniew, N.; Orchanian-Cheff, A.; Ross, H.J.; et al. Prognostic value of natriuretic peptides in heart failure: Systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Yap, E.P.; Kp, M.M.J.; Ramachandra, C.J. Targeting the Metabolic-Inflammatory Circuit in Heart Failure with Preserved Ejection Fraction. Curr. Heart Fail. Rep. 2022, 19, 63–74. [Google Scholar] [CrossRef] [PubMed]
- McLellan, J.; Bankhead, C.R.; Oke, J.L.; Hobbs, F.D.R.; Taylor, C.J.; Perera, R. Natriuretic peptide-guided treatment for heart failure: A systematic review and meta-analysis. BMJ Evid.-Based Med. 2020, 25, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Berezin, A.A.; Lichtenauer, M. Myokines and Heart Failure: Challenging Role in Adverse Cardiac Remodeling, Myopathy, and Clinical Outcomes. Dis. Markers 2021, 2021, 6644631. [Google Scholar] [CrossRef] [PubMed]
- Zannad, F.; Ferreira, J.P.; Pocock, S.J.; Anker, S.D.; Butler, J.; Filippatos, G.; Brueckmann, M.; Ofstad, A.P.; Pfarr, E.; Jamal, W.; et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020, 396, 819–829. [Google Scholar] [CrossRef]
- Zhou, Q.; Cao, J.; Chen, L. Apelin/APJ system: A novel therapeutic target for oxidative stress-related inflammatory diseases (Review). Int. J. Mol. Med. 2016, 37, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, Q.; You, T.; Guo, J.; Xu, R.; Guo, Q.; Lin, J.; Zhao, H. Effects of Apelin on Left Ventricular-Arterial Coupling and Mechanical Efficiency in Rats with Ischemic Heart Failure. Dis. Markers 2019, 2019, 4823156. [Google Scholar] [CrossRef]
- Dai, T.; Ramirez-Correa, G.; Gao, W.D. Apelin increases contractility in failing cardiac muscle. Eur. J. Pharmacol. 2006, 553, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Najafipour, H.; Hekmat, A.S.; Nekooian, A.A.; Esmaeili-Mahani, S. Apelin receptor expression in ischemic and non-ischemic kidneys and cardiovascular responses to apelin in chronic two-kidney–one-clip hypertension in rats. Regul. Pept. 2012, 178, 43–50. [Google Scholar] [CrossRef]
- Pang, H.; Han, B.; Yu, T.; Zong, Z. Effect of apelin on the cardiac hemodynamics in hypertensive rats with heart failure. Int. J. Mol. Med. 2014, 34, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Goidescu, C.M.; Vida-Simiti, L.A. The apelin-APJ system in the evolution of heart failure. Clujul Med. 2015, 88, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alba, A.C.; Agoritsas, T.; Jankowski, M.; Courvoisier, D.; Walter, S.D.; Guyatt, G.H.; Ross, H.J. Risk Prediction Models for Mortality in Ambulatory Patients with Heart Failure: A systematic review. Circ. Heart Fail. 2013, 6, 881–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, E.S.; Irwin, N.; O’Harte, F.P. Potential Therapeutic Role for Apelin and Related Peptides in Diabetes: An Update. Clin. Med. Insights: Endocrinol. Diabetes 2022, 15, 11795514221074679. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Kazemi-Bajestani, S.M.R.; Patel, V.; Wang, W.; Oudit, G.Y. Targeting the ACE2 and Apelin Pathways Are Novel Therapies for Heart Failure: Opportunities and Challenges. Cardiol. Res. Pract. 2012, 2012, 823193. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Wang, Z.; Zhang, R.; Sun, W.; Chen, X. The Role of Apelin/Apelin Receptor in Energy Metabolism and Water Homeostasis: A Comprehensive Narrative Review. Front. Physiol. 2021, 12, 632886. [Google Scholar] [CrossRef]
