Next Article in Journal
Potential Gonado-Protective Effect of Cichorium endivia and Its Major Phenolic Acids against Methotrexate-Induced Testicular Injury in Mice
Previous Article in Journal
Latency Trend Analysis as a Guide to Screening Malignancy Survivors for Second Primary Thyroid Cancer
Previous Article in Special Issue
Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Immunomodulatory Role of Neuropeptides in the Cornea

1
Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
2
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
3
Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
4
Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
5
Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
*
Author to whom correspondence should be addressed.
Biomedicines 2022, 10(8), 1985; https://doi.org/10.3390/biomedicines10081985
Submission received: 30 June 2022 / Revised: 11 August 2022 / Accepted: 12 August 2022 / Published: 16 August 2022
(This article belongs to the Special Issue Neuropeptides in Biomedicines)

Abstract

:
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.

Graphical Abstract

1. Introduction

Corneal transparency is vital for vision, and there are various anatomical and physiological factors that contribute to the maintenance of corneal transparency. The human cornea consists of three major cellular layers with anterior and posterior limiting laminae among them [1]. The outermost layer is the corneal epithelium, which consists of non-keratinized, stratified layers of epithelial cells with immune cells at the basal layer [2], and the innermost layer is the corneal endothelium, made up of a single layer of specialized cells [3,4]. Between the corneal epithelium and endothelium lies the corneal stroma, which is an avascular collagenous layer interspersed with keratocytes and resident corneal leukocytes (RCLs) [2,5,6,7,8]. The immune cells reside not only in the peripheral cornea as previously thought, but are also located in the central cornea, albeit in part in an immature phenotype [2,7,8,9]. The cornea is the most densely innervated tissue of the body and the corneal sensory nerves, together with RCLs, serve as the sentinels of the cornea [2,7,10,11]. Corneal sensory nerves may be activated by warming or cooling the ocular surface, changes in osmolality, mechanical stimulation, trauma, infections, and a variety of chemical irritants, whereas RCLs detect foreign antigens [7,10,12,13,14]. Several studies have shown a significant structural association and a functional interdependence between immune cells and sensory nerves in the cornea [9,15,16,17,18,19,20]. Since both the corneal nerves and RCLs share the expression of neuropeptides and their respective receptors, crosstalk may occur via the neuropeptide–receptor interaction [17,21,22,23]. Thus, understanding the immunomodulatory role of corneal neuropeptides could lead to the discovery of new therapeutic targets for the maintenance and restoration of corneal transparency in different pathological conditions or after surgical procedures such as corneal transplantation and refractive surgeries. Although recent studies have explored the distribution of neuropeptides and their receptors on the ocular surface [24,25,26], their functional role is yet to be fully understood. This review focuses on the neuropeptides and immune cells in the cornea and examines the functional contribution of neuropeptides in corneal immunity studied so far.

2. Corneal Immune Privilege

Ocular immune privilege was first described by Medawar as the phenomenon of the prolonged survival of a skin allograft placed in the anterior chamber of a rabbit eye [27]. Because the allografts were rejected only after neovascularization had developed within the grafts, immune privilege was attributed to the passive mechanism of the immunological ignorance of the antigens within the eye, due to the lack of an antigen exit from the grafts through lymphatics and the lack of an immune cell entrance through blood vessels [27]. Further studies suggested that the immune system was aware of the presence of foreign antigens inside the eye and that ocular immune privilege was also maintained by active mechanisms, including immune tolerance induced from within the eye and the immunosuppressive ocular microenvironment [11,28,29,30].
The cornea is an immune-privileged tissue, as demonstrated by its ability to support the prolonged, and even indefinite, survival of allogeneic corneal grafts. Further, allogeneic corneal grafts demonstrate a prolonged survival time when transplanted in a conventional immunological site, such as under the kidney capsule, as compared with skin grafts [11,27,28,29,30,31]. The major contributors to corneal immune privilege are believed to be the lack of lymphatic and blood vessels, the expression of immunomodulatory factors, the presence of a unique repertoire of resident antigen-presenting cells [29,32], and the expression of Fas-ligand [33]. The major populations of resident corneal antigen-presenting cells include conventional dendritic cells (cDCs) [2,7], plasmacytoid dendritic cells (pDCs) [8], and macrophages (MΦ) [34]. After the discovery of mature (MHCII+) cDCs in the peripheral cornea and limbus [35], subpopulations of immature (MHCII, CD80 and CD86) central and peripheral cDCs were also discovered [2,7]. Immature corneal cDCs, which are unable to sensitize T cells with antigen, are distributed throughout the cornea, whereas mature cDCs are present only in the peripheral cornea [36]. Plasmacytoid dendritic cells (pDCs) are another population of RCL that have recently been found within the anterior stroma and are functionally and phenotypically distinct from cDCs [8,9]. pDCs produce type I interferons (IFNs) and have additional roles in the regulation of immune tolerance, as well as T cell immunity [37,38,39,40,41,42,43,44,45,46,47]. The various subsets of corneal resident macrophages are mostly present in the posterior stroma during the steady state [2,19,34,48,49,50,51,52]. Other immune cell subsets are largely absent from the cornea in the steady state; however, peripheral immune cells are recruited to the cornea in response to acute inflammation/injury, and include neutrophils [53], γδ-T cells [54], memory T cells [55], and natural killer cells [56], whereas CD4+ effector T cells are recruited in chronic inflammation such as in dry eye disease [57].

3. Corneal Innervation

The cornea is densely innervated by both sensory and autonomic nerve fibers. The cornea receives sensory innervation mostly from the nasociliary branch of the ophthalmic division and some from the maxillary division of the trigeminal ganglion [10]. Animal studies have shown that the cornea also receives sympathetic innervation from the superior cervical ganglion [58,59] and parasympathetic innervation from the ciliary ganglion [10,60].
Previous studies have shown close physical and functional connections between sensory nerves and RCLs in the cornea, leading to a growing interest in understanding the interactions between them [9,19]. Corneal nerves also regulate intracorneal chemotaxis and the homing of leukocytes, which are important in maintaining corneal homeostasis [61,62]. In diabetic mice, the local depletion of cDC alters the density of corneal nerve endings, corneal sensitivity, and delays post-wound nerve regeneration [16]. Similarly, the local depletion of cDCs in primary acute herpes simplex virus (HSV)-1 keratitis in mice results in the severe loss of corneal nerves [63]. Sensory denervation by trigeminal axotomy leads to decreased tear secretion, a loss of immune privilege, and an enhanced cDC migration and motility [64]. While corneal cDCs display minimal motility during the steady state [18,65], following sensory denervation, corneal cDCs greatly increase motility in a random walk fashion [21]. Sensory denervation also upregulates vascular adhesion molecules, thereby promoting leukocyte adhesion, rolling, and sticking and ultimately leading to an influx of bone marrow-derived cells into the cornea [20,21,66]. Recent studies have shown that these mechanisms of neuroimmune crosstalk in the cornea could largely be via interactions between neuropeptides expressed by corneal nerves and their receptors in RCLs [19,21,67,68,69,70].

4. Neuropeptides and Their Receptors in the Cornea

Neuropeptides are signaling molecules (3–100 amino acids in length) that mediate a wide range of physiological functions through their receptors. Neuropeptides and their respective receptors are expressed by various other cells, including immune cells, in addition to the nerve fibers in the cornea (Table 1).
The sensory nerves in the cornea express, among other things, Substance P (SP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating peptide (PACAP), α-melanocyte-stimulating hormone (α-MSH), and galanin [154,155,156,157,158,159,160]. Besides the classical neurotransmitters, the corneal sympathetic nerves also express serotonin and neuropeptide Y, whereas the parasympathetic nerves contain vasoactive intestinal polypeptide (VIP), met-enkephalin, neuropeptide Y (NPY), and galanin [158,161,162,163,164,165,166]. Other neuropeptides, such as neurotensin, adrenomedullin (AM), somatostatin (SST), brain natriuretic peptide, cholecystokinin, vasopressin, and beta-Endorphin, have also been detected in the cornea, but whether they are expressed by sensory or autonomic nerves has not been clearly demonstrated [165,167,168].
Neuropeptides exert their effects mostly through interactions with their receptors, which belong to the superfamily of G protein-coupled receptors (GPCRs). These contain seven transmembrane domains and are coupled with intracellular heterotrimeric G proteins, which transduce the signal intracellularly (Table 2).
The heterotrimeric G proteins consist of three subunits—the α, β, and γ subunits. Upon receptor activation, the G protein is activated and the α subunit separates from the βγ dimer. G proteins are classified according to the activity of the Gα subunit as either Gs, Gq/11, or Gi/o (Figure 1).
Gs Signaling: The neuropeptide receptors belonging to the Gs family include the VIP and PACAP receptors (VPAC1R, VPAC2R, and PAC1R), the adrenomedullin and CGRP receptors (AM1R, AM2R, and CGRPR), and two of the tachykinin receptors (NK1R and NK2R).
  • Gq/11 Signaling: The neuropeptide receptors belonging to the Gq/11 family include the PACAP receptor (PAC1R) and the tachykinin receptors (NK1R, NK2R, and NK3R).
  • Gi/o Signaling: The neuropeptide receptors belonging to the Gi/o family include the neuropeptide Y receptors (NPY1R, NPY2R, NPY4R, and NPY5R) and the somatostatin receptors (SST1R, SST2R, SST3R, SST4R, and SST5R).

4.1. Substance P (SP)

SP is a highly conserved prototypical member of the tachykinin family of peptides [213], which also contains other neuropeptides—neurokinin A, neurokinin B, neuropeptide K, and neuropeptide γ [214,215]. Because SP was originally isolated from intestinal extracts, purified and dried in powder form, it was named “Substance P” [216,217]. Although SP was first discovered in equine gut extracts, its homologues have been found in mice, rabbits, and humans, and it is known to be expressed by many other tissues and cell types, including neurons.

4.1.1. Transcriptional Regulation

SP and neuropeptide K are products of the same gene tachykinin precursor 1 (Tac1), whereas neurokinin B is the product of tachykinin precursor 3 (Tac3). The Tac1 gene contains CRE sites that are bound by ATF2 and CELF, a member of the C/EBP family [218]. Additionally, the Tac1 gene is upregulated by nerve growth factor (NGF) and brain-derived growth factor (BDNF), and Substance P itself may work in an autocrine manner to increase Tac1 expression [71,219]. In vivo studies have revealed that the ECR1 enhancer interacts with the Meis1 transcription factor to control the expression of the Tac1 gene in the amygdala [220] (Figure 2a).

4.1.2. Metabolism and Signaling

The stability of SP depends on enzyme activity, the bound/unbound state, or cellular internalization dynamics. The half-life of SP is longer in plasma (hours) than in tissues (seconds to minutes) [221,222,223]. Unbound SP is hydrolyzed by p-endopeptidase in tissues and by angiotensin-converting enzyme (ACE) in plasma [224].
SP coupling with NK1R activates phospholipase C and adenylate cyclase to generate inositol trisphosphate/diacylglycerol (IP3/DAG) and cyclic adenosine monophosphate (cAMP) second messenger systems, respectively [225,226,227]. IP3 increases the level of cytosolic Ca2+, DAG activates protein kinase C (PKC), and cAMP activates protein kinase A (PKA). These molecules signal mitogen-activated protein kinases (MAPKK or MEKs), and the expression of cytokines is eventually mediated by the translocation of extracellular signal-related kinase 1/2 (ERK1/2) to the nucleus [228,229,230,231,232,233,234,235,236,237,238].
Desensitization starts when SP-bound NK1R is phosphorylated by G-protein-coupled receptor kinases (GRKs), followed by the formation of SP/NK1R-β-arrestin complex and internalization [239]. The exposure to the acidic environment hydrolyzes the phosphate groups from NK1R and releases the bound SP molecule, which is degraded by proteolytic enzymes [240]. Resensitization results from recycling NK1R to the cell surface [241].

4.1.3. Immunomodulation and Inflammation

SP plays a substantial role in promoting pain [242,243] and inflammation [244]. SP mediates the recruitment and activation of immune cells by regulating cytokine and chemokine production, such as macrophage inflammatory proteins (MIP-1β or CCL4), MIP-2 or CXCL2, monocyte chemoattractant protein-1 (MCP-1 or CCL2), CCL5, and IL-8 [68,179,228,229,230,231,232,233,234,235,236,237,238,245,246]. SP presumably works mostly through NK1R since the NK1R antagonist can abrogate the recruitment of lymphocytes and monocytes to the inflamed site [232], and NK1R knockout mice have an attenuated chemotactic response of neutrophils [245]. In addition, SP promotes T cell proliferation through the upregulation of IL-2 expression in vitro [247,248,249,250,251], and NK1R knockout mice have reduced T cell proliferation [252]. SP can also modulate the production of cytokines (IL-1, IL-4, and IFN-γ) that induce the expression of NK1R in macrophages [253,254]. The expression of NK1R in T cells is modulated by SP through cytokines IL-12, IL-18, and TNFα, which induce NK1R expression, or IL-10 and TGF-β, which inhibit NK1R expression [255,256,257].
Studies have shown that SP:
  • Enhances phagocytosis in leukocytes (neutrophils and macrophages) through the stimulation of oxidative burst, synthesis, and the release of reactive oxygen intermediates [258,259,260,261,262].
  • Induces macrophages and eosinophils to secrete pro-inflammatory cytokines TNF-α, IL-1β, IL-2, and IL-6 [263,264].
  • Promotes mast cell activation via the upregulation of Toll-like receptor (TLR)-2 and the release of histamine and serotonin [265,266], as well as the release of IL-8, TNF-a, and VEGF by increasing the expression of corticotropin-releasing hormone receptor-1 (CRHR-1) [195,267,268,269].
  • Enhances NK cell activity and migration [270,271] by upregulating their production of cytotoxic-associated molecules (perforin, granzyme) and natural cytotoxicity receptors (NCR) [272].

4.1.4. Role of Substance P in the Cornea

In the cornea, SP and its receptor, NK1R, are expressed mainly by sensory nerves from the trigeminal ganglion, the corneal epithelium, stromal keratocytes, and immune cells [273,274,275,276]. SP has been detected in normal human tears, which suggests SP’s role in corneal tear film homeostasis [277,278]. SP released from the sensory nerves also induces increased tear secretion [279], and mice with NK1R gene deficiency have reduced basal tear production and develop signs of dry eye disease [280]. SP also regulates the expression of tight junctions (E-cadherin and ZO-1) and inhibits the hyperosmotic-stress-induced apoptosis of corneal epithelial cells in ex vivo cultures [281,282]. Moreover, NK1R knockout mice have an excessive exfoliation of the superficial corneal epithelial cells, indicating the protective role of the SP-NK1R signal transduction pathway [280]. However, a recent study showed that the excessive expression of SP results in accelerated senescence and the exhaustion of residual stem cells, leading to limbal stem cell deficiency (LSCD) [283]. In a preclinical model of LSCD, SP ablation or NK1R blockade significantly increased epithelial wound healing and corneal transparency compared with the wild type [283].
SP-NK1R signaling in the cornea promotes inflammation, nociception, neovascularization, and wound healing [227,284,285,286,287]. During inflammation, SP promotes leukocyte extravasation and chemotaxis [68,179] by inducing the production of IL-1β and chemotactic molecule IL-8 in corneal epithelial cells [179,284,285,288]. The leukocytes recruited in the cornea also contribute to the production of SP and other pro-inflammatory cytokines such as VEGF, TNF-α, IL-1β, IL-8, IL-12p40, IL-23, and IFN-γ [289,290] and have reduced levels of the anti-inflammatory cytokine IL-10 [227]. Through promigratory and angiogenic mechanisms, SP may have a role in the pathogenesis of pterygia [291], allergic conjunctivitis [292], and corneal graft rejection [293]. A correlation of high levels of SP and increased angiogenesis has been reported in neovascularized corneas and in cases of conjunctivitis [284,285]. Similarly, SP/NK1R antagonism suppresses pathologic corneal lymphangiogenesis in DED induced in wild-type C57BL/6 J mice using a controlled-environment chamber without scopolamine [294]. In addition, leukocyte recruitment and cytokine release induced by SP cause an increased severity of herpes simplex virus (HSV) viral [295] and bacterial (Pseudomonas aeruginosa) keratitis [288,296]. Besides its pro-inflammatory functions, SP has also been shown to promote corneal wound healing by stimulating the increased synthesis of chemokine IL-8, which enhances the migration of epithelial cells and keratocytes expressing NK1R [287]. In addition, SP has a synergistic action with insulin growth factor-1 (IGF-1) via NK1R to improve the barrier function and attachment of corneal epithelium to the basement membrane during wound healing [297,298]. Taken together, these findings suggest that SP and its metabolites are important factors in maintaining corneal homeostasis and in enhancing wound healing and that SP also promotes inflammation in the cornea. The pro-inflammatory and angiogenic activities of SP can be blocked by using NK receptor antagonists, with potential therapeutic applications.

4.2. Calcitonin Gene-Related Peptide (CGRP)

CGRP belongs to the calcitonin family of peptides, comprised of calcitonin, adrenomedullin, adrenomedullin 2 (intermedin), calcitonin receptor-stimulating peptide (CRSP), and amylin [299,300,301]. CGRP was first discovered as a product of the alternative splicing of calcitonin mRNA in the thyroids of aging rats [302]. CGRP is primarily localized to C and Aδ sensory fibers throughout the body and plays a role in pain and vasodilation [303].