- Topuz, M.; Cosgun, M.; Akkuş, O.; Bulut, A.; Sen, O.; Topuz, A.N.; Caylı, M. Effect of Spironolactone on Plasma Apelin-12 Levels in Patients with Chronic Systolic Heart Failure. Acta Cardiol. Sin. 2016, 32, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Segers, V.F.M.; De Keulenaer, G.W. Autocrine Signaling in Cardiac Remodeling: A Rich Source of Therapeutic Targets. J. Am. Heart Assoc. 2021, 10, e019169. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Jie, B.; Luo, J.; Chen, L.; Jia, Y.; Guo, L.; Zhao, Y.; Chen, X.; Zhu, X.; Teng, X.; et al. Increased plasma level of apelin with NYHA grade II and III but not IV. Amino Acids 2020, 52, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Japp, A.G.; Cruden, N.; Barnes, G.; Van Gemeren, N.; Mathews, J.A.; Adamson, J.; Johnston, N.; Denvir, M.; Megson, I.; Flapan, A.D.; et al. Acute Cardiovascular Effects of Apelin in Humans: Potential role in patients with chronic heart failure. Circulation 2010, 121, 1818–1827. [Google Scholar] [CrossRef]
- Winkle, P.; Goldsmith, S.; Koren, M.J.; Lepage, S.; Hellawell, J.; Trivedi, A.; Tsirtsonis, K.; Abbasi, S.A.; Kaufman, A.; Troughton, R.; et al. A First-in-Human Study of AMG 986, a Novel Apelin Receptor Agonist, in Healthy Subjects and Heart Failure Patients. Cardiovasc. Drugs Ther. 2022, 1–13. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, D.; Li, L.; Chen, L. Apelin/APJ System: A Novel Therapeutic Target for Myocardial Ischemia/Reperfusion Injury. DNA Cell Biol. 2016, 35, 766–775. [Google Scholar] [CrossRef]
- O’Carroll, A.-M.; Lolait, S.J.; Harris, L.E.; Pope, G.R. The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J. Endocrinol. 2013, 219, R13–R35. [Google Scholar] [CrossRef]
- Berezin, A.E. Plausible effects of sodium-glucose cotransporter-2 inhibitors on adverse cardiac remodelling. Eur. J. Prev. Cardiol. 2021, zwab203. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Y.; Tse, G.; Korantzopoulos, P.; Letsas, K.P.; Zhang, Q.; Li, G.; Lip, G.Y.H.; Liu, T. Effect of sodium-glucose cotransporter-2 inhibitors on cardiac remodelling: A systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2022, 28, 1961–1973. [Google Scholar] [CrossRef]
- Sujana, C.; Salomaa, V.; Kee, F.; Costanzo, S.; Söderberg, S.; Jordan, J.; Jousilahti, P.; Neville, C.; Iacoviello, L.; Oskarsson, V.; et al. Natriuretic Peptides and Risk of Type 2 Diabetes: Results from the Biomarkers for Cardiovascular Risk Assessment in Europe (BiomarCaRE) Consortium. Diabetes Care 2021, 44, 2527–2535. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.; Kozhuharov, N.; Coats, A.J.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Sattar, N.; Brueckmann, M.; Jamal, W.; Cotton, D.; et al. Empagliflozin in Patients with Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPER-OR-Reduced Trial. J. Am. Coll. Cardiol. 2021, 77, 1381–1392. [Google Scholar] [CrossRef] [PubMed]
- Mordi, N.A.; Mordi, I.R.; Singh, J.S.; McCrimmon, R.J.; Struthers, A.D.; Lang, C.C. Renal and Cardiovascular Effects of SGLT2 Inhibition in Combination with Loop Diuretics in Patients With Type 2 Diabetes and Chronic Heart Failure: The RECEDE-CHF Trial. Circulation 2020, 142, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, P.; Fu, L.; Sun, L.; Shen, W.; Wu, Q. Comparative Cardiovascular Outcomes of SGLT2 Inhibitors in Type 2 Diabetes Mellitus: A Network Meta-Analysis of Randomized Controlled Trials. Front. Endocrinol. 2022, 13, 802992. [Google Scholar] [CrossRef]
- Zhang, J.; Huan, Y.; Leibensperger, M.; Seo, B.; Song, Y. Comparative effects of sodium-glucose cotransporter 2 inhibitors on Serum electrolyte Levels in patients with type 2 diabetes: A Pairwise and Network Meta-Analysis of Randomized Controlled Trials. Kidney360 2022, 3, 477–487. [Google Scholar] [CrossRef]
- Rao, S. Use of Sodium-Glucose Cotransporter-2 Inhibitors in Clinical Practice for Heart Failure Prevention and Treatment: Beyond Type 2 Diabetes. A Narrative Review. Adv. Ther. 2022, 39, 845–861. [Google Scholar] [CrossRef]
- Chilton, R.J. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes. Metab. 2020, 22, 16–29. [Google Scholar] [CrossRef]
- Than, A.; Cheng, Y.; Foh, L.-C.; Leow, M.K.-S.; Lim, S.C.; Chuah, Y.J.; Kang, Y.; Chen, P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol. Cell. Endocrinol. 2012, 362, 227–241. [Google Scholar] [CrossRef]
- Koufakis, T.; Mustafa, O.G.; Ajjan, R.A.; Garcia-Moll, X.; Zebekakis, P.; Dimitriadis, G.; Kotsa, K. From Skepticism to Hope: The Evolving Concept of the Initiation and Use of Sodium-Glucose Cotransporter 2 Inhibitors in Hospitalized Patients. Drugs 2022, 82, 949–955. [Google Scholar] [CrossRef]
- Castan-Laurell, I.; Dray, C.; Valet, P. The therapeutic potentials of apelin in obesity-associated diseases. Mol. Cell. Endocrinol. 2021, 529, 111278. [Google Scholar] [CrossRef]
Variables | Values | |
---|---|---|
Demographics and anthropomorphic parameters | ||
Age, year | 52 (41–64) | |
Male, n (%) | 100 (65.4) | |
BMI, kg/m2 | 25.6 ± 2.8 | |
Waist circumference, cm | 85.1 ± 3.2 | |
WHR, units | 0.85 ± 0.05 | |
Comorbidities and CV risk factors | ||
Dyslipidemia, n (%) | 127 (83.0) | |
Hypertension, n (%) | 132 (86.3) | |
Stable CAD, n (%) | 49 (32.0) | |
Smoking, n (%) | 63 (41.2) | |
Abdominal obesity, | 71 (46.4) | |
Microalbuminuria, n (%) | 47 (30.7) | |
LV hypertrophy, n (%) | 123 (80.3) | |
CKD 1–3 grades, n (%) | 35 (22.9) | |
Atrial fibrillation, n (%) | 9 (5.90) | |