4.2.1. Transcriptional Regulation

Two distinct genes, CALC-I and CALC-II, produce two forms of CGRP: the CALC-I gene can produce either calcitonin or αCGRP (CGRP-I), and the CALC-II gene produces βCGRP (CGRP-II) [304,305]. The regulation of CGRP production is quite complex and involves many different mediators. The pro-inflammatory molecule tumor necrosis factor (TNF)α activates many signaling pathways, including NF-κB, Jun N-terminal kinase (JNK), and MAP kinase signaling. TNFα has been shown to induce the expression of CGRP, and this effect is thought to be predominantly mediated through the MAP kinase pathway, as indicated by pharmacologic inhibition studies [306]. CGRP transcription is increased following treatment with NGF alone or NGF in combination with activin, which acts synergistically with NGF to promote a further increase in CGRP transcription [307]. Glucocorticoids, such as dexamethasone, have been shown to downregulate CGRP; however, this occurred in only a subset of the cell lines examined, whereas no effect was seen in others. This suggests that additional factors are required for the dexamethasone-induced downregulation of CGRP and that these factors are presumably expressed in a tissue-specific manner [308] (Figure 3a).

4.2.2. Metabolism and Signaling

CGRP is stored in vesicles at the sensory nerve terminal and released by calcium-dependent exocytosis [310,311]. Several mechanisms of the removal or breakdown of CGRP have been proposed: the reuptake of CGRP into the neuron via active transport, the hydrolysis of CGRP by tryptase or endothelin-converting enzyme-1 (ECE-1), or removal by neutral endopeptidase enzyme neprilysin [312,313].
After CGRP receptor binding, the Gαs-dependent stimulation of adenylate cyclase increases the synthesis of cAMP, activating PKA and opening K+ channels [314]. CGRP also activates the MAPKs and extracellular signal-regulated kinase 1/2 (ERK1/2). These signaling pathways lead to vasodilation and protect cultured vascular smooth muscle cells from oxidative stress-induced apoptosis [315].
The desensitization of the signals and cAMP responses are attenuated after a second exposure to CGRP due to the activity of PKA and PKC [316,317,318]. After the transient stimulation of the receptor, the CLR is phosphorylated and the β-arrestin complex is internalized to clathrin-coated pits for endocytosis and rapidly recycled back to the plasma membrane [319]. However, after the chronic stimulation of receptors, the internalized receptor is degraded in the lysosome and new receptors need to be synthesized [320].

4.2.3. Immunomodulation and Inflammation

CGRP has been shown to play a role in pain transmission (e.g., migraine; for a comprehensive review on this topic, the reader is referred to Spekker et al. [321]) and has both pro- and anti-inflammatory activities: CGRP causes vasodilation, which promotes inflammation, and it increases cAMP production, which inhibits the release of inflammatory mediators [322,323,324]. CGRP can also modulate the differentiation, proliferation, and activities of immune cells, such as lymphocytes, cDCs, and macrophages, through various cytokines [325,326,327,328,329,330,331,332].

4.2.4. Role of CGRP in the Cornea

CGRP-positive neurons in the trigeminal ganglia and corneal nerve fibers expressing CGRP are significantly more abundant than those positive for SP [25]. Similar to SP, CGRP is an important mediator in the nociceptive functions of corneal nerves and plays a role in the “trophic” efferent function of corneal sensory nerves [333,334]. Several in vivo studies have shown that CGRP plays an important role in corneal epithelial wound healing by facilitating corneal epithelial cell migration and differentiation [335]. During corneal epithelial wound healing, the CGRP-positive nerve fibers regenerate, and the concentration of CGRP increases in tears [336,337,338]. The level of CGRP in tears is also directly correlated with the lacrimal function [339]. Moreover, exogenous CGRP-treated corneas have a higher epithelial wound healing rate compared with control corneas [337]. These effects could be due to binding CGRP to corneal epithelial cells, resulting in the synthesis of chemotactic proteins, such as IL-8, and leukocyte infiltration, which can be inhibited by the CGRP receptor antagonist CGRP8–37 [179].

4.3. Adrenomedullin (AM)

AM belongs to the amylin/intermedin/CGRP family of polypeptides and was originally isolated from human pheochromocytoma in 1993 [84,340]. AM is widely distributed in numerous tissues and organs with a local paracrine and autocrine role in regulating various functions, such as vasodilatation, cell growth, hormone secretion, natriuresis, and antimicrobial effects [341,342,343].

4.3.1. Transcriptional Regulation

AM is encoded by the AM gene contained in human chromosome 11 and in mouse chromosome 7 [344]. The transcription of the adrenomedullin gene can be synergistically induced by the actions of stimulatory protein 1 (Sp1) and AP-2α, which each bind to nonoverlapping sites within the promoter region [345]. Other important mediators of adrenomedullin transcription include the hypoxia-inducible factors (HIFs) and inflammatory cytokines. HIF-1α induces adrenomedullin expression in response to both hypoxia and IL-1β [346]. The myc transcription factor also regulates adrenomedullin transcription; however, myc has been shown to have different regulatory roles in different species. For instance, in mouse fibroblasts, myc is a potent repressor of adrenomedullin transcription [347]; however, both the rat and human adrenomedullin genes are transactivated by myc [348] (Figure 4a).

4.3.2. Metabolism and Signaling

AM is a circulating peptide mostly found in biological fluids such as plasma (bound to complement factor H), urine, saliva, sweat, milk, amniotic fluid, and cerebrospinal fluid [349]. AM has a half-life of 16–20 min and is rapidly degraded by matrix metalloprotease 2 and aminopeptidase [341,350].
Three signal transduction pathways are activated by AM: the cAMP, Akt, and MAPK/ERK pathways [351,352,353]. AM activates adenylate cyclase and increases intracellular levels of cAMP, which causes PKA activation and increased calcium (Ca2+) efflux. Calcium release can also be stimulated by AM through phospholipase C activation and inositol-1,4,5-P3 formation [354]. However, the regulation of Ca2+ efflux may vary depending on the cell type and environment. The intracellular Ca2+ increase due to AM also causes the activation of the NO-dependent pathway, which inhibits endothelial cell apoptosis [355,356]. AM also activates the PI3K/Akt and MAPK/ERK signaling pathways in vascular endothelial cells and myocytes to promote endothelial cell growth, inducing cardioprotection and antiapoptotic effects [357,358,359].

4.3.3. Immunomodulation and Inflammation

AM synergizes with stem cell factor and FMS-like tyrosine kinase-3 (Flt-3) ligand to induce the proliferation of primitive human CD34+CD38lin cells and promotes the expansion of CD34+ progenitors in culture [360,361]. AM may be used to improve the expansion of hematopoietic stem cells from cord blood, which are of great importance for tissue engineering and clinical use [341,344].

4.3.4. Role of Adrenomedullin in the Cornea

AM, along with its receptor complex CLR/RAMP2 expression (mRNA and protein), is more prevalent in the corneal epithelium versus the stroma plus endothelium of the naive cornea [362]. The expression is significantly increased after inflammation induced by thermal cautery, intrastromal suture placement, or ciliary nerve axotomy [362]. Although the role of AM/CLR/RAMP2 in the cornea is not very well understood, the sum length of suture-induced heme- and lymph-angiogenesis is reduced by the depletion of AM with siRNA compared with control siRNA, indicating that the modulation of AM in the cornea can reduce pathological corneal angiogenesis [363]. Furthermore, the ubiquitous temporal deletion of the CLR receptor by an inducible Cre-loxP system rapidly develops dilated corneoscleral lymphatics associated with corneal edema and inflammation [187]. Collectively, these studies indicate that AM may serve as a target for corneal angiogenesis.

4.4. Vasoactive Intestinal Polypeptide (VIP)

VIP is a member of the secretin/glucagon superfamily, which includes secretin, growth hormone-releasing peptide (GHRP), and pituitary adenylate cyclase-activating peptide (PACAP) [364]. VIP is produced by neurons, endocrine, and immune cells, and it is known to function as an inhibitory neurotransmitter in both the central and peripheral nervous systems [364,365].

4.4.1. Transcriptional Regulation

The VIP gene contains multiple regulatory elements. For instance, in the immediate upstream of the VIP promoter, there is a cAMP-responsive element (CRE), and further upstream, a tissue-specifier element (TSE) has also been identified [366]. The CRE site is absolutely required for the cAMP-induction of VIP, as determined by the deletion of this element. Additionally, the deletion of the CRE site reduces the constitutive expression of VIP, whereas the deletion of the TSE site alone is sufficient for the silencing of constitutive expression [366]. A key transcription factor in regulating VIP gene expression is activator protein 1 (AP-1), a heterodimer of c-Fos and c-Jun (and related proteins). Evidence suggests that constitutive and inducible gene expressions are regulated, at least in part, by different AP-1 complexes [366]. Further control over VIP expression is achieved by enhancer/repressor elements, approximately 5 kb upstream of the promoter region [367] (Figure 5a).

4.4.2. Metabolism and Signaling

The binding of VIP to its receptors causes an increase in the levels of cAMP, adenylate cyclase, and phospholipase C, thus initiating a downstream signaling cascade [369]. The VIP-bound receptors are internalized and then recycled to the cell membrane [370]. Therefore, a lag phase in the cellular response to VIP occurs when the receptors are saturated.
The effects of VIP are mostly produced either by cAMP-dependent or -independent pathways [371]. The cAMP-dependent pathway reduces the activity of nuclear factor κB (NFκB) via the phosphorylation of CREB (cAMP response element binding protein) by PKA leads to the binding of CREB to CREB-binding protein (CBP), which reduces its interaction with NFκB, or via the phosphorylation of MAP/ERK kinase (MEK) kinase 1 (MEKK1) by PKA, inhibiting the phosphorylation of the TATA-box binding protein (TBP) and reducing its affinity for NFκB and DNA [371,372]. The cAMP-dependent pathway also inhibits the phosphorylation of the Janus kinase/signal transducer and the activator of its transcription (JAK/STAT) pathway [373,374]. The cAMP-independent pathway inhibits the activity of inhibitory κB kinase (IκK), which prevents the nuclear translocation of NFκB subunits by increasing the stabilization of IκB/NFκB complexes [371,375].

4.4.3. Immunomodulation and Inflammation

VIP has been shown to have both pro- and anti-inflammatory effects through the modulation of immune cells. Depending on the timepoint or receptor type, VIP may have different effects on developing cDCs, inducing an inhibitory or immunogenic/mature cDC phenotype [376,377,378]. VIP primes the oxidative response of neutrophils to formyl-methionyl-leucyl-phenylalanine (FMLP) and phorbol myristate acetate (PMA) [379,380]. VIP has autocrine functions in mast cells that produce VIP and histamine through the classical IgE-mediated pathway, and VIP can also stimulate the release of histamine by mast cells, leading to inflammatory effects [381,382].
Studies show that VIP can also have an anti-inflammatory effect by inhibiting the lipopolysaccharide (LPS)- or interferon (IFN)-γ-induced synthesis of cytokines TNF-α, IL-6, IL-12, and nitric oxide (NO) by macrophages and monocytes via the cAMP-dependent pathway (JAK/STAT) [364,383,384]. In allergic or parasitic diseases, the increased innervation of VIP-positive nerves is associated with eosinophil accumulation and the inhibition of IL-16 synthesis, as well as the chemotaxis of immune cells [67,385]. Besides the inhibition of inflammatory factors, VIP also stimulates the production of anti-inflammatory cytokines such as IL-10 [386,387].

4.4.4. Role of VIP in the Cornea

Studies have revealed the role of VIP in exerting anti-inflammatory effects and modulating wound healing in alkali-burned corneas, microbial keratitis, and corneal allograft survival [388,389,390]. VIP exerts these corneal effects in a sonic hedgehog (SHH)-dependent manner, which is an important downstream signaling molecule of the VIP/VPAC1 pathway [391]. Blocking VIP-VPAC1 signaling in corneas delays healing in normal mouse corneas, and the addition of exogenous VIP improves corneal wound healing in diabetic mice [392]. In addition, VIP also promotes corneal nerve regeneration by inducing the expression of neurotrophic factors NGF and CNTF [338].
VIP also promotes the survival of corneal endothelial cells under oxidative stress and, therefore, improves the integrity of corneal endothelial cells during donor cornea tissue storage [393,394,395]. Moreover, VIP significantly accelerates corneal epithelial wound closure in a murine model of diabetes [391]. VIP also improves corneal transplantation outcomes by limiting inflammatory cytokine (IFN-γ, TNF-α)-mediated apoptosis, thus increasing endothelial cell density and corneal graft survival [396].
VIP has a well-established role in improving outcomes in models of bacterial and fungal keratitis. Its benefit in these settings may be due to several mechanisms, including: the restoration of the extracellular matrix [397], the modulation of pro- and anti-inflammatory Toll-like receptors [398], and the downregulation of adhesion molecules [399]. In fungal keratitis, VIP treatment downregulates pro-inflammatory cytokine expression, and this effect can be reversed by a VIP antagonist [400].

4.5. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)

PACAP belongs to the VIP/glucagon/secretin family, with a well-conserved amino acid sequence sharing 68% homology with VIP [364]. PACAP is involved in various developmental and physiological processes, such as neural differentiation, neurite outgrowth, neuroprotection, neurotransmission, hormone secretion, vasodilation, and immunosuppression [96,401,402,403,404,405,406,407,408].

4.5.1. Transcriptional Regulation

The PACAP gene, Adcyap1, also contains a CRE site, and cAMP and Ca2+ act in a synergistic manner to upregulate PACAP transcription [409]. Interestingly, PACAP also appears capable of inducing its own gene expression, and this occurs in a protein kinase C-dependent manner. Furthermore, PACAP and NGF can act synergistically to promote PACAP transcription, and this appears to involve extracellular signal-regulated kinase (ERK) signaling [410]. Novel splice variants, mostly within the 5’UTR region of the PACAP transcript have been identified, and their expression occurs in a tissue-specific manner [411]. One splice variant within the coding region of the transcript, although distinct from the PACAP region, has been identified in activated T cells [411]. The functional significance of these variants remains unclear, although they may regulate the translation of PACAP in a tissue-specific manner (Figure 6a).

4.5.2. Metabolism and Signaling

VPAC1 and VPAC2 receptors primarily activate the adenylate cyclase pathway, whereas PAC1-R activates both adenylate cyclase and phospholipase C [413]. PACAP/PAC1-R binding is associated with the recruitment of Gαs and Gαq/11, activating plasma membrane adenylyl cyclase, which increases cellular cAMP and initiates PKC/phospholipase C downstream signaling [103,414,415,416]. After PACAP/PAC1-R internalization and endosomal signaling, a MAPK and Akt signaling cascade can be initiated [416,417,418,419,420]. The internalized vesicles are rapidly colocalized with β-arrestin, and the endosomal markers Rab5 or Rab7a suggest vesicular trafficking to lysosomal compartments for potential degradation [421,422,423,424,425]. PACAP promotes JunB and inhibits c-Jun phosphorylation via the MEKK1/MEK4/JNK pathway, and it inhibits TBP phosphorylation through the MEKK1/MEK3/6/p38 MAPK pathway, resulting in the transcriptional inactivation of various cytokine promoters [426,427,428].

4.5.3. Immunomodulation and Inflammation

PACAP has both pro- and anti-inflammatory roles through the modulation of innate and acquired immunity, depending on the physiological and pathological conditions [429,430]. In LPS-induced macrophages, PACAP inhibits the secretion of several pro-inflammatory mediators, such as TNF-α, IL-12, IL-1, IL-6, and nitric oxide (NO) via both the cAMP-dependent and cAMP-independent pathways, whereas the production of the anti-inflammatory cytokine IL-10 is stimulated via the cAMP-dependent pathway [431,432]. PACAP-treated macrophages can induce Th2-type cytokines (IL-4 and IL-5) and inhibit Th1-type cytokines (IFN-γ, IL-2) in Ag-primed CD4 T cells [433,434]. PACAP also plays a role in thymic T cell maturation, inhibiting the induced cell death of T lymphocytes from glucocorticoid-induced apoptosis [430,435].

4.5.4. Role of PACAP in the Cornea

PACAP expression has been reported in corneal nerve fibers and small-to-medium-sized neurons in the trigeminal ganglion via immunocytochemistry [195]. PACAP plays a role in tear secretion, and, therefore, PACAP-knockout mice have been shown to develop dry eye-like symptoms such as corneal keratinization and reduced tear production [190]. PACAP eyedrops can stimulate tear secretion via the AC/cAMP/PKA pathway by stimulating the translocation of aquaporin 5 from the cytosol to the membrane of lacrimal acinar cells [190]. Exogenous PACAP application can also induce corneal nerve regeneration, improve corneal sensitivity, and accelerate corneal epithelial wound healing after injury or refractive surgery [70,436,437].
Corneal endothelial cells also express PACAP and all three receptors. PACAP has been shown to have a protective role in corneal endothelial cells against ultraviolet B exposure by increasing the tight junction protein expression and transepithelial electrical resistance [70,438]. PACAP also protects against growth factor deprivation-induced decreases in corneal endothelial cell viability by inducing epidermal growth factor receptor phosphorylation and MAPK/ERK1/2 pathway activation [439].

4.6. Neuropeptide Y (NPY)

NPY belongs to the neuroendocrine polypeptide NPY family, which also includes peptide YY (PYY) and pancreatic polypeptide [440]. It was first isolated from the porcine hypothalamus in 1982 [441]. NPY is co-stored and co-released with norepinephrine in the peripheral postganglionic sympathetic nerve in peripheral tissues, such as the retina, smooth muscle, the intestine, bone marrow, and the thymus [442]. Studies have also shown that stimulated or mature immune cells can also synthesize NPY [443,444,445].

4.6.1. Transcriptional Regulation

Similar to the other transcriptional mechanisms discussed so far, NGF induces an upregulation in NPY transcription, and there is a synergistic effect between combinatorial treatment with NGF and the activators of cAMP and protein kinase C [446]. Further characterization of the NPY gene has identified an AP-2 binding site near the promoter region, and this represents one mechanism by which NGF can induce transcription [447]. NPY promotes feeding behavior, so, not surprisingly, the satiety hormone leptin regulates NPY transcription. However, this process is more complex than initially thought, as leptin may upregulate or downregulate NPY transcription, and the effect may be dictated in a cell type-specific manner. The leptin-mediated downregulation of NPY appears to be mediated through SOCS3, which has a putative binding site within the NPY promoter region and serves as a negative regulator of transcription within the hypothalamus [448]. However, in vitro studies using various neural cell lines have demonstrated that leptin induces an upregulation in NPY transcription and is dependent on JAK-STAT signaling; importantly, however, no SOCS3 expression was detected in these cell lines [448,449]. Another negative regulator of NPY transcription appears to be a mammalian target of rapamycin (mTOR) signaling. The inhibition of mTOR signaling by rapamycin leads to a robust increase in NPY transcription, and a similar effect has been seen in treatments with dexamethasone. Notably, there was no synergistic effect found between dexamethasone and rapamycin treatment, suggesting that the upregulation of NPY by dexamethasone is mediated by mTOR inhibition [450] (Figure 7a).

4.6.2. Metabolism and Signaling

NPY receptors mediate the inhibition of cAMP synthesis, the activation of phospholipase C, and the mobilization of intracellular Ca2+ [452,453]. NPY/Y1 receptor is desensitized by rapid, clathrin-dependent internalization and recycled at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE) [454].
NPY exerts its effects primarily through Y1 receptors activating Ca2+-dependent pathways: PKC and calcium/calmodulin-dependent kinase II (CaMKII) [455,456,457]. These pathways are also amplified by Y5 the receptor-mediated, Ca2+-independent inhibition of the AC/PKA pathway at the high-affinity peak, leading to an ERK1/2 signaling cascade [458].

4.6.3. Immunomodulation and Inflammation

Various studies have reported the close proximity and interaction between NPY-positive nerves and immune cells [459]. NPY is expressed by the sympathetic nervous system and immune cells, and it is upregulated under inflammation. NPY modulates immune cell function in a paracrine or autocrine manner [460,461]. NPY/Y1R interaction also has both pro- and anti-inflammatory effects on immune cells.
NPY has a promigratory effect on cDCs, which leads to increased inflammation; however, the maturation of cDCs and the synthesis of inflammatory cytokines are inhibited in a murine model of inflammation [462]. NPY also upregulates the expression of IL-6 and IL-10 via human immature cDCs [463,464]. NPY can also enhance opsonin-dependent phagocytosis via human neutrophils, and cDCs in Y1R-knockout mice have impaired phagocytic capacity, hindering T cell activation [465,466]. NPY also modulates the recruitment and chemotaxis of lymphocytes by affecting their adhesion and tropism, depending on the type of receptor, tissue, and age [462,467]. NPY also inhibits the proliferation of lymphocytes, but this effect declines with aging [468]. NPY/Y1R interaction in bone marrow decreases the number of pro-B, pre-B, and immature B cells and increases that of mature B cells [469]. NPY/Y1R binding can also regulate the recruitment of monocytes and macrophages in rodents by decreasing their adhesion and promoting migration [470].
NPY can also exert pro-inflammatory effects on macrophages by promoting the synthesis of pro-inflammatory cytokines [462]. NPY significantly increases the expression of TNF-α, C-reactive protein, and monocyte chemoattractant protein 1 (MCP1) in macrophages during inflammation [471]. However, NPY also exerts anti-inflammatory effects by stimulating the release of macrophage anti-inflammatory cytokines IL-10 and IL-1RA and transforming macrophages into the M2-like phenotype [445].

4.6.4. Role of NPY in the Cornea

NPY has been shown to be distributed in the human corneal epithelium, corneal myofibroblasts, and corneal nerves near the limbus, as identified by immunohistochemistry [472]. Corneal epithelial cells and myofibroblasts also express the NPY receptor, suggesting an autocrine or paracrine role in corneal homeostasis and repair [472].
Interestingly, one study demonstrated that, in diabetic patients with ocular surface disease, NPY was significantly increased compared with healthy controls via conjunctival impression cytology [473]. The NPY levels also correlated with increases in ICAM-1, possibly indicating the role of NPY in the inflammation of the ocular surface [473]. However, the same study failed to detect an increase in NPY among allergic conjunctivitis patients [474]. NPY has also been reported to be closely involved with angiogenesis and wound healing in mouse corneas [475]. In that study, corneal micropockets were created with a modified von Graefe cataract knife in both eyes of C57BL/6 wt or NPY Y2−/− mice, and a micropellet of aluminum sulfate coated with slow-release polymer-hydron, containing FGF-2, VEGF, or NPY, was implanted into each corneal pocket to induce neovascularization in the corneal avascular tissue [475]. The measured angiogenic responses, such as vessel length, clock hours, and neovascularization area, were all significantly greater in the NPY-implanted corneas than in the negative controls [475]. A selective ligand for the Y2 receptor induced a similar angiogenic pattern to unprocessed NPY in mouse corneas, suggesting that the Y2 receptor subtype is responsible for the mediation of NPY-stimulated angiogenesis [475]. Furthermore, the deletion of the Y2 receptor in mice impaired the angiogenic response in vivo, and NPY completely failed to induce corneal blood vessel growth in these knockout mice [475].

4.7. Somatostatin (SST)

SST is a cyclic peptide that belongs to the somatostatin family of regulatory peptides. SST mainly produces a neuroendocrine inhibitory effect and, hence, is also known as a growth hormone-inhibiting hormone [476]. SST is distributed throughout the nervous system, gastrointestinal tract, and pancreas. It is also known to regulate neurotransmission, memory formation, and anti-angiogenesis in addition to inhibiting endocrine and exocrine secretions [477].

4.7.1. Transcriptional Regulation

The somatostatin gene contains three sites upstream of its promoter to which IDX-1, a homeobox transcription factor, binds. This binding increases the transcription of somatostatin, and the site-directed mutagenesis of these binding sites abrogates the effect [478]. Quinolinic acid (an NMDA receptor agonist) and NMDA itself have been shown to induce somatostatin transcription; pre-treating with an NMDA antagonist blocks the induction of somatostatin transcription [479]. However, the exact signaling mechanisms linking the NMDA receptor to the transcription of somatostatin are not clear [479]. Additionally, CRE sites are present upstream of the somatostatin promoter, and, as expected, cAMP induces the transcription of the somatostatin gene [480]. Interestingly, there is evidence to suggest that this CRE site functions as an enhancer of basal somatostatin transcription, even in the absence of cAMP [481] (Figure 8a).

4.7.2. Metabolism and Signaling

SST has a plasma half-life between 1 and 3 min due to proteolytic degradation. SST interaction with different SST receptor subtypes mediates various signal transduction pathways depending on the cell type, including adenylate and guanylate cyclase; phospholipase A2 and C; K+ and Ca2+ channels; Na+–H+ exchanger; Src; Erk1/2; p38 MAPK; and tyrosine phosphatases [483,484,485,486]. SSTR2 and SSTR5 can modulate growth hormone, insulin, and glucagon release; SSTR3 can induce apoptosis; and SSTR1, SSTR2, and SSTR5 can inhibit the cell cycle [487].

4.7.3. Immunomodulation and Inflammation

Studies have shown SSR expression in immune cells using both fluorescent and radiolabeled SST, and the SSR expression is correlated with the activation and/or proliferation state of the immune cells [488,489]. SST is expressed in the nerves innervating the lymphoid organs and can modulate the responses of lymphocytes by influencing adhesion and motility [490,491,492]. SST can reduce the phagocytosis of human monocytes and macrophages. SST can both suppress and stimulate T lymphocyte proliferation and has antiangiogenic properties [493,494,495]. SST also modulates the immunoglobulin (IgE and IgG) production of plasma B cells [496].

4.7.4. Role of SST in the Cornea

SST has been detected in tear fluid, and the main source of SST in the ocular surface seems to be the lacrimal gland [201]. The expression of SST receptors has been reported in different tissues of the ocular surface, including the cornea, which expresses SSTR1 and SSTR2 [201,497]. This suggests the autocrine and paracrine role of SST in corneal immunology [201]. SST delivered in pellets containing 90 ng of basic fibroblast growth factor inhibited corneal neovascularization in a rat corneal pocket model of induced neovascularization [498]. In that study, a 200 ng dose of SST showed a significant inhibition of both the length and area of corneal neovascularization on day 7 [498]. SST (10 ng/μL) significantly promotes the healing of corneal defects in vivo in an alkali-induced corneal injury mouse model, but the mechanism remains elusive, as SST does not enhance the proliferation and migration of the human corneal epithelial cell line in vitro [499].

4.8. α-Melanocyte Stimulating Hormone (α-MSH)

α-MSH belongs to the melanocortin family of peptides, which includes α-, β-, γ-melanocyte-stimulating hormone (MSH) and adrenocorticotropic hormone (ACTH) [120,500]. Melanocortin peptides play an important role in modulating host defense mechanisms in mammals [124].

4.8.1. Transcriptional Regulation

α-MSH is encoded by the proopiomelanocortin hormone (POMC) gene [501]. Cells that can synthesize POMC, such as macrophages, keratinocytes, and neurons, produce α-MSH [120]. The release of corticotropin-releasing hormone due to infection or stress stimulates the production of POMC, which is ultimately processed into α-MSH peptides [502]. Both cAMP and intracellular Ca2+ enhance the expression of the POMC gene, although the POMC promoter lacks CRE sites [503] (Figure 9a).

4.8.2. Metabolism and Signaling

POMC is cleaved by prohormone convertases (C-terminal basic amino acids removed by carboxypeptidase E enzyme), amidated by peptidyl α-amidating monooxygenase enzyme, and acetylated by N-acetyl-transferase enzyme to form active acetyl α-MSH [120,501]. The removal of valine residue at the C-terminal catalyzed by prolylcarboxypeptidase inactivates α-MSH [120,505].

4.8.3. Immunomodulation and Inflammation

α-MSH can suppress both innate immune-mediated and adaptive immune-mediated inflammation [124,506,507,508]. α-MSH suppresses the production of inflammatory cytokines, ROIs, and NO in macrophages induced by endotoxin, IL-1β, and TNFα [502,509,510]. In addition, α-MSH activates suppressor cell activity in macrophages and suppresses the chemotactic activity of macrophages and neutrophils [69,511]. α-MSH exerts immunomodulatory effects on antigen-presenting cells, thereby promoting the expansion of inducible regulatory T cells [512]. Thus, α-MSH suppresses T cell-mediated inflammation by regulating effector T cell functions and suppressing the production of IFN-γ [508,513]. The immunomodulatory and anti-inflammatory effects of α-MSH (through the inhibition of NFκB activation), the blockade of accessory signals, and the induction of suppressor factors could be an important pathway driving immune tolerance [121,507,510].

4.8.4. Role of α-MSH in the Cornea

The cornea is an immune-privileged tissue, and melanocortin pathways have been shown to be important in the suppression of pro-inflammatory signals, the regulation of the immune response, and in the induction of tolerance on the ocular surface [509,514]. A-MSH also induces the production of TGF-β2, which is a major immunoregulatory molecule in the aqueous humor [514,515,516]. It has also been observed that α-MSH expression within the eye declines in the setting of intraocular autoimmune disease; however, the regulators of α-MSH expression remain unclear [514,517]. Moreover, in an experimental autoimmune uveitis model, mice treated with α-MSH had a reduction in inflammation, underscoring the immunoregulatory function of α-MSH within the eye [517,518].
Furthermore, α-MSH has well-established roles in several ocular surface diseases. The local delivery of α-MSH in a corneal transplantation model resulted in decreased IFN-γ and IL-2 gene expression and improved graft survival compared to controls [519]. Additional work in this area has further revealed that α-MSH enhances corneal endothelial cell survival, likely mediated through MC1R as a knockdown of this receptor’s decreased graft survival [520]. Recently, it has been shown that α-MSH reduces the severity of Aspergillus fumigatus keratitis [521]. In a scopolamine-induced model of dry eye disease, α-MSH promoted tear secretion and survival and restored goblet cell function [522,523].

4.9. Galanin (GAL)

Galanin belongs to the galanin family of peptides, including galanin-message-associated peptide (GMAP), galanin-like peptide (GALP), and alarin [524]. GAL was discovered at the Karolinska Institute in Stockholm in the 1980s [441].

4.9.1. Transcriptional Regulation

GAL is encoded by two separate genes: GAL/GMAP prepropeptide and galanin-like peptide (GALP) [525,526,527]. cJun/cFos proteins and the phorbol ester PMA can transactivate the GAL gene with a response mapped to the GAL promoter region where a CRE-like element binds to PMA, inducing gene expression mainly through the actions of Jun/ATF and CREB/ATF heterodimers [527,528] (Figure 10a).

4.9.2. Metabolism and Signaling

GAL exerts its effects via interaction with GAL receptors resulting in the activation of multiple transduction pathways. The GAL1 receptor interacts with the Gαi/αo class of G-proteins to inhibit adenylate cyclase (AC) and open GIRK channels [529,530,531]. GAL1 can also activate MAPK through a βγ-subunit of Gαi-mediated, PKC-independent mechanisms [532]. GAL2 can also stimulate MAPK activity through a PKC and the Gαo type of G-protein-dependent mechanisms [532]. Similarly, the activation of the Gαi/αo type of G-proteins by GAL2 can inhibit forskolin-stimulated cAMP production and inhibit CREB [531,533]. In addition, GAL2 can interact with the Gαq/11 class of G-proteins to stimulate phospholipase C activity and intracellular phosphoinositol turnover to release intracellular Ca2+ into the cytoplasm and open Ca2+-dependent channels [135,138,532]. Opening Ca2+ channels can phosphorylate PKB and suppress caspase-3 and caspase-9 activity [534,535]. GAL3 signaling is not very well understood, but studies have shown that GAL3 can activate the Gαi/αo type of G-proteins, resulting in AC inhibition and GIRK channels opening [138,536].

4.9.3. Immunomodulation and Inflammation

Galanin is widely expressed throughout the nervous and immune system, including in lymphoid organs, monocytes, macrophages, B cells, and T cells (both CD4+ and CD8+) [524]. GAL can affect these cells via the paracrine or endocrine signaling pathways. Since both PKA and PKC play a role in immunomodulation, the galanin system could be involved. During inflammation, GAL expression is markedly upregulated in the peripheral tissues, and various studies using animal models have reported the role of GAL in immunomodulation [524]. For example, GAL can modulate neutrophil sensitivity and IFNγ synthesis by NK cells when stimulated by the chemokines IL-12 and IL-18 [210,212,537]. In the nervous system, GAL is also suggested to be a modulator of inflammatory pain and nociception [538,539,540], with the inhibitory or excitatory effects depending on GAL concentration and the type of pain stimulus [541,542]. Studies using mouse models with GAL overexpression or knockout have shown that GAL affects the sensitivity of these animals to acute pain [543,544].

4.9.4. Role of GAL in the Cornea

In the cornea, GAL receptors 1–3 have been detected by immunohistochemistry in the basal layers of the epithelium, stroma, and endothelium [545]. These receptors could have a role in angiogenesis or wound healing through interactions with GAL in the tear film since GAL expression has been reported in the lacrimal glands [546,547]. Further studies are necessary to confirm the role of these receptors.

4.10. Methionine Enkephalin (Met-Enkephalin, MENK, [Met5]Enkephalin) or Opioid Growth Factor (OGF)

Enkephalins were first isolated as endogenous opioids in brain extracts in 1975 [548]. The physiological effects of enkephalins include their role in cell division, migration, differentiation, viability, analgesia, angiogenesis, neuroprotection, and wound repair [500,549]. MENK is a naturally occurring opioid peptide that is a member of the endogenous opiate family. MENK is present throughout the nervous system and at low concentrations in blood [549].

4.10.1. Transcriptional Regulation

MENK is encoded by the preproenkephalin gene, which is composed of three exons that are separated by two introns, codes for six copies of [Met5]-enkephalin, and one copy of [Leu5]-enkephalin [139,550,551]. The expression of the preproenkephalin gene is regulated by cAMP, phorbol esters, nicotine, and histamine [552] (Figure 11a).

4.10.2. Metabolism and Signaling

The biosynthesis of MENK involves the proteolysis and peptide cleavage of the proenkephalin prohormone within the secretory granules of the Golgi apparatus [554]. The biodegradation of enkephalins occurs via the cleavage of the Tyr-Gly bond via hydrolysis, followed by further degradation into shorter peptides (2–4 amino acids long) by nonspecific enkephalinases and aminopeptidases (NAP and NAP-2 in tissues; CD10 and CD13 in plasma) [555]. The half-life of enkephalins is 2–5 min in blood circulation [556,557].
The binding of enkephalins to opioid receptors dissociates the Gα and Gβγ subunits, which results in reducing K+ and Ca2+ influx in the cells. The Gα subunit hyperpolarizes the cell via direct interactions with inward-rectifying K+ channels and reduces the cAMP-dependent Ca2+ influx by inhibiting AC activity and cAMP formation. The Ca2+ influx is further reduced by the direct binding of the Gβγ subunit to the Ca2+ channels [558]. The resulting upregulation of p16 and p21 cyclin-dependent kinases halts the progression of the cell cycle from the G0/G1 phase to the S phase [559,560].