HF classification | ||
HFpEF, n (%) | 48 (31.4) | |
HFmrEF, n (%) | 49 (32.0) | |
HFrEF, n (%) | 56 (36.6) | |
II/III HF NYHA class, n (%) | 103 (67.3)/50 (32.7) | |
Hemodynamics | ||
SBP, mm Hg | 129 ± 6 | |
DBP, mm Hg | 78 ± 5 | |
LVEDV, mL | 161 (154–170) | |
LVESV, mL | 86 (80–93) | |
LVEF, % | 46 (39–54) | |
LVMMI, g/m2 | 154 ± 5 | |
LAVI, mL/m2 | 39 (34–45) | |
E/e’, unit | 13.5 ± 0.3 | |
Biomarkers | ||
eGFR, mL/min/1.73 m2 | 75 ± 4.0 | |
HOMA-IR | 7.95 ± 2.3 | |
Fasting glucose, mmol/L | 5.62 ± 1.3 | |
HbA1c, % | 6.59 ± 0.02 | |
Creatinine, mcmol/L | 108.6 ± 8.5 | |
TC, mmol/L | 6.43 ± 0.60 | |
HDL-C, mmol/L | 0.97 ± 0.17 | |
LDL-C, mmol/L | 4.38 ± 0.10 | |
TG, mmol/L | 2.21 ± 0.17 | |
NT-proBNP, pmol/mL | 2615 (1380–3750) | |
Apelin, ng/mL | 4.75 (2.84–7.32) | |
Concomitant medications | ||
ACEI, n (%) | 72 (47.1) | |
Ramipril 10 mg daily | 10 (6.5) | |
Ramipril 5–7.5 mg daily | 6 (3.9) | |
Ramipril 2.5 mg daily | 3 (1.96) | |
Perindopril 10 mg daily | 41 (26.8) | |
Perindopril 5 mg daily | 12 (7.8) | |
ARB, n (%) | 25 (16.3) | |
Valsartan 320 mg daily | 12 (7.8) | |
Valsartan 160 mg daily | 13 (8.5) | |
ARNI, n (%) | 56 (36.6) | |
Sacubitril/valsartan 97/103 mg OD | 52 (34.0) | |
Sacubitril/valsartan 97/103 mg twice per day | 2 (1.30) | |
Beta-blocker, n (%) | 136 (88.9) | |
Bisoprolol 10 mg daily | 33 (21.6) | |
Bisoprolol 5–7.5 mg daily | 31 (20.3) | |
Bisoprolol 2.5 mg daily | 4 (2.60) | |
Nebivolol 10 mg daily | 20 (13.1) | |
Nebivolol 5–7.5 mg daily | 12 (7.84) | |
Carvedilol 50 mg daily | 19 (12.4) | |
Carvedilol 25–37.5 mg daily | 17 (11.1) | |
I/f blocker, n (%) | 21 (13.7) | |
Ivabradin 10 mg daily | 21 (13.7) | |
Calcium channel blocker, n (%) | 27 (17.6) | |
Amlodipine 10 mg daily | 2 (1.3) | |
Amlodipine 5 mg daily | 25 (16.3) | |
MRA, n (%) | 105 (68.6) | |
Eplerenon 50 mg daily | 56 (36.6) | |
Eplerenon 25 mg daily | 49 (32.0) | |
Loop diuretic, n (%) | 132 (86.2) | |
Furosemide > 160 mg weekly | 50 (32.7) | |
Furosemide < 160 mg weekly | 42 (27.5) | |
Torasemide 80–160 mg daily | 12 (7.84) | |
Torasemide < 80 mg daily | 28 (18.3) | |
Antiplatelet, n (%) | 135 (88.2) | |
Acetylsalicylic acid 75 mg daily | 86 (56.2) | |
Clopidogrel 75 mg daily | 49 (32.0) | |
Anticoagulant, n (%) | 18 (11.8) | |
Dabigatran 220–300 mg daily | 9 (5.90) | |
Rivaroxaban 10–20 mg daily | 9 (5.90) | |
Anti-diabetics agents, n (%) | 141 (92.2) | |
Metformin 1000–3000 mg daily | 94 (61.4) | |
Metformin < 1000 mg daily | 47 (30.7) | |
Statins, n (%) | 151 (98.7) | |
Rosuvastatin 40 mg daily | 112 (73.2) | |
Rosuvastatin 20–30 mg daily | 39 (25.5) |
Variables | Baseline | 6 Month | Δ% | p Value |
---|---|---|---|---|
Clinical characteristics | ||||
BMI, kg/m2 | 25.6 ± 2.8 | 24.1 ± 1.9 | −4.30 | 0.11 |
II HF NYHA class, n (%) | 103 (67.3) | 122 (79.7) | +15.6 | 0.04 |
III HF NYHA class, n (%) | 50 (32.7) | 31 (20.3) | −24.8 | 0.04 |
Hemodynamics | ||||
SBP, mm Hg | 129 ± 6 | 127 ± 5 | −1.60 | 0.21 |