4.10.3. Immunomodulation and Inflammation

Opioid receptors have been detected in the membranes of immune cells, including T cells, NK cells, macrophages, and dendritic cells. Studies have shown that MENK and/or its active metabolites have neuroendocrine functions in modulating pain sensitivity and immunomodulatory roles, including the upregulation of CD8+ T cell activity, the inhibition of Treg activity, the stimulation of macrophage phagocytosis, enhancing antigen processing capacity of DCs, the proliferation of CD4+ Th1 cells and B cells, and the stimulation of NK cell responses [549,561,562,563,564,565]. However, MENK seems to modulate the immune function only in the presence of a strong immunostimulatory signal [566].

4.10.4. Role of MENK in the Cornea

MENK and its receptors have been shown to be present in the corneas of various species, including humans, mice, rats, and rabbits, and MENK is derived in an autocrine manner [158]. Studies using explant cultures and in vivo models of epithelial wound healing in rabbit corneas have demonstrated that MENK suppresses wound healing, and exposure to opioid antagonists, such as naloxone or naltrexone, blocks this effect [555,567,568]. Corneal wound healing is inhibited in the presence of MENK because it acts as a negative growth factor to repress cell division, DNA synthesis, and cell migration [567]. These effects are exerted via opioid receptor signaling as they can be blocked by disrupting opioid–receptor interactions using opioid antagonists [569].

4.11. Neurotensin (NT)

NT belongs to the neurotensin family of peptides, with various neuromodulatory effects on both the central and peripheral nervous systems [570]. NT was isolated as an endogenous tridecapeptide from bovine hypothalamic extracts, and the first observed property of NT was vasodilation [571]. NT can act both as a neurotransmitter and as a hormone in the body, regulating energy balance and control over homeostasis.

4.11.1. Transcriptional Regulation

NT is encoded by the neurotensin gene, which encodes a common precursor for two peptides: neuromedin N and NT [572]. The constitutive expression of the NT gene is regulated by a complex interplay between the proximal CRE/AP-1-like element and a region that binds orphan hormone receptor NR2F2 [573]. The C terminus of NR2F2 strongly represses, and the N-terminal domain antagonizes, the transcription of the NT gene [574]. Furthermore, various cis-regulatory motifs in the proximal 120 bp of the 5′-flanking sequence are required for the constitutive expression of the NT gene [573,575] (Figure 12a).

4.11.2. Metabolism and Signaling

NT is derived from precursor protein preproneurotensin following excision by prohormone convertases [572]. NT-NTR1 interaction induces intracellular signaling through PLC and the inositol phosphate signaling pathways, as well as through the MAPK pathway inhibition of Akt activity [577].

4.11.3. Immunomodulation and Inflammation

Studies have shown that NT can modulate pain transmission both as a facilitator and an inhibitor [578,579]. Furthermore, NT can also modulate the immune response by stimulating cytokine synthesis and immune cells chemotaxis. NT can exert its anti-inflammatory effects by suppressing the release of pro-inflammatory cytokines in macrophages, as well as the downregulation of pro-inflammatory signaling pathways NF-κB and JNK in dendritic cells [580]. In addition, NT inhibits the expression of the cytokines IL-6, TNF-α, IL-10, and VEGF and upregulates the ERK pathway [581].

4.11.4. Role of NT in the Cornea

NT receptors localize both in the cornea and the trigeminal ganglia [582], suggesting that NT and its analogues may be involved in antinociceptive functions in the cornea. Furthermore, the administration of NT analogues induces analgesic effects with minimal effects on corneal epithelial cell function at therapeutic doses [582].

5. Neuropeptides as Therapeutic Targets/Drugs for Corneal Diseases

As discussed above, neuropeptides in the cornea play an important role in immunomodulation and inflammation, and their levels are altered in ocular injuries/diseases (Table 3). The targeting of these neuropeptides and their receptors has been shown to have therapeutic benefits in corneal diseases.

5.1. Corneal Wound Healing

SP is the most well-studied neuropeptide in corneal wound healing as it enhances epithelial cell migration, adhesion, and the phosphorylation of cytoskeletal proteins [583]. Several clinical trials have been carried out using topical SP that show promising results, in that treatment with SP promoted re-epithelialization and wound healing in persistent corneal epithelial defects [584], spontaneous chronic corneal epithelial erosion [585], and neurotrophic keratopathies [586,587]. The topical application of SP has been reported to promote diabetic corneal epithelial wound healing by improving mitochondrial function and ROS scavenging capacity via SP/NK-1R signaling [287]. However, in a rabbit model, eyedrops containing both SP and IGF-1 need to be used to affect the promotion of corneal epithelial wound healing [583,588,589]. SP/IGF-1 application also improves the epithelial barrier function in animal models of neurotrophic keratopathy where SP is deficient [48,588,590,591,592]. In order to prevent the miosis induced by full-length SP, a short FGLM-amide sequence derived from the C-terminal of SP has been used along with IGF to stimulate corneal epithelial cell migration and enhance wound healing [593,594].

5.2. Dry Eye Disease (DED)

DED is a multifactorial disorder of the ocular surface characterized by chronic inflammatory features. The pathogenesis and progression of DED also involves an enhanced SP release from sensory terminals, which promotes pathological corneal lymphangiogenesis, Treg dysfunction, the maturation and activation of antigen-presenting cells, and induces the Th17 phenotype in the ocular surface [595]. Various studies in animal models of DED have shown that the administration of NK1R antagonist can suppress these mechanisms and reduce the severity of DED. In a desiccating stress-induced mouse model of DED, the blockade of SP/NK1R signaling with spantide I significantly reduces corneal neovascularization [596]. In another mouse model of DED using a controlled environment chamber, the topical application of NK1R antagonists CP-99,994 and L-733,060 reduced the clinical signs of DED by suppressing MHCII expression via antigen-presenting cells and by reducing Th17 cell activity [597]. In a similar model, NK1R antagonist L733,060 also inhibited pathological corneal lymphangiogenesis by suppressing VEGF-C, VEGF-D, and VEGF receptor-3 in the cornea [294]. Furthermore, treatment with spantide I effectively restores Treg function and suppresses pathogenic Th17 response [598,599].
Neuropeptides such as CGRP and NPY are reduced in the tears of DED patients and are associated with the severity of the disease [339]. Given that the loss of the PACAP gene in mice causes dry eye-like symptoms, such as corneal keratinization and tear reduction, PACAP eyedrops can stimulate tear secretion by increasing the water permeability of lacrimal acinar cells through aquaporin 5 (AQP5) [190].
The application of α-melanocyte-stimulating hormone (α-MSH) twice a day to the ocular surface of a scopolamine-induced, aqueous-deficient dry eye model in rats improves tear secretion, tear film stability, and corneal integrity; restores the number and size of conjunctival goblet cells; and corrects overexpression of proinflammatory factors such as TNF-α, IL-1β, and IFN-γ [522].

5.3. Infectious Keratitis

Herpes simplex virus type 1 (HSV-1) keratitis is associated with higher levels of SP in the corneal stroma, and the subconjunctival administration of spantide I significantly reduces IL-6 and CCL3 proteins and the influx of neutrophils and CD4 T cells, leading to reduced corneal opacity and angiogenesis [295].
SP is also associated with the increased severity of Pseudomonas aeruginosa keratitis [231,600], and the systemic administration of SP antagonists can control the inflammation, possibly through the early apoptosis of immune cells and the downregulation of TNF-α, IL-1β, IL-18, and MIP-2 [231,388,600,601].
The application of exogenous VIP also promotes healing in experimental Pseudomonas aeruginosa keratitis by regulating pro- and anti-inflammatory cytokines, growth factors, and Toll-like receptors [389].

5.4. Corneal Neovascularization

SP production increases after injuries to the corneal epithelium from alkali burns and in suture-induced corneal neovascularization animal models [285]. The administration of NK1R antagonists (Lanepitant and Befetupitant) can reduce corneal SP levels and leukocyte infiltration, leading to reduced corneal neovascularization [284,285]. A recent work suggests that the NK1R antagonist Fosaprepitant can inhibit pain transmission by decreasing SP release in the tear fluid and in the TG [276]. Furthermore, SP also mobilizes CD29+ stromal cells from the bone marrow to the injured tissue to accelerate wound healing in an alkali-burn model of mouse and rabbit eyes [602].

5.5. Corneal Transplantation

Significant amounts of SP impair Treg functions necessary for an allograft’s survival, and SP antagonists can restore corneal immune privilege [603]. Studies have shown that corneal allograft survival can be improved via the local application of the neuropeptides VIP [604] and α-MSH [519]. It has been shown that VIP effectively maintains endothelial cell integrity post-transplantation [604], and α-MSH can decrease inflammatory cell influx into the graft site, suppressing the delayed-type hypersensitivity response in hosts [519] using a mouse model of allogeneic corneal transplantation.

6. Conclusions

The neuropeptide modulation of immune cells is quite complex, and at times, studies have found pro- and anti-inflammatory properties for the same neuropeptide. While in some cases these differing effects may be due to differences in the expression of neuropeptide receptor isoforms and/or cell-type specific differences in downstream effectors, a further nuance to consider is that of the microenvironment. Likely, the ultimate effects of neuropeptide signaling are influenced by the presence of additional neuropeptides, cytokines, and the rest of the microenvironment. However, despite these gaps in knowledge, which warrant further study, there remains great promise for the potential to harness this signaling in the development of new therapies. Thus, the therapeutic effects and treatment outcomes of neuropeptides warrant the translation of the animal studies into clinical trials for the development of novel and effective interventions for ocular surface injuries and diseases.

Author Contributions

Conceptualization and design, S.P.; data curation, S.P. and B.M.K.; writing—original draft and revision preparation, S.P. and B.M.K.; writing—review and editing, S.P., B.M.K. and P.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by NIH Grant EY029602 (PH), the Research to Prevent Blindness Challenge grant, the Massachusetts Lions Eye Research Fund, Inc. and the Tufts Medical Center Institutional Support.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank Jun-Song Mo for his editing and Deshea Harris for logistics.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. DelMonte, D.W.; Kim, T. Anatomy and Physiology of the Cornea. J. Cataract Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef] [PubMed]
  2. Hamrah, P.; Zhang, Q.; Liu, Y.; Dana, M.R. Novel Characterization of MHC Class II–Negative Population of Resident Corneal Langerhans Cell–Type Dendritic Cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 639–646. [Google Scholar]
  3. Notara, M.; Alatza, A.; Gilfillan, J.; Harris, A.R.; Levis, H.J.; Schrader, S.; Vernon, A.; Daniels, J.T. In Sickness and in Health: Corneal Epithelial Stem Cell Biology, Pathology and Therapy. Exp. Eye Res. 2010, 90, 188–195. [Google Scholar] [CrossRef] [PubMed]
  4. Waring, G.O.; Bourne, W.M.; Edelhauser, H.F.; Kenyon, K.R. The Corneal Endothelium. Normal and Pathologic Structure and Function. Ophthalmology 1982, 89, 531–590. [Google Scholar] [CrossRef]
  5. Bron, A.J. The Architecture of the Corneal Stroma. Br. J. Ophthalmol. 2001, 85, 379–381. [Google Scholar] [CrossRef]
  6. Espana, E.M.; Birk, D.E. Composition, Structure and Function of the Corneal Stroma. Exp. Eye Res. 2020, 198, 108137. [Google Scholar] [CrossRef]
  7. Hamrah, P.; Liu, Y.; Zhang, Q.; Dana, M.R. The Corneal Stroma Is Endowed with a Significant Number of Resident Dendritic Cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, 581–589. [Google Scholar] [CrossRef]
  8. Jamali, A.; Hu, K.; Sendra, V.G.; Blanco, T.; Lopez, M.J.; Ortiz, G.; Qazi, Y.; Zheng, L.; Turhan, A.; Harris, D.L.; et al. Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis. Cell Rep. 2020, 32, 108099. [Google Scholar] [CrossRef]
  9. Jamali, A.; Kenyon, B.; Ortiz, G.; Abou-Slaybi, A.; Sendra, V.G.; Harris, D.L.; Hamrah, P. Plasmacytoid Dendritic Cells in the Eye. Prog. Retin. Eye Res. 2021, 80, 100877. [Google Scholar] [CrossRef]
  10. Müller, L.J.; Marfurt, C.F.; Kruse, F.; Tervo, T.M.T. Corneal Nerves: Structure, Contents and Function. Exp. Eye Res. 2003, 76, 521–542. [Google Scholar] [CrossRef]
  11. Hori, J.; Yamaguchi, T.; Keino, H.; Hamrah, P.; Maruyama, K. Immune Privilege in Corneal Transplantation. Prog. Retin. Eye Res. 2019, 72, 100758. [Google Scholar] [CrossRef] [PubMed]
  12. Belmonte, C.; Aracil, A.; Acosta, M.C.; Luna, C.; Gallar, J. Nerves and Sensations from the Eye Surface. Ocul. Surf. 2004, 2, 248–253. [Google Scholar] [CrossRef]
  13. Belmonte, C.; Carmen Acosta, M.; Gallar, J. Neural Basis of Sensation in Intact and Injured Corneas. Exp. Eye Res. 2004, 78, 513–525. [Google Scholar] [CrossRef]
  14. Unanue, E.R. Perspective on Antigen Processing and Presentation. Immunol. Rev. 2002, 185, 86–102. [Google Scholar] [CrossRef]
  15. Cruzat, A.; Witkin, D.; Baniasadi, N.; Zheng, L.; Ciolino, J.B.; Jurkunas, U.V.; Chodosh, J.; Pavan-Langston, D.; Dana, R.; Hamrah, P. Inflammation and the Nervous System: The Connection in the Cornea in Patients with Infectious Keratitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5136–5143. [Google Scholar] [CrossRef] [PubMed]
  16. Gao, N.; Lee, P.; Yu, F.-S. Intraepithelial Dendritic Cells and Sensory Nerves Are Structurally Associated and Functional Interdependent in the Cornea. Sci. Rep. 2016, 6, 36414. [Google Scholar] [CrossRef]
  17. Hamrah, P.; Seyed-Razavi, Y.; Yamaguchi, T. Translational Immunoimaging and Neuroimaging Demonstrate Corneal Neuroimmune Crosstalk. Cornea 2016, 35 (Suppl. 1), S20–S24. [Google Scholar] [CrossRef]
  18. Jamali, A.; Seyed-Razavi, Y.; Chao, C.; Ortiz, G.; Kenyon, B.; Blanco, T.; Harris, D.L.; Hamrah, P. Intravital Multiphoton Microscopy of the Ocular Surface: Alterations in Conventional Dendritic Cell Morphology and Kinetics in Dry Eye Disease. Front. Immunol. 2020, 11, 742. [Google Scholar] [CrossRef]
  19. Seyed-Razavi, Y.; Chinnery, H.R.; McMenamin, P.G. A Novel Association between Resident Tissue Macrophages and Nerves in the Peripheral Stroma of the Murine Cornea. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1313–1320. [Google Scholar] [CrossRef]
  20. Harris, D.L.; Yamaguchi, T.; Hamrah, P. A Novel Murine Model of Radiation Keratopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 3889–3896. [Google Scholar] [CrossRef]
  21. Wu, M.; Hill, L.J.; Downie, L.E.; Chinnery, H.R. Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog. Retin. Eye Res. 2022, 101105, Advance online publication. [Google Scholar] [CrossRef] [PubMed]
  22. Peters, E.M.J.; Ericson, M.E.; Hosoi, J.; Seiffert, K.; Hordinsky, M.K.; Ansel, J.C.; Paus, R.; Scholzen, T.E. Neuropeptide Control Mechanisms in Cutaneous Biology: Physiological and Clinical Significance. J. Investig. Dermatol. 2006, 126, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
  23. Goetzl, E.J.; Sreedharan, S.P. Mediators of Communication and Adaptation in the Neuroendocrine and Immune Systems. FASEB J. 1992, 6, 2646–2652. [Google Scholar] [CrossRef] [PubMed]
  24. He, J.; Kakazu, A.H.; Russ, T.C.; Bazan, H.E. Differential Expression Of Neuropeptide Y (Npy) And Its Receptor Y2 In Corneal Cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 286. [Google Scholar]
  25. He, J.; Bazan, H.E.P. Neuroanatomy and Neurochemistry of Mouse Cornea. Investig. Ophthalmol. Vis. Sci. 2016, 57, 664–674. [Google Scholar] [CrossRef]
  26. He, J.; Pham, T.L.; Bazan, H.E.P. Neuroanatomy and Neurochemistry of Rat Cornea: Changes with Age. Ocul. Surf. 2021, 20, 86–94. [Google Scholar] [CrossRef]
  27. Medawar, P.B. Immunity to Homologous Grafted Skin. III. The Fate of Skin Homographs Transplanted to the Brain, to Subcutaneous Tissue, and to the Anterior Chamber of the Eye. Br. J. Exp. Pathol. 1948, 29, 58–69. [Google Scholar]
  28. Taylor, A.W. Ocular Immune Privilege. Eye 2009, 23, 1885–1889. [Google Scholar] [CrossRef]
  29. Taylor, A.W. Ocular Immune Privilege and Transplantation. Front. Immunol. 2016, 7, 37. [Google Scholar] [CrossRef]
  30. Forrester, J.; Xu, H. Good News–Bad News: The Yin and Yang of Immune Privilege in the Eye. Front. Immunol. 2012, 3, 338. [Google Scholar] [CrossRef]
  31. Hori, J.; Joyce, N.; Streilein, J.W. Epithelium-Deficient Corneal Allografts Display Immune Privilege beneath the Kidney Capsule. Investig. Ophthalmol. Vis. Sci. 2000, 41, 443–452. [Google Scholar]
  32. Niederkorn, J.; Paunicka, K.; Mellon, J. Penetrating Keratoplasty to One Eye Abolishes Immune Privilege and Promotes Corneal Allograft Rejection in the Opposite Eye, Even to Grafts from Unrelated Donors. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2160. [Google Scholar]
  33. Stuart, P.M.; Griffith, T.S.; Usui, N.; Pepose, J.; Yu, X.; Ferguson, T.A. CD95 Ligand (FasL)-Induced Apoptosis Is Necessary for Corneal Allograft Survival. J. Clin. Investig. 1997, 99, 396–402. [Google Scholar] [CrossRef] [PubMed]
  34. Brissette-Storkus, C.S.; Reynolds, S.M.; Lepisto, A.J.; Hendricks, R.L. Identification of a Novel Macrophage Population in the Normal Mouse Corneal Stroma. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2264–2271. [Google Scholar]
  35. Streilein, J.W.; Toews, G.B.; Bergstresser, P.R. Corneal Allografts Fail to Express Ia Antigens. Nature 1979, 282, 326–327. [Google Scholar] [CrossRef]
  36. Hamrah, P.; Dana, M.R. Corneal Antigen-Presenting Cells. Chem. Immunol. Allergy 2007, 92, 58–70. [Google Scholar] [CrossRef]
  37. Zheng, J.; Liu, Y.; Lau, Y.-L.; Tu, W. CD40-Activated B Cells Are More Potent than Immature Dendritic Cells to Induce and Expand CD4+ Regulatory T Cells. Cell. Mol. Immunol. 2010, 7, 44–50. [Google Scholar] [CrossRef]
  38. Asselin-Paturel, C.; Boonstra, A.; Dalod, M.; Durand, I.; Yessaad, N.; Dezutter-Dambuyant, C.; Vicari, A.; O’Garra, A.; Biron, C.; Brière, F.; et al. Mouse Type I IFN-Producing Cells Are Immature APCs with Plasmacytoid Morphology. Nat. Immunol. 2001, 2, 1144–1150. [Google Scholar] [CrossRef]
  39. Björck, P. Isolation and Characterization of Plasmacytoid Dendritic Cells from Flt3 Ligand and Granulocyte-Macrophage Colony-Stimulating Factor–Treated Mice. Blood 2001, 98, 3520–3526. [Google Scholar] [CrossRef]
  40. Nakano, H.; Burgents, J.E.; Nakano, K.; Whitehead, G.S.; Cheong, C.; Bortner, C.D.; Cook, D.N. Migratory Properties of Pulmonary Dendritic Cells Are Determined by Their Developmental Lineage. Mucosal. Immunol. 2013, 6, 678–691. [Google Scholar] [CrossRef]
  41. Lund, J.M.; Linehan, M.M.; Iijima, N.; Iwasaki, A. Cutting Edge: Plasmacytoid Dendritic Cells Provide Innate Immune Protection against Mucosal Viral Infection In Situ. J. Immunol. 2006, 177, 7510–7514. [Google Scholar] [CrossRef]
  42. Smit, J.J.; Rudd, B.D.; Lukacs, N.W. Plasmacytoid Dendritic Cells Inhibit Pulmonary Immunopathology and Promote Clearance of Respiratory Syncytial Virus. J. Exp. Med. 2006, 203, 1153–1159. [Google Scholar] [CrossRef] [PubMed]
  43. Wang, Z.; Larregina, A.T.; Shufesky, W.J.; Perone, M.J.; Montecalvo, A.; Zahorchak, A.F.; Thomson, A.W.; Morelli, A.E. Use of the Inhibitory Effect of Apoptotic Cells on Dendritic Cells for Graft Survival Via T-Cell Deletion and Regulatory T Cells. Am. J. Transplant. 2006, 6, 1297–1311. [Google Scholar] [CrossRef] [PubMed]
  44. Cervantes-Barragan, L.; Züst, R.; Weber, F.; Spiegel, M.; Lang, K.S.; Akira, S.; Thiel, V.; Ludewig, B. Control of Coronavirus Infection through Plasmacytoid Dendritic-Cell-Derived Type I Interferon. Blood 2007, 109, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
  45. Reizis, B. Classical Dendritic Cells as a Unique Immune Cell Lineage. J. Exp. Med. 2012, 209, 1053–1056. [Google Scholar] [CrossRef]
  46. Ochando, J.C.; Homma, C.; Yang, Y.; Hidalgo, A.; Garin, A.; Tacke, F.; Angeli, V.; Li, Y.; Boros, P.; Ding, Y.; et al. Alloantigen-Presenting Plasmacytoid Dendritic Cells Mediate Tolerance to Vascularized Grafts. Nat. Immunol. 2006, 7, 652–662. [Google Scholar] [CrossRef]
  47. Gautreau, L.; Chabannes, D.; Heslan, M.; Josien, R. Modulation of Regulatory T Cell-Th17 Balance by Plasmacytoid Dendritic Cells. J. Leukoc. Biol. 2011, 90, 521–527. [Google Scholar] [CrossRef]
  48. Nakamura, M.; Kawahara, M.; Nakata, K.; Nishida, T. Restoration of Corneal Epithelial Barrier Function and Wound Healing by Substance P and IGF-1 in Rats with Capsaicin-Induced Neurotrophic Keratopathy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2937–2940. [Google Scholar] [CrossRef]
  49. Chinnery, H.R.; Ruitenberg, M.J.; Plant, G.W.; Pearlman, E.; Jung, S.; McMenamin, P.G. The Chemokine Receptor CX3CR1 Mediates Homing of MHC Class II–Positive Cells to the Normal Mouse Corneal Epithelium. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1568–1574. [Google Scholar] [CrossRef]
  50. Takayama, H.; Nishimura, K.; Tsujimura, A.; Nakai, Y.; Nakayama, M.; Aozasa, K.; Okuyama, A.; Nonomura, N. Increased Infiltration of Tumor Associated Macrophages Is Associated With Poor Prognosis of Bladder Carcinoma In Situ After Intravesical Bacillus Calmette-Guerin Instillation. J. Urol. 2009, 181, 1894–1900. [Google Scholar] [CrossRef]
  51. Gautier, E.L.; Shay, T.; Miller, J.; Greter, M.; Jakubzick, C.; Ivanov, S.; Helft, J.; Chow, A.; Elpek, K.G.; Gordonov, S.; et al. Gene-Expression Profiles and Transcriptional Regulatory Pathways That Underlie the Identity and Diversity of Mouse Tissue Macrophages. Nat. Immunol. 2012, 13, 1118–1128. [Google Scholar] [CrossRef]
  52. Chinnery, H.R.; Leong, C.M.; Chen, W.; Forrester, J.V.; McMenamin, P.G. TLR9 and TLR7/8 Activation Induces Formation of Keratic Precipitates and Giant Macrophages in the Mouse Cornea. J. Leukoc. Biol. 2015, 97, 103–110. [Google Scholar] [CrossRef] [PubMed]
  53. Li, Z.; Burns, A.R.; Smith, C.W. Two Waves of Neutrophil Emigration in Response to Corneal Epithelial Abrasion: Distinct Adhesion Molecule Requirements. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1947–1955. [Google Scholar] [CrossRef] [PubMed]
  54. Li, Z.; Burns, A.R.; Rumbaut, R.E.; Smith, C.W. Γδ T Cells Are Necessary for Platelet and Neutrophil Accumulation in Limbal Vessels and Efficient Epithelial Repair after Corneal Abrasion. Am. J. Pathol. 2007, 171, 838–845. [Google Scholar] [CrossRef] [PubMed]
  55. Loi, J.K.; Alexandre, Y.O.; Senthil, K.; Schienstock, D.; Sandford, S.; Devi, S.; Christo, S.N.; Mackay, L.K.; Chinnery, H.R.; Osborne, P.B.; et al. Corneal Tissue-Resident Memory T Cells Form a Unique Immune Compartment at the Ocular Surface. Cell Rep. 2022, 39, 110852. [Google Scholar] [CrossRef]
  56. Liu, Q.; Smith, C.W.; Zhang, W.; Burns, A.R.; Li, Z. NK Cells Modulate the Inflammatory Response to Corneal Epithelial Abrasion and Thereby Support Wound Healing. Am. J. Pathol. 2012, 181, 452–462. [Google Scholar] [CrossRef]
  57. Niederkorn, J.Y.; Stern, M.E.; Pflugfelder, S.C.; Paiva, C.S.D.; Corrales, R.M.; Gao, J.; Siemasko, K. Desiccating Stress Induces T Cell-Mediated Sjögren’s Syndrome-Like Lacrimal Keratoconjunctivitis. J. Immunol. 2006, 176, 3950–3957. [Google Scholar] [CrossRef]
  58. Morgan, C.; DeGroat, W.C.; Jannetta, P.J. Sympathetic Innervation of the Cornea from the Superior Cervical Ganglion. An HRP Study in the Cat. J. Auton. Nerv. Syst. 1987, 20, 179–183. [Google Scholar] [CrossRef]
  59. Marfurt, C.F. Sympathetic Innervation of the Rat Cornea as Demonstrated by the Retrograde and Anterograde Transport of Horseradish Peroxidase-Wheat Germ Agglutinin. J. Comp. Neurol. 1988, 268, 147–160. [Google Scholar] [CrossRef]
  60. Marfurt, C.F.; Jones, M.A.; Thrasher, K. Parasympathetic Innervation of the Rat Cornea. Exp. Eye Res. 1998, 66, 437–448. [Google Scholar] [CrossRef]
  61. Gee, A.P.; Boyle, M.D.; Munger, K.L.; Lawman, M.J.; Young, M. Nerve Growth Factor: Stimulation of Polymorphonuclear Leukocyte Chemotaxis in Vitro. Proc. Natl. Acad. Sci. USA 1983, 80, 7215–7218. [Google Scholar] [CrossRef] [PubMed]
  62. Ambati, B.K.; Joussen, A.M.; Kuziel, W.A.; Adamis, A.P.; Ambati, J. Inhibition of Corneal Neovascularization by Genetic Ablation of CCR2. Cornea 2003, 22, 465–467. [Google Scholar] [CrossRef] [PubMed]
  63. Hu, K.; Harris, D.L.; Yamaguchi, T.; Von Andrian, U.H.; Hamrah, P. A Dual Role for Corneal Dendritic Cells in Herpes Simplex Keratitis: Local Suppression of Corneal Damage and Promotion of Systemic Viral Dissemination. PLoS ONE 2015, 10, e0137123. [Google Scholar] [CrossRef]
  64. Yamaguchi, T.; Turhan, A.; Harris, D.L.; Hu, K.; Prüss, H.; Von Andrian, U.; Hamrah, P. Bilateral Nerve Alterations in a Unilateral Experimental Neurotrophic Keratopathy Model: A Lateral Conjunctival Approach for Trigeminal Axotomy. PLoS ONE 2013, 8, e70908. [Google Scholar] [CrossRef]
  65. Seyed-Razavi, Y.; Lopez, M.J.; Mantopoulos, D.; Zheng, L.; Massberg, S.; Sendra, V.G.; Harris, D.L.; Hamrah, P. Kinetics of Corneal Leukocytes by Intravital Multiphoton Microscopy. FASEB J. 2019, 33, 2199–2211. [Google Scholar] [CrossRef] [PubMed]
  66. Hamrah, P.; Sendra, V.G.; Harris, D.L.; Puri, S.; Yamaguchi, T. Trigeminal Ganglia Sensory Neurons Alter the Expression of Vascular Adhesion Molecules on Endothelial Cells in a Neuropeptide-Dependent Fashion. Investig. Ophthalmol. Vis. Sci. 2022, 63, 421. [Google Scholar]
  67. Dunzendorfer, S.; Kaser, A.; Meierhofer, C.; Tilg, H.; Wiedermann, C.J. Cutting Edge: Peripheral Neuropeptides Attract Immature and Arrest Mature Blood-Derived Dendritic Cells. J. Immunol. 2001, 166, 2167–2172. [Google Scholar] [CrossRef]
  68. Chernova, I.; Lai, J.-P.; Li, H.; Schwartz, L.; Tuluc, F.; Korchak, H.M.; Douglas, S.D.; Kilpatrick, L.E. Substance P (SP) Enhances CCL5-Induced Chemotaxis and Intracellular Signaling in Human Monocytes, Which Express the Truncated Neurokinin-1 Receptor (NK1R). J. Leukoc. Biol. 2009, 85, 154–164. [Google Scholar] [CrossRef]
  69. Catania, A.; Rajora, N.; Capsoni, F.; Minonzio, F.; Star, R.A.; Lipton, J.M. The Neuropeptide Alpha-MSH Has Specific Receptors on Neutrophils and Reduces Chemotaxis in Vitro. Peptides 1996, 17, 675–679. [Google Scholar] [CrossRef]
  70. Maugeri, G.; D’Amico, A.G.; Amenta, A.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. Protective Effect of PACAP against Ultraviolet B Radiation-Induced Human Corneal Endothelial Cell Injury. Neuropeptides 2020, 79, 101978. [Google Scholar] [CrossRef]
  71. Harrison, S.; Geppetti, P. Substance p. Int. J. Biochem. Cell Biol. 2001, 33, 555–576. [Google Scholar] [CrossRef]
  72. Chang, M.M.; Leeman, S.E.; Niall, H.D. Amino-Acid Sequence of Substance P. Nat. New Biol. 1971, 232, 86–87. [Google Scholar] [CrossRef] [PubMed]
  73. Gayen, A.; Goswami, S.K.; Mukhopadhyay, C. NMR Evidence of GM1-Induced Conformational Change of Substance P Using Isotropic Bicelles. Biochim. Biophys. Acta 2011, 1808, 127–139. [Google Scholar] [CrossRef] [PubMed]
  74. Fong, T.M.; Yu, H.; Huang, R.R.; Strader, C.D. The Extracellular Domain of the Neurokinin-1 Receptor Is Required for High-Affinity Binding of Peptides. Biochemistry 1992, 31, 11806–11811. [Google Scholar] [CrossRef]
  75. Lai, J.-P.; Ho, W.Z.; Kilpatrick, L.E.; Wang, X.; Tuluc, F.; Korchak, H.M.; Douglas, S.D. Full-Length and Truncated Neurokinin-1 Receptor Expression and Function during Monocyte/Macrophage Differentiation. Proc. Natl. Acad. Sci. USA 2006, 103, 7771–7776. [Google Scholar] [CrossRef]
  76. Lai, J.-P.; Lai, S.; Tuluc, F.; Tansky, M.F.; Kilpatrick, L.E.; Leeman, S.E.; Douglas, S.D. Differences in the Length of the Carboxyl Terminus Mediate Functional Properties of Neurokinin-1 Receptor. Proc. Natl. Acad. Sci. USA 2008, 105, 12605–12610. [Google Scholar] [CrossRef]
  77. Tuluc, F.; Lai, J.P.; Kilpatrick, L.E.; Evans, D.L.; Douglas, S.D. Neurokinin 1 Receptor Isoforms and the Control of Innate Immunity. Trends Immunol. 2009, 30, 271–276. [Google Scholar] [CrossRef]
  78. Conner, A.C.; Hay, D.L.; Howitt, S.G.; Kilk, K.; Langel, U.; Wheatley, M.; Smith, D.M.; Poyner, D.R. Interaction of Calcitonin-Gene-Related Peptide with Its Receptors. Biochem. Soc. Trans. 2002, 30, 451–455. [Google Scholar] [CrossRef]
  79. Breeze, A.L.; Harvey, T.S.; Bazzo, R.; Campbell, I.D. Solution Structure of Human Calcitonin Gene-Related Peptide by 1H NMR and Distance Geometry with Restrained Molecular Dynamics. Biochemistry 1991, 30, 575–582. [Google Scholar] [CrossRef]
  80. McLatchie, L.M.; Fraser, N.J.; Main, M.J.; Wise, A.; Brown, J.; Thompson, N.; Solari, R.; Lee, M.G.; Foord, S.M. RAMPs Regulate the Transport and Ligand Specificity of the Calcitonin-Receptor-like Receptor. Nature 1998, 393, 333–339. [Google Scholar] [CrossRef]
  81. Hagner, S.; Knauer, J.; Haberberger, R.; Göke, B.; Voigt, K.; McGregor, G.P. Calcitonin Receptor-like Receptor Is Expressed on Gastrointestinal Immune Cells. Digestion 2002, 66, 197–203. [Google Scholar] [CrossRef] [PubMed]
  82. Hoare, S.R.J. Allosteric Modulators of Class B G-Protein-Coupled Receptors. Curr. Neuropharmacol. 2007, 5, 168–179. [Google Scholar] [CrossRef] [PubMed]
  83. Hoare, S.R.J. Mechanisms of Peptide and Nonpeptide Ligand Binding to Class B G-Protein-Coupled Receptors. Drug Discov. Today 2005, 10, 417–427. [Google Scholar] [CrossRef]
  84. Kitamura, K.; Kangawa, K.; Eto, T. Adrenomedullin and PAMP: Discovery, Structures, and Cardiovascular Functions. Microsc. Res. Tech. 2002, 57, 3–13. [Google Scholar] [CrossRef] [PubMed]
  85. Liang, Y.-L.; Belousoff, M.J.; Fletcher, M.M.; Zhang, X.; Khoshouei, M.; Deganutti, G.; Koole, C.; Furness, S.G.B.; Miller, L.J.; Hay, D.L.; et al. Structure and Dynamics of Adrenomedullin Receptors AM1 and AM2 Reveal Key Mechanisms in the Control of Receptor Phenotype by Receptor Activity-Modifying Proteins. ACS Pharmacol. Transl. Sci. 2020, 3, 263–284. [Google Scholar] [CrossRef] [PubMed]
  86. Gibbons, C.; Dackor, R.; Dunworth, W.; Fritz-Six, K.; Caron, K.M. Receptor Activity-Modifying Proteins: RAMPing up Adrenomedullin Signaling. Mol. Endocrinol. 2007, 21, 783–796. [Google Scholar] [CrossRef]
  87. Goetzl, E.J.; Voice, J.K.; Shen, S.; Dorsam, G.; Kong, Y.; West, K.M.; Morrison, C.F.; Harmar, A.J. Enhanced Delayed-Type Hypersensitivity and Diminished Immediate-Type Hypersensitivity in Mice Lacking the Inducible VPAC(2) Receptor for Vasoactive Intestinal Peptide. Proc. Natl. Acad. Sci. USA 2001, 98, 13854–13859. [Google Scholar] [CrossRef]
  88. Fry, D.C.; Madison, V.S.; Bolin, D.R.; Greeley, D.N.; Toome, V.; Wegrzynski, B.B. Solution Structure of an Analogue of Vasoactive Intestinal Peptide as Determined by Two-Dimensional NMR and Circular Dichroism Spectroscopies and Constrained Molecular Dynamics. Biochemistry 1989, 28, 2399–2409. [Google Scholar] [CrossRef]
  89. Ganea, D.; Hooper, K.M.; Kong, W. The Neuropeptide Vasoactive Intestinal Peptide: Direct Effects on Immune Cells and Involvement in Inflammatory and Autoimmune Diseases. Acta Physiol. 2015, 213, 442–452. [Google Scholar] [CrossRef]
  90. Dickson, L.; Finlayson, K. VPAC and PAC Receptors: From Ligands to Function. Pharmacol. Ther. 2009, 121, 294–316. [Google Scholar] [CrossRef]
  91. Delgado, M.; Pozo, D.; Ganea, D. The Significance of Vasoactive Intestinal Peptide in Immunomodulation. Pharmacol. Rev. 2004, 56, 249–290. [Google Scholar] [CrossRef] [PubMed]
  92. Gonzalez-Rey, E.; Anderson, P.; Delgado, M. Emerging Roles of Vasoactive Intestinal Peptide: A New Approach for Autoimmune Therapy. Ann. Rheum. Dis. 2007, 66 (Suppl. S3), iii70–iii76. [Google Scholar] [CrossRef] [PubMed]
  93. Martinez, C.; Abad, C.; Delgado, M.; Arranz, A.; Juarranz, M.G.; Rodriguez-Henche, N.; Brabet, P.; Leceta, J.; Gomariz, R.P. Anti-Inflammatory Role in Septic Shock of Pituitary Adenylate Cyclase-Activating Polypeptide Receptor. Proc. Natl. Acad. Sci. USA 2002, 99, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
  94. Lauenstein, H.D.; Quarcoo, D.; Welte, T.; Braun, A.; Groneberg, D.A. Expression of VPAC1 in a Murine Model of Allergic Asthma. J. Occup. Med. Toxicol. 2013, 8, 28. [Google Scholar] [CrossRef]
  95. Samarasinghe, A.E.; Hoselton, S.A.; Schuh, J.M. The Absence of VPAC2 Leads to Aberrant Antibody Production in Aspergillus Fumigatus Sensitized and Challenged Mice. Peptides 2011, 32, 131–137. [Google Scholar] [CrossRef]
  96. Vaudry, D.; Falluel-Morel, A.; Bourgault, S.; Basille, M.; Burel, D.; Wurtz, O.; Fournier, A.; Chow, B.K.C.; Hashimoto, H.; Galas, L.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharm. Rev. 2009, 61, 283–357. [Google Scholar] [CrossRef]
  97. Miyata, A.; Jiang, L.; Dahl, R.D.; Kitada, C.; Kubo, K.; Fujino, M.; Minamino, N.; Arimura, A. Isolation of a Neuropeptide Corresponding to the N-Terminal 27 Residues of the Pituitary Adenylate Cyclase Activating Polypeptide with 38 Residues (PACAP38). Biochem. Biophys. Res. Commun. 1990, 170, 643–648. [Google Scholar] [CrossRef]
  98. Braas, K.M.; May, V.; Harakall, S.A.; Hardwick, J.C.; Parsons, R.L. Pituitary Adenylate Cyclase-Activating Polypeptide Expression and Modulation of Neuronal Excitability in Guinea Pig Cardiac Ganglia. J. Neurosci. 1998, 18, 9766–9779. [Google Scholar] [CrossRef]
  99. Calupca, M.A.; Vizzard, M.A.; Parsons, R.L. Origin of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Immunoreactive Fibers Innervating Guinea Pig Parasympathetic Cardiac Ganglia. J. Comp. Neurol. 2000, 423, 26–39. [Google Scholar] [CrossRef]
  100. Hirabayashi, T.; Nakamachi, T.; Shioda, S. Discovery of PACAP and Its Receptors in the Brain. J. Headache Pain 2018, 19, 28. [Google Scholar] [CrossRef]
  101. Harmar, T.; Lutz, E. Multiple Receptors for PACAP and VIP. Trends Pharm. Sci. 1994, 15, 97–99. [Google Scholar] [CrossRef]
  102. Arimura, A. Perspectives on Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) in the Neuroendocrine, Endocrine, and Nervous Systems. Jpn. J. Physiol. 1998, 48, 301–331. [Google Scholar] [CrossRef] [PubMed]
  103. Braas, K.M.; May, V. Pituitary Adenylate Cyclase-Activating Polypeptides Directly Stimulate Sympathetic Neuron Neuropeptide Y Release through PAC(1) Receptor Isoform Activation of Specific Intracellular Signaling Pathways. J. Biol. Chem. 1999, 274, 27702–27710. [Google Scholar] [CrossRef] [PubMed]
  104. Higuchi, H.; Yang, H.-Y.T.; Costa, E. Age-Related Bidirectional Changes in Neuropeptide Y Peptides in Rat Adrenal Glands, Brain, and Blood. J. Neurochem. 1988, 50, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
  105. Fricker, L.D. Carboxypeptidase E and the Identification of Novel Neuropeptides as Potential Therapeutic Targets. Adv. Pharm. 2018, 82, 85–102. [Google Scholar] [CrossRef]
  106. Blundell, T.L.; Pitts, J.E.; Tickle, I.J.; Wood, S.P.; Wu, C.-W. X-ray Analysis (1. 4-Å Resolution) of Avian Pancreatic Polypeptide: Small Globular Protein Hormone. Proc. Natl. Acad. Sci. USA 1981, 78, 4175–4179. [Google Scholar] [CrossRef]
  107. Lerch, M.; Mayrhofer, M.; Zerbe, O. Structural Similarities of Micelle-Bound Peptide YY (PYY) and Neuropeptide Y (NPY) Are Related to Their Affinity Profiles at the Y Receptors. J. Mol. Biol. 2004, 339, 1153–1168. [Google Scholar] [CrossRef]
  108. Parker, M.S.; Sah, R.; Balasubramaniam, A.; Sallee, F.R.; Zerbe, O.; Parker, S.L. Non-Specific Binding and General Cross-Reactivity of Y Receptor Agonists Are Correlated and Should Importantly Depend on Their Acidic Sectors. Peptides 2011, 32, 258–265. [Google Scholar] [CrossRef]
  109. Starbäck, P.; Wraith, A.; Eriksson, H.; Larhammar, D. Neuropeptide Y Receptor Gene Y6: Multiple Deaths or Resurrections? Biochem. Biophys. Res. Commun. 2000, 277, 264–269. [Google Scholar] [CrossRef]
  110. Widdowson, P.S.; Upton, R.; Henderson, L.; Buckingham, R.; Wilson, S.; Williams, G. Reciprocal Regional Changes in Brain NPY Receptor Density during Dietary Restriction and Dietary-Induced Obesity in the Rat. Brain Res. 1997, 774, 1–10. [Google Scholar] [CrossRef]
  111. Burkhoff, A.; Linemeyer, D.L.; Salon, J.A. Distribution of a Novel Hypothalamic Neuropeptide Y Receptor Gene and It’s Absence in Rat. Brain Res. Mol. Brain Res. 1998, 53, 311–316. [Google Scholar] [CrossRef]
  112. Balasubramaniam, A. Clinical Potentials of Neuropeptide Y Family of Hormones. Am. J. Surg. 2002, 183, 430–434. [Google Scholar] [CrossRef]
  113. Larhammar, D.; Wraith, A.; Berglund, M.M.; Holmberg, S.K.; Lundell, I. Origins of the Many NPY-Family Receptors in Mammals. Peptides 2001, 22, 295–307. [Google Scholar] [CrossRef]
  114. Michel, M.C.; Beck-Sickinger, A.; Cox, H.; Doods, H.N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International Union of Pharmacology Recommendations for the Nomenclature of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide Receptors. Pharmacol. Rev. 1988, 50, 143–150. [Google Scholar]
  115. Patel, Y.C. Molecular Pharmacology of Somatostatin Receptor Subtypes. J. Endocrinol. Investig. 1997, 20, 348–367. [Google Scholar] [CrossRef]
  116. Patel, Y.C.; Srikant, C.B. Somatostatin Receptors. Trends Endocrinol. Metab. 1997, 8, 398–405. [Google Scholar] [CrossRef]
  117. Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic Polypeptide That Inhibits the Secretion of Immunoreactive Pituitary Growth Hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef]
  118. Pradayrol, L.; Jörnvall, H.; Mutt, V.; Ribet, A. N-Terminally Extended Somatostatin: The Primary Structure of Somatostatin-28. FEBS Lett. 1980, 109, 55–58. [Google Scholar] [CrossRef]
  119. Paragliola, R.M.; Salvatori, R. Novel Somatostatin Receptor Ligands Therapies for Acromegaly. Front. Endocrinol. 2018, 9, 78. [Google Scholar] [CrossRef]
  120. D’Agostino, G.; Diano, S. Alpha-Melanocyte Stimulating Hormone: Production and Degradation. J. Mol. Med. 2010, 88, 1195–1201. [Google Scholar] [CrossRef]
  121. Singh, M.; Mukhopadhyay, K. Alpha-Melanocyte Stimulating Hormone: An Emerging Anti-Inflammatory Antimicrobial Peptide. BioMed Res. Int. 2014, 2014, 874610. [Google Scholar] [CrossRef] [PubMed]
  122. Carotenuto, A.; Saviello, M.R.; Auriemma, L.; Campiglia, P.; Catania, A.; Novellino, E.; Grieco, P. Structure-Function Relationships and Conformational Properties of Alpha-MSH(6-13) Analogues with Candidacidal Activity. Chem. Biol. Drug Des. 2007, 69, 68–74. [Google Scholar] [CrossRef] [PubMed]
  123. Varshavsky, A. The N-End Rule Pathway and Regulation by Proteolysis. Protein Sci. 2011, 20, 1298–1345. [Google Scholar] [CrossRef] [PubMed]
  124. Getting, S.J. Melanocortin Peptides and Their Receptors: New Targets for Anti-Inflammatory Therapy. Trends Pharmacol. Sci. 2002, 23, 447–449. [Google Scholar] [CrossRef]
  125. Yang, Y. Structure, Function and Regulation of the Melanocortin Receptors. Eur. J. Pharmacol. 2011, 660, 125–130. [Google Scholar] [CrossRef]
  126. Wolf Horrell, E.M.; Boulanger, M.C.; D’Orazio, J.A. Melanocortin 1 Receptor: Structure, Function, and Regulation. Front. Genet. 2016, 7, 95. [Google Scholar] [CrossRef]
  127. Land, T.; Langel, O.; Löw, M.; Berthold, M.; Undén, A.; Bartfai, T. Linear and Cyclic N-Terminal Galanin Fragments and Analogs as Ligands at the Hypothalamic Galanin Receptor. Int. J. Pept. Protein Res. 1991, 38, 267–272. [Google Scholar] [CrossRef]
  128. Branchek, T.A.; Smith, K.E.; Gerald, C.; Walker, M.W. Galanin Receptor Subtypes. Trends Pharm. Sci. 2000, 21, 109–117. [Google Scholar] [CrossRef]
  129. Kakuyama, H.; Kuwahara, A.; Mochizuki, T.; Hoshino, M.; Yanaihara, N. Role of N-Terminal Active Sites of Galanin in Neurally Evoked Circular Muscle Contractions in the Guinea-Pig Ileum. Eur. J. Pharmacol. 1997, 329, 85–91. [Google Scholar] [CrossRef]
  130. Bedecs, K.; Langel, U.; Bartfai, T. Metabolism of Galanin and Galanin (1-16) in Isolated Cerebrospinal Fluid and Spinal Cord Membranes from Rat. Neuropeptides 1995, 29, 137–143. [Google Scholar] [CrossRef]
  131. Öhman, A.; Lycksell, P.-O.; Juréus, A.; Langel, Ü.; Bartfai, T.; Gräslund, A. NMR Study of the Conformation and Localization of Porcine Galanin in SDS Micelles. Comparison with an Inactive Analog and a Galanin Receptor Antagonist. Biochemistry 1998, 37, 9169–9178. [Google Scholar] [CrossRef] [PubMed]
  132. Morris, M.B.; Ralston, G.B.; Biden, T.J.; Browne, C.L.; King, G.F.; Iismaa, T.P. Structural and Biochemical Studies of Human Galanin: NMR Evidence for Nascent Helical Structures in Aqueous Solution. Biochemistry 1995, 34, 4538–4545. [Google Scholar] [CrossRef] [PubMed]
  133. Zachariou, V.; Georgescu, D.; Kansal, L.; Merriam, P.; Picciotto, M.R. Galanin Receptor 1 Gene Expression Is Regulated by Cyclic AMP through a CREB-Dependent Mechanism. J. Neurochem. 2001, 76, 191–200. [Google Scholar] [CrossRef]
  134. Hawes, J.J.; Brunzell, D.H.; Wynick, D.; Zachariou, V.; Picciotto, M.R. GalR1, but Not GalR2 or GalR3, Levels Are Regulated by Galanin Signaling in the Locus Coeruleus through a Cyclic AMP-Dependent Mechanism. J. Neurochem. 2005, 93, 1168–1176. [Google Scholar] [CrossRef]
  135. Smith, K.E.; Forray, C.; Walker, M.W.; Jones, K.A.; Tamm, J.A.; Bard, J.; Branchek, T.A.; Linemeyer, D.L.; Gerald, C. Expression Cloning of a Rat Hypothalamic Galanin Receptor Coupled to Phosphoinositide Turnover. J. Biol. Chem. 1997, 272, 24612–24616. [Google Scholar] [CrossRef]
  136. Bloomquist, B.T.; Beauchamp, M.R.; Zhelnin, L.; Brown, S.E.; Gore-Willse, A.R.; Gregor, P.; Cornfield, L.J. Cloning and Expression of the Human Galanin Receptor GalR2. Biochem. Biophys. Res. Commun. 1998, 243, 474–479. [Google Scholar] [CrossRef] [PubMed]
  137. Waters, S.M.; Krause, J.E. Distribution of Galanin-1, -2 and -3 Receptor Messenger RNAs in Central and Peripheral Rat Tissues. Neuroscience 2000, 95, 265–271. [Google Scholar] [CrossRef]
  138. Kolakowski, L.F., Jr.; O’Neill, G.P.; Howard, A.D.; Broussard, S.R.; Sullivan, K.A.; Feighner, S.D.; Sawzdargo, M.; Nguyen, T.; Kargman, S.; Shiao, L.-L.; et al. Molecular Characterization and Expression of Cloned Human Galanin Receptors GALR2 and GALR3. J. Neurochem. 1998, 71, 2239–2251. [Google Scholar] [CrossRef]
  139. Kimura, S.; Lewis, R.V.; Stern, A.S.; Rossier, J.; Stein, S.; Udenfriend, S. Probable Precursors of [Leu]Enkephalin and [Met]Enkephalin in Adrenal Medulla: Peptides of 3-5 Kilodaltons. Proc. Natl. Acad. Sci. USA 1980, 77, 1681–1685. [Google Scholar] [CrossRef]
  140. Kimura, T. Human Opioid Peptide Met-Enkephalin Binds to Anionic Phosphatidylserine in High Preference to Zwitterionic Phosphatidylcholine: Natural-Abundance 13C NMR Study on the Binding State in Large Unilamellar Vesicles. Biochemistry 2006, 45, 15601–15609. [Google Scholar] [CrossRef]
  141. Pasternak, G.W.; Pan, Y.-X. Mu Opioids and Their Receptors: Evolution of a Concept. Pharm. Rev. 2013, 65, 1257–1317. [Google Scholar] [CrossRef] [PubMed]
  142. Jordan, B.A.; Cvejic, S.; Devi, L.A. Opioids and Their Complicated Receptor Complexes. Neuropsychopharmacology 2000, 23, S5–S18. [Google Scholar] [CrossRef]
  143. Zagon, I.S.; Verderame, M.F.; McLaughlin, P.J. The Biology of the Opioid Growth Factor Receptor (OGFr). Brain Res. Rev. 2002, 38, 351–376. [Google Scholar] [CrossRef]
  144. Zagon, I.S.; Verderame, M.F.; Allen, S.S.; McLaughlin, P.J. Cloning, Sequencing, Chromosomal Location, and Function of CDNAs Encoding an Opioid Growth Factor Receptor (OGFr) in Humans1The Nucleotide Sequences of Human OGFr Have Been Deposited in GenBank under Accession Numbers AF172449, AF172450, AF172451, AF172452, and AF172453.1. Brain Res. 2000, 856, 75–83. [Google Scholar] [CrossRef] [PubMed]
  145. Carraway, R.; Leeman, S.E. The Amino Acid Sequence of a Hypothalamic Peptide, Neurotensin. J. Biol. Chem. 1975, 250, 1907–1911. [Google Scholar] [CrossRef]
  146. Sotty, F.; Brun, P.; Leonetti, M.; Steinberg, R.; Soubrié, P.; Renaud, B.; Suaud-Chagny, M.F. Comparative Effects of Neurotensin, Neurotensin(8-13) and [D-Tyr(11)]Neurotensin Applied into the Ventral Tegmental Area on Extracellular Dopamine in the Rat Prefrontal Cortex and Nucleus Accumbens. Neuroscience 2000, 98, 485–492. [Google Scholar] [CrossRef]
  147. Tanaka, K.; Masu, M.; Nakanishi, S. Structure and Functional Expression of the Cloned Rat Neurotensin Receptor. Neuron 1990, 4, 847–854. [Google Scholar] [CrossRef]
  148. Vita, N.; Laurent, P.; Lefort, S.; Chalon, P.; Dumont, X.; Kaghad, M.; Gully, D.; Le Fur, G.; Ferrara, P.; Caput, D. Cloning and Expression of a Complementary DNA Encoding a High Affinity Human Neurotensin Receptor. FEBS Lett. 1993, 317, 139–142. [Google Scholar] [CrossRef]
  149. Chalon, P.; Vita, N.; Kaghad, M.; Guillemot, M.; Bonnin, J.; Delpech, B.; Le Fur, G.; Ferrara, P.; Caput, D. Molecular Cloning of a Levocabastine-Sensitive Neurotensin Binding Site. FEBS Lett. 1996, 386, 91–94. [Google Scholar] [CrossRef]
  150. Mazella, J.; Botto, J.M.; Guillemare, E.; Coppola, T.; Sarret, P.; Vincent, J.P. Structure, Functional Expression, and Cerebral Localization of the Levocabastine-Sensitive Neurotensin/Neuromedin N Receptor from Mouse Brain. J. Neurosci. 1996, 16, 5613–5620. [Google Scholar] [CrossRef]
  151. Mazella, J.; Zsürger, N.; Navarro, V.; Chabry, J.; Kaghad, M.; Caput, D.; Ferrara, P.; Vita, N.; Gully, D.; Maffrand, J.P.; et al. The 100-KDa Neurotensin Receptor Is Gp95/Sortilin, a Non-G-Protein-Coupled Receptor. J. Biol. Chem. 1998, 273, 26273–26276. [Google Scholar] [CrossRef]
  152. Jacobsen, L.; Madsen, P.; Jacobsen, C.; Nielsen, M.S.; Gliemann, J.; Petersen, C.M. Activation and Functional Characterization of the Mosaic Receptor SorLA/LR11. J. Biol. Chem. 2001, 276, 22788–22796. [Google Scholar] [CrossRef] [PubMed]
  153. Binder, E.B.; Kinkead, B.; Owens, M.J.; Nemeroff, C.B. Neurotensin and Dopamine Interactions. Pharm. Rev. 2001, 53, 453–486. [Google Scholar] [PubMed]
  154. Tervo, T.; Tervo, K.; Eränkö, L. Ocular Neuropeptides. Med. Biol. 1982, 60, 53–60. [Google Scholar]
  155. Stone, R.A.; Kuwayama, Y. Substance P-like Immunoreactive Nerves in the Human Eye. Arch. Ophthalmol. 1985, 103, 1207–1211. [Google Scholar] [CrossRef]
  156. Stone, R.A.; McGlinn, A.M. Calcitonin Gene-Related Peptide Immunoreactive Nerves in Human and Rhesus Monkey Eyes. Investig. Ophthalmol. Vis. Sci. 1988, 29, 305–310. [Google Scholar]
  157. Ueda, S.; Rao, G.N.; LoCascio, J.A.; Del Cerro, M.; Aquavella, J.V. Corneal and Conjunctival Changes in Congenital Erythropoietic Porphyria. Cornea 1989, 8, 286–294. [Google Scholar] [CrossRef]
  158. Jones, M.A.; Marfurt, C.F. Peptidergic Innervation of the Rat Cornea. Exp. Eye Res. 1998, 66, 421–435. [Google Scholar] [CrossRef]
  159. Jones, M.A.; Marfurt, C.F. Calcitonin Gene-Related Peptide and Corneal Innervation: A Developmental Study in the Rat. J. Comp. Neurol. 1991, 313, 132–150. [Google Scholar] [CrossRef]
  160. Beckers, H.J.M.; Klooster, J.; Vrensen, G.F.J.M.; Lamers, W.P.M.A. Substance P in Rat Corneal and Iridal Nerves: An Ultrastructural Immunohistochemical Study. ORE 1993, 25, 192–200. [Google Scholar] [CrossRef]
  161. Ehinger, B. Distribution of Adrenergic Nerves in the Eye and Some Related Structures in the Cat. Acta Physiol. Scand. 1966, 66, 123–128. [Google Scholar] [CrossRef] [PubMed]
  162. Ehinger, B.; Sjöberg, N.-O. Development of the Ocular Adrenergic Nerve Supply in Man and Guinea-Pig. Z. Für Zellforsch. Mikrosk. Anat. 1971, 118, 579–592. [Google Scholar] [CrossRef] [PubMed]
  163. Uusitalo, H.; Lehtosalo, J.; Laakso, J.; Härkonen, M.; Palkama, A. Immunohistochemical and Biochemical Evidence for 5-Hydroxytryptamine Containing Nerves in the Anterior Part of the Eye. Exp. Eye Res. 1982, 35, 671–675. [Google Scholar] [CrossRef]
  164. Osborne, N.N. The Occurrence of Serotonergic Nerves in the Bovine Cornea. Neurosci. Lett. 1983, 35, 15–18. [Google Scholar] [CrossRef]
  165. Palkama, A.; Kaufman, H.; Uusitalo, R.; Uusitalo, H. Histochemistry of Adenylate Cyclase Activity in the Anterior Segment of the Eye: A Methodological Evaluation with Biochemical Background. Exp. Eye Res. 1986, 43, 1043–1056. [Google Scholar] [CrossRef]
  166. Osborne, N.N.; Tobin, A.B. Serotonin-Accumulating Cells in the Iris-Ciliary Body and Cornea of Various Species. Exp. Eye Res. 1987, 44, 731–745. [Google Scholar] [CrossRef]
  167. Too, H.P.; Todd, K.; Lightman, S.L.; Horn, A.; Unger, W.G.; Hanley, M.R. Presence and Actions of Vasopressin-like Peptides in the Rabbit Anterior Uvea. Regul. Pept. 1989, 25, 259–266. [Google Scholar] [CrossRef]
  168. Yamamoto, T.; Otake, H.; Hiramatsu, N.; Yamamoto, N.; Taga, A.; Nagai, N. A Proteomic Approach for Understanding the Mechanisms of Delayed Corneal Wound Healing in Diabetic Keratopathy Using Diabetic Model Rat. Int. J. Mol. Sci. 2018, 19, 3635. [Google Scholar] [CrossRef]
  169. Hegarty, D.M.; Tonsfeldt, K.; Hermes, S.M.; Helfand, H.; Aicher, S.A. Differential Localization of Vesicular Glutamate Transporters and Peptides in Corneal Afferents to Trigeminal Nucleus Caudalis. J. Comp. Neurol. 2010, 518, 3557–3569. [Google Scholar] [CrossRef]
  170. Kieselbach, G.F.; Ragaut, R.; Knaus, H.G.; König, P.; Wiedermann, C.J. Autoradiographic Analysis of Binding Sites for 125I-Bolton-Hunter-Substance P in the Human Eye. Peptides 1990, 11, 655–659. [Google Scholar] [CrossRef]
  171. Denis, P.; Fardin, V.; Nordmann, J.P.; Elena, P.P.; Laroche, L.; Saraux, H.; Rostene, W. Localization and Characterization of Substance P Binding Sites in Rat and Rabbit Eyes. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1894–1902. [Google Scholar]
  172. Nakamura, M.; Sato, N.; Chikama, T.-I.; Hasegawa, Y.; Nishida, T. Hyaluronan Facilitates Corneal Epithelial Wound Healing in Diabetic Rats. Exp. Eye Res. 1997, 64, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
  173. Green, D.P.; Limjunyawong, N.; Gour, N.; Pundir, P.; Dong, X. A Mast-Cell-Specific Receptor Mediates Neurogenic Inflammation and Pain. Neuron 2019, 101, 412–420.e3. [Google Scholar] [CrossRef] [PubMed]
  174. Morelli, A.E.; Sumpter, T.L.; Rojas-Canales, D.M.; Bandyopadhyay, M.; Chen, Z.; Tkacheva, O.; Shufesky, W.J.; Wallace, C.T.; Watkins, S.C.; Berger, A.; et al. Neurokinin-1 Receptor Signaling Is Required for Efficient Ca2+ Flux in T-Cell-Receptor-Activated T Cells. Cell Rep. 2020, 30, 3448–3465.e8. [Google Scholar] [CrossRef] [PubMed]
  175. Spitsin, S.; Meshki, J.; Winters, A.; Tuluc, F.; Benton, T.D.; Douglas, S.D. Substance P-Mediated Chemokine Production Promotes Monocyte Migration. J. Leukoc. Biol. 2017, 101, 967–973. [Google Scholar] [CrossRef]
  176. Janelsins, B.M.; Sumpter, T.L.; Tkacheva, O.A.; Rojas-Canales, D.M.; Erdos, G.; Mathers, A.R.; Shufesky, W.J.; Storkus, W.J.; Falo, L.D.; Morelli, A.E.; et al. Neurokinin-1 Receptor Agonists Bias Therapeutic Dendritic Cells to Induce Type 1 Immunity by Licensing Host Dendritic Cells to Produce IL-12. Blood 2013, 121, 2923–2933. [Google Scholar] [CrossRef] [PubMed]
  177. Mathers, A.R.; Tckacheva, O.A.; Janelsins, B.M.; Shufesky, W.J.; Morelli, A.E.; Larregina, A.T. In Vivo Signaling through the Neurokinin 1 Receptor Favors Transgene Expression by Langerhans Cells and Promotes the Generation of Th1- and Tc1-Biased Immune Responses. J. Immunol. 2007, 178, 7006–7017. [Google Scholar] [CrossRef]
  178. Heino, P.; Oksala, O.; Luhtala, J.; Uusitalo, H. Localization of Calcitonin Gene-Related Peptide Binding Sites in the Eye of Different Species. Curr. Eye Res. 1995, 14, 783–790. [Google Scholar] [CrossRef]
  179. Tran, M.T.; Ritchie, M.H.; Lausch, R.N.; Oakes, J.E. Calcitonin Gene-Related Peptide Induces IL-8 Synthesis in Human Corneal Epithelial Cells. J. Immunol. 2000, 164, 4307–4312. [Google Scholar] [CrossRef]
  180. Souza-Moreira, L.; Campos-Salinas, J.; Caro, M.; Gonzalez-Rey, E. Neuropeptides as Pleiotropic Modulators of the Immune Response. Neuroendocrinology 2011, 94, 89–100. [Google Scholar] [CrossRef]
  181. Mikami, N.; Watanabe, K.; Hashimoto, N.; Miyagi, Y.; Sueda, K.; Fukada, S.; Yamamoto, H.; Tsujikawa, K. Calcitonin Gene-Related Peptide Enhances Experimental Autoimmune Encephalomyelitis by Promoting Th17-Cell Functions. Int. Immunol. 2012, 24, 681–691. [Google Scholar] [CrossRef]
  182. Wallrapp, A.; Burkett, P.R.; Riesenfeld, S.J.; Kim, S.-J.; Christian, E.; Abdulnour, R.-E.E.; Thakore, P.I.; Schnell, A.; Lambden, C.; Herbst, R.H.; et al. Calcitonin Gene-Related Peptide Negatively Regulates Alarmin-Driven Type 2 Innate Lymphoid Cell Responses. Immunity 2019, 51, 709–723.e6. [Google Scholar] [CrossRef] [PubMed]
  183. Ma, W.; Quirion, R. Increased Calcitonin Gene-Related Peptide in Neuroma and Invading Macrophages Is Involved in the up-Regulation of Interleukin-6 and Thermal Hyperalgesia in a Rat Model of Mononeuropathy. J. Neurochem. 2006, 98, 180–192. [Google Scholar] [CrossRef] [PubMed]
  184. Mikami, N.; Sueda, K.; Ogitani, Y.; Otani, I.; Takatsuji, M.; Wada, Y.; Watanabe, K.; Yoshikawa, R.; Nishioka, S.; Hashimoto, N.; et al. Calcitonin Gene-Related Peptide Regulates Type IV Hypersensitivity through Dendritic Cell Functions. PLoS ONE 2014, 9, e86367. [Google Scholar] [CrossRef]
  185. Edvinsson, L.; Grell, A.-S.; Warfvinge, K. Expression of the CGRP Family of Neuropeptides and Their Receptors in the Trigeminal Ganglion. J. Mol. Neurosci. 2020, 70, 930–944. [Google Scholar] [CrossRef] [PubMed]
  186. Moreno, M.J.; Cohen, Z.; Stanimirovic, D.B.; Hamel, E. Functional Calcitonin Gene-Related Peptide Type 1 and Adrenomedullin Receptors in Human Trigeminal Ganglia, Brain Vessels, and Cerebromicrovascular or Astroglial Cells in Culture. J. Cereb. Blood Flow Metab. 1999, 19, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
  187. Hoopes, S.L.; Willcockson, H.H.; Caron, K.M. Characteristics of Multi-Organ Lymphangiectasia Resulting from Temporal Deletion of Calcitonin Receptor-Like Receptor in Adult Mice. PLoS ONE 2012, 7, e45261. [Google Scholar] [CrossRef]
  188. Liverani, E.; McLeod, J.D.; Paul, C. Adrenomedullin Receptors on Human T Cells Are Glucocorticoid-Sensitive. Int. Immunopharmacol. 2012, 14, 75–81. [Google Scholar] [CrossRef]
  189. Rullé, S.; Ah Kioon, M.-D.; Asensio, C.; Mussard, J.; Ea, H.-K.; Boissier, M.-C.; Lioté, F.; Falgarone, G. Adrenomedullin, a Neuropeptide with Immunoregulatory Properties Induces Semi-Mature Tolerogenic Dendritic Cells. Immunology 2012, 136, 252–264. [Google Scholar] [CrossRef]
  190. Nakamachi, T.; Ohtaki, H.; Seki, T.; Yofu, S.; Kagami, N.; Hashimoto, H.; Shintani, N.; Baba, A.; Mark, L.; Lanekoff, I.; et al. PACAP Suppresses Dry Eye Signs by Stimulating Tear Secretion. Nat. Commun. 2016, 7, 12034. [Google Scholar] [CrossRef]
  191. Figueiredo, C.A.; Düsedau, H.P.; Steffen, J.; Gupta, N.; Dunay, M.P.; Toth, G.K.; Reglodi, D.; Heimesaat, M.M.; Dunay, I.R. Immunomodulatory Effects of the Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide in Acute Toxoplasmosis. Front. Cell. Infect. Microbiol. 2019, 9, 154. [Google Scholar] [CrossRef] [PubMed]
  192. Sasaoka, A.; Ishimoto, I.; Kuwayama, Y.; Sakiyama, T.; Manabe, R.; Shiosaka, S.; Inagaki, S.; Tohyama, M. Overall Distribution of Substance P Nerves in the Rat Cornea and Their Three-Dimensional Profiles. Investig. Ophthalmol. Vis. Sci. 1984, 25, 351–356. [Google Scholar]
  193. Stone, R.A.; Kuwayama, Y.; Terenghi, G.; Polak, J.M. Calcitonin Gene-Related Peptide: Occurrence in Corneal Sensory Nerves. Exp. Eye Res. 1986, 43, 279–283. [Google Scholar] [CrossRef]
  194. Møller, H.U.; Ehlers, N.; Bojsen-Møller, M.; Ridgway, A.E. Differential Diagnosis between Granular Corneal Dystrophy Groenouw Type I and Paraproteinemic Crystalline Keratopathy. Acta Ophthalmol. 1993, 71, 552–555. [Google Scholar] [CrossRef]
  195. Wang, Z.Y.; Alm, P.; Håkanson, R. Distribution and Effects of Pituitary Adenylate Cyclase-Activating Peptide in the Rabbit Eye. Neuroscience 1995, 69, 297–308. [Google Scholar] [CrossRef]
  196. Kojima, M.; Ito, T.; Oono, T.; Hisano, T.; Igarashi, H.; Arita, Y.; Kawabe, K.; Coy, D.H.; Jensen, R.T.; Nawata, H. VIP Attenuation of the Severity of Experimental Pancreatitis Is Due to VPAC1 Receptor-Mediated Inhibition of Cytokine Production. Pancreas 2005, 30, 62–70. [Google Scholar]
  197. Makinde, T.O.; Steininger, R.; Agrawal, D.K. NPY and NPY Receptors in Airway Structural and Inflammatory Cells in Allergic Asthma. Exp. Mol. Pathol. 2013, 94, 45–50. [Google Scholar] [CrossRef]
  198. Oda, N.; Miyahara, N.; Taniguchi, A.; Morichika, D.; Senoo, S.; Fujii, U.; Itano, J.; Gion, Y.; Kiura, K.; Kanehiro, A.; et al. Requirement for Neuropeptide Y in the Development of Type 2 Responses and Allergen-Induced Airway Hyperresponsiveness and Inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L407–L417. [Google Scholar] [CrossRef]
  199. Woods, T.A.; Du, M.; Carmody, A.; Peterson, K.E. Neuropeptide Y Negatively Influences Monocyte Recruitment to the Central Nervous System during Retrovirus Infection. J. Virol. 2015, 90, 2783–2793. [Google Scholar] [CrossRef]
  200. Lagraauw, H.M.; Westra, M.M.; Bot, M.; Wezel, A.; Van Santbrink, P.J.; Pasterkamp, G.; Biessen, E.A.L.; Kuiper, J.; Bot, I. Vascular Neuropeptide Y Contributes to Atherosclerotic Plaque Progression and Perivascular Mast Cell Activation. Atherosclerosis 2014, 235, 196–203. [Google Scholar] [CrossRef]
  201. Minsel, I.; Mentlein, R.; Sel, S.; Diebold, Y.; Bräuer, L.; Mühlbauer, E.; Paulsen, F.P. Somatostatin Actions via Somatostatin Receptors on the Ocular Surface Are Modulated by Inflammatory Processes. Endocrinology 2009, 150, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
  202. Tsai, P.S.; Evans, J.E.; Green, K.M.; Sullivan, R.M.; Schaumberg, D.A.; Richards, S.M.; Dana, M.R.; Sullivan, D.A. Proteomic Analysis of Human Meibomian Gland Secretions. Br. J. Ophthalmol. 2006, 90, 372–377. [Google Scholar] [CrossRef] [PubMed]
  203. Ferone, D.; Van Hagen, P.M.; Semino, C.; Dalm, V.A.; Barreca, A.; Colao, A.; Lamberts, S.W.J.; Minuto, F.; Hofland, L.J. Somatostatin Receptor Distribution and Function in Immune System. Dig. Liver Dis. 2004, 36, S68–S77. [Google Scholar] [CrossRef]
  204. Leiba, H.; Garty, N.B.; Schmidt-Sole, J.; Piterman, O.; Azrad, A.; Salomon, Y. The Melanocortin Receptor in the Rat Lacrimal Gland: A Model System for the Study of MSH (Melanocyte Stimulating Hormone) as a Potential Neurotransmitter. Eur. J. Pharmacol. 1990, 181, 71–82. [Google Scholar] [CrossRef]
  205. Tinsley, P.W.; Fridland, G.H.; Killmar, J.T.; Desiderio, D.M. Purification, Characterization, and Localization of Neuropeptides in the Cornea. Peptides 1988, 9, 1373–1379. [Google Scholar] [CrossRef]
  206. Andersen, G.N.; Hägglund, M.; Nagaeva, O.; Frängsmyr, L.; Petrovska, R.; Mincheva-Nilsson, L.; Wikberg, J.E.S. Quantitative Measurement of the Levels of Melanocortin Receptor Subtype 1, 2, 3 and 5 and pro-Opio-Melanocortin Peptide Gene Expression in Subsets of Human Peripheral Blood Leucocytes. Scand. J. Immunol. 2005, 61, 279–284. [Google Scholar] [CrossRef] [PubMed]
  207. Andersen, M.; Nagaev, I.; Meyer, M.K.; Nagaeva, O.; Wikberg, J.; Mincheva-Nilsson, L.; Andersen, G.N. Melanocortin 2, 3 and 4 Receptor Gene Expressions Are Downregulated in CD8+ T Cytotoxic Lymphocytes and CD19+ B Lymphocytes in Rheumatoid Arthritis Responding to TNF-α Inhibition. Scand. J. Immunol. 2017, 86, 31–39. [Google Scholar] [CrossRef]
  208. Guzman-Aranguez, A.; Gasull, X.; Diebold, Y.; Pintor, J. Purinergic Receptors in Ocular Inflammation. Mediat. Inflamm. 2014, 2014, 320906. [Google Scholar] [CrossRef]
  209. Strömberg, I.; Björklund, H.; Melander, T.; Rökaeus, A.; Hökfelt, T.; Olson, L. Galanin-Immunoreactive Nerves in the Rat Iris: Alterations Induced by Denervations. Cell Tissue Res. 1987, 250, 267–275. [Google Scholar] [CrossRef]
  210. Koller, A.; Bianchini, R.; Schlager, S.; Münz, C.; Kofler, B.; Wiesmayr, S. The Neuropeptide Galanin Modulates Natural Killer Cell Function. Neuropeptides 2017, 64, 109–115. [Google Scholar] [CrossRef]
  211. Locker, F.; Lang, A.A.; Koller, A.; Lang, R.; Bianchini, R.; Kofler, B. Galanin Modulates Human and Murine Neutrophil Activation in Vitro. Acta Physiol. 2015, 213, 595–602. [Google Scholar] [CrossRef] [PubMed]
  212. Koller, A.; Brunner, S.M.; Bianchini, R.; Ramspacher, A.; Emberger, M.; Locker, F.; Schlager, S.; Kofler, B. Galanin Is a Potent Modulator of Cytokine and Chemokine Expression in Human Macrophages. Sci. Rep. 2019, 9, 7237. [Google Scholar] [CrossRef] [PubMed]
  213. Severini, C.; Improta, G.; Falconieri-Erspamer, G.; Salvadori, S.; Erspamer, V. The Tachykinin Peptide Family. Pharm. Rev. 2002, 54, 285–322. [Google Scholar] [CrossRef] [PubMed]
  214. Krause, J.E.; Chirgwin, J.M.; Carter, M.S.; Xu, Z.S.; Hershey, A.D. Three Rat Preprotachykinin MRNAs Encode the Neuropeptides Substance P and Neurokinin A. Proc. Natl. Acad. Sci. USA 1987, 84, 881–885. [Google Scholar] [CrossRef]
  215. Nawa, H.; Hirose, T.; Takashima, H.; Inayama, S.; Nakanishi, S. Nucleotide Sequences of Cloned CDNAs for Two Types of Bovine Brain Substance P Precursor. Nature 1983, 306, 32–36. [Google Scholar] [CrossRef] [PubMed]
  216. Euler, V.U.S.; Gaddum, J.H. An Unidentified Depressor Substance in Certain Tissue Extracts. J. Physiol. 1931, 72, 74–87. [Google Scholar] [CrossRef] [PubMed]
  217. Chang, M.M.; Leeman, S.E. Isolation of a Sialogogic Peptide from Bovine Hypothalamic Tissue and Its Characterization as Substance P. J. Biol. Chem. 1970, 245, 4784–4790. [Google Scholar] [CrossRef]
  218. Kageyama, R.; Sasai, Y.; Nakanishi, S. Molecular Characterization of Transcription Factors That Bind to the CAMP Responsive Region of the Substance P Precursor Gene. CDNA Cloning of a Novel C/EBP-Related Factor. J. Biol. Chem. 1991, 266, 15525–15531. [Google Scholar] [CrossRef]
  219. Hilton, K.J.; Bateson, A.N.; King, A.E. Neurotrophin-Induced Preprotachykinin-A Gene Promoter Modulation in Organotypic Rat Spinal Cord Culture. J. Neurochem. 2006, 98, 690–699. [Google Scholar] [CrossRef]
  220. Davidson, S.; Miller, K.A.; Dowell, A.; Gildea, A.; Mackenzie, A. A Remote and Highly Conserved Enhancer Supports Amygdala Specific Expression of the Gene Encoding the Anxiogenic Neuropeptide Substance-P. Mol. Psychiatry 2006, 11, 410–421. [Google Scholar] [CrossRef]
  221. McGregor, G.P.; Bloom, S.R. Radioimmunoassay of Substance P and Its Stability in Tissue. Life Sci. 1983, 32, 655–662. [Google Scholar] [CrossRef]
  222. Rameshwar, P.; Zhu, G.; Donnelly, R.J.; Qian, J.; Ge, H.; Goldstein, K.R.; Denny, T.N.; Gascón, P. The Dynamics of Bone Marrow Stromal Cells in the Proliferation of Multipotent Hematopoietic Progenitors by Substance P: An Understanding of the Effects of a Neurotransmitter on the Differentiating Hematopoietic Stem Cell. J. Neuroimmunol. 2001, 121, 22–31. [Google Scholar] [CrossRef]
  223. Skidgel, R.A.; Erdös, E.G. Angiotensin Converting Enzyme (ACE) and Neprilysin Hydrolyze Neuropeptides: A Brief History, the Beginning and Follow-Ups to Early Studies. Peptides 2004, 25, 521–525. [Google Scholar] [CrossRef] [PubMed]
  224. Nyberg, F.; Le Greves, P.; Sundqvist, C.; Terenius, L. Characterization of Substance P(1-7) and (1-8) Generating Enzyme in Human Cerebrospinal Fluid. Biochem. Biophys. Res. Commun. 1984, 125, 244–250. [Google Scholar] [CrossRef]
  225. Garcia-Recio, S.; Gascón, P. Biological and Pharmacological Aspects of the NK1-Receptor. Biomed. Res. Int. 2015, 2015, 495704. [Google Scholar] [CrossRef] [PubMed]
  226. Mishra, A.; Lal, G. Neurokinin Receptors and Their Implications in Various Autoimmune Diseases. Curr. Res. Immunol. 2021, 2, 66–78. [Google Scholar] [CrossRef]
  227. Suvas, S. Role of Substance P Neuropeptide in Inflammation, Wound Healing, and Tissue Homeostasis. J. Immunol. 2017, 199, 1543–1552. [Google Scholar] [CrossRef]
  228. Christian, C.; Gilbert, M.; Payan, D.G. Stimulation of Transcriptional Regulatory Activity by Substance P. Neuroimmunomodulation 1994, 1, 159–164. [Google Scholar] [CrossRef]
  229. Derocq, J.M.; Ségui, M.; Blazy, C.; Emonds-Alt, X.; Le Fur, G.; Brelire, J.C.; Casellas, P. Effect of Substance P on Cytokine Production by Human Astrocytic Cells and Blood Mononuclear Cells: Characterization of Novel Tachykinin Receptor Antagonists. FEBS Lett. 1996, 399, 321–325. [Google Scholar] [CrossRef]
  230. Fiebich, B.L.; Schleicher, S.; Butcher, R.D.; Craig, A.; Lieb, K. The Neuropeptide Substance P Activates P38 Mitogen-Activated Protein Kinase Resulting in IL-6 Expression Independently from NF-Kappa B. J. Immunol. 2000, 165, 5606–5611. [Google Scholar] [CrossRef]
  231. Foldenauer, M.E.B.; McClellan, S.A.; Berger, E.A.; Hazlett, L.D. Mammalian Target of Rapamycin Regulates IL-10 and Resistance to Pseudomonas Aeruginosa Corneal Infection. J. Immunol. 2013, 190, 5649–5658. [Google Scholar] [CrossRef] [PubMed]
  232. Guo, C.J.; Lai, J.P.; Luo, H.M.; Douglas, S.D.; Ho, W.Z. Substance P Up-Regulates Macrophage Inflammatory Protein-1beta Expression in Human T Lymphocytes. J. Neuroimmunol. 2002, 131, 160–167. [Google Scholar] [CrossRef]
  233. Koizumi, H.; Yasui, C.; Fukaya, T.; Ueda, T.; Ohkawara, A. Substance P Induces Inositol 1,4,5-Trisphosphate and Intracellular Free Calcium Increase in Cultured Normal Human Epidermal Keratinocytes. Exp. Dermatol. 1994, 3, 40–44. [Google Scholar] [CrossRef] [PubMed]
  234. Koon, H.-W.; Zhao, D.; Zhan, Y.; Simeonidis, S.; Moyer, M.P.; Pothoulakis, C. Substance P-Stimulated Interleukin-8 Expression in Human Colonic Epithelial Cells Involves Protein Kinase Cdelta Activation. J. Pharm. Exp. 2005, 314, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
  235. Lieb, K.; Fiebich, B.L.; Berger, M.; Bauer, J.; Schulze-Osthoff, K. The Neuropeptide Substance P Activates Transcription Factor NF-Kappa B and Kappa B-Dependent Gene Expression in Human Astrocytoma Cells. J. Immunol. 1997, 159, 4952–4958. [Google Scholar] [PubMed]
  236. Quinlan, K.L.; Naik, S.M.; Cannon, G.; Armstrong, C.A.; Bunnett, N.W.; Ansel, J.C.; Caughman, S.W. Substance P Activates Coincident NF-AT- and NF-Kappa B-Dependent Adhesion Molecule Gene Expression in Microvascular Endothelial Cells through Intracellular Calcium Mobilization. J. Immunol. 1999, 163, 5656–5665. [Google Scholar]
  237. Sun, J.; Ramnath, R.D.; Zhi, L.; Tamizhselvi, R.; Bhatia, M. Substance P Enhances NF-KappaB Transactivation and Chemokine Response in Murine Macrophages via ERK1/2 and P38 MAPK Signaling Pathways. Am. J. Physiol. Cell Physiol. 2008, 294, C1586–C1596. [Google Scholar] [CrossRef]
  238. Zhao, D.; Kuhnt-Moore, S.; Zeng, H.; Pan, A.; Wu, J.S.; Simeonidis, S.; Moyer, M.P.; Pothoulakis, C. Substance P-Stimulated Interleukin-8 Expression in Human Colonic Epithelial Cells Involves Rho Family Small GTPases. Biochem. J. 2002, 368, 665–672. [Google Scholar] [CrossRef]
  239. Nishimura, K.; Warabi, K.; Roush, E.D.; Frederick, J.; Schwinn, D.A.; Kwatra, M.M. Characterization of GRK2-Catalyzed Phosphorylation of the Human Substance P Receptor in Sf9 Membranes. Biochemistry 1998, 37, 1192–1198. [Google Scholar] [CrossRef]
  240. McConalogue, K.; Corvera, C.U.; Gamp, P.D.; Grady, E.F.; Bunnett, N.W. Desensitization of the Neurokinin-1 Receptor (NK1-R) in Neurons: Effects of Substance P on the Distribution of NK1-R, Galphaq/11, G-Protein Receptor Kinase-2/3, and Beta-Arrestin-1/2. Mol. Biol. Cell 1998, 9, 2305–2324. [Google Scholar] [CrossRef]
  241. Grady, E.F.; Garland, A.M.; Gamp, P.D.; Lovett, M.; Payan, D.G.; Bunnett, N.W. Delineation of the Endocytic Pathway of Substance P and Its Seven-Transmembrane Domain NK1 Receptor. Mol. Biol. Cell 1995, 6, 509–524. [Google Scholar] [CrossRef] [PubMed]
  242. Partridge, B.J.; Chaplan, S.R.; Sakamoto, E.; Yaksh, T.L. Characterization of the Effects of Gabapentin and 3-Isobutyl-Gamma-Aminobutyric Acid on Substance P-Induced Thermal Hyperalgesia. Anesthesiology 1998, 88, 196–205. [Google Scholar] [CrossRef] [PubMed]
  243. Mantyh, P.W. Neurobiology of Substance P and the NK1 Receptor. J. Clin. Psychiatry 2002, 63 (Suppl. S11), 6–10. [Google Scholar] [PubMed]
  244. Pedersen-Bjergaard, U.; Nielsen, L.B.; Jensen, K.; Edvinsson, L.; Jansen, I.; Olesen, J. Calcitonin Gene-Related Peptide, Neurokinin A and Substance P: Effects on Nociception and Neurogenic Inflammation in Human Skin and Temporal Muscle. Peptides 1991, 12, 333–337. [Google Scholar] [CrossRef]
  245. Ahluwalia, A.; De Felipe, C.; O’Brien, J.; Hunt, S.P.; Perretti, M. Impaired IL-1beta-Induced Neutrophil Accumulation in Tachykinin NK1 Receptor Knockout Mice. Br. J. Pharm. 1998, 124, 1013–1015. [Google Scholar] [CrossRef]
  246. Castellani, M.L.; Conti, P.; Felaco, M.; Vecchiet, J.; Ciampoli, C.; Cerulli, G.; Boscolo, P.; Theoharides, T.C. Substance P Upregulates LTB4 in Rat Adherent Macrophages from Granuloma Induced by KMnO4. Neurotox. Res. 2009, 15, 49–56. [Google Scholar] [CrossRef]
  247. Calvo, C.F.; Chavanel, G.; Senik, A. Substance P Enhances IL-2 Expression in Activated Human T Cells. J. Immunol. 1992, 148, 3498–3504. [Google Scholar]
  248. Nio, D.A.; Moylan, R.N.; Roche, J.K. Modulation of T Lymphocyte Function by Neuropeptides. Evidence for Their Role as Local Immunoregulatory Elements. J. Immunol. 1993, 150, 5281–5288. [Google Scholar]
  249. Payan, D.G.; Brewster, D.R.; Goetzl, E.J. Specific Stimulation of Human T Lymphocytes by Substance P. J. Immunol. 1983, 131, 1613–1615. [Google Scholar]
  250. Rameshwar, P.; Ganea