DBP, mm Hg | 78 ± 5 | 75 ± 6 | −3.8 | 0.22 |
LVEDV, mL | 161 (154–170) | 158 (150–167) | −1.90 | 0.46 |
LVESV, mL | 86 (80–93) | 80 (76–85) | −7.00 | 0.04 |
LVEF, % | 46 (39–54) | 50 (44–57) | +8.70 | 0.05 |
LVMMI, g/m2 | 154 ± 5 | 141 ± 5 | −8.40 | 0.02 |
LAVI, mL/m2 | 39 (34–45) | 35 (31–39) | −10.3 | 0.04 |
E/e’, unit | 13.5 ± 0.3 | 10.7 ± 0.5 | −20.7 | 0.02 |
Biomarkers | ||||
eGFR, mL/min/1.73 m2 | 75 ± 4.0 | 78 ± 3.0 | +4.0 | 0.82 |
Fasting glucose, mmol/L | 5.62 ± 1.3 | 4.90 ± 1.0 | −12.8 | 0.24 |
HbA1c, % | 6.59 ± 0.02 | 6.47 ± 0.03 | −1.74 | 0.31 |
Creatinine, µmol/L | 108.6 ± 8.5 | 112.5 ± 7.0 | +3.50 | 0.28 |
TC, mmol/L | 6.43 ± 0.60 | 6.31 ± 0.50 | −1.90 | 0.42 |
HDL-C, mmol/L | 0.97 ± 0.17 | 0.98 ± 0.15 | +1.00 | 0.66 |
LDL-C, mmol/L | 4.38 ± 0.10 | 4.34 ± 0.12 | −5.20 | 0.43 |
TG, mmol/L | 2.21 ± 0.17 | 2.15 ± 0.14 | −2.71 | 0.56 |
Variables | Univariate Logistic Regression | Multivariate Logistic Regression | ||||||
---|---|---|---|---|---|---|---|---|
B Coefficient | SD | p Value | B Coefficient | SD | T Value | p Value | VIF | |
NYHA class | −0.89 | 0.22 | 0.42 | - | ||||
ΔLVESV | −2.01 | 0.76 | 0.05 | −1.99 | 0.52 | 0.70 | 0.12 | 1.82 |
ΔLVEF | 3.26 | 0.48 | 0.040 | 2.73 | 0.50 | 1.42 | 0.046 | 2.37 |
ΔLVMMI | −2.55 | 1.12 | 0.001 | −2.10 | 1.08 | −1.18 | 0.052 | 3.03 |
ΔLAVI | −6.13 | 1.57 | 0.001 | −6.10 | 1.44 | −2.44 | 0.001 | 2.94 |
ΔE/e’ | −7.83 | 1.22 | 0.001 | −7.83 | 1.22 | −2.81 | 0.001 | 3.20 |
ΔNT-proBNP | −1.07 | 0.64 | 0.012 | −0.88 | 0.63 | 0.56 | 0.050 | 3.95 |
Variables | B Coefficient | SD | T Value | p Value |
---|---|---|---|---|
HFpEF | ||||
ΔLVEF | 1.52 | 0.43 | 0.51 | 0.066 |
ΔLVMMI | −2.70 | 1.90 | −2.33 | 0.040 |
ΔLAVI | −5.20 | 1.37 | −1.26 | 0.024 |
ΔE/e’ | −8.70 | 1.40 | −3.60 | 0.001 |
HFmrEF | ||||
ΔLVEF | 3.55 | 0.74 | 3.90 | 0.042 |
ΔLVMMI | −2.36 | 0.81 | −1.04 | 0.12 |
ΔLAVI | −4.90 | 0.64 | −2.70 | 0.050 |
ΔE/e‘ | −6.10 | 1.06 | −2.78 | 0.044 |
HFrEF | ||||
ΔLVEF | 3.92 | 0.66 | 4.12 | 0.001 |
ΔLVMMI | −1.80 | 0.90 | −1.18 | 0.054 |
ΔLAVI | −7.50 | 0.82 | −3.55 | 0.001 |
ΔE/e‘ | −7.20 | 1.15 | −3.40 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezin, A.A.; Fushtey, I.M.; Berezin, A.E. The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure. Biomedicines 2022, 10, 1751. https://doi.org/10.3390/biomedicines10071751
Berezin AA, Fushtey IM, Berezin AE. The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure. Biomedicines. 2022; 10(7):1751. https://doi.org/10.3390/biomedicines10071751
Chicago/Turabian StyleBerezin, Alexander A., Ivan M. Fushtey, and Alexander E. Berezin. 2022. "The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure" Biomedicines 10, no. 7: 1751. https://doi.org/10.3390/biomedicines10071751
APA StyleBerezin, A. A., Fushtey, I. M., & Berezin, A. E. (2022). The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure. Biomedicines, 10(7), 1751. https://doi.org/10.3390/biomedicines10071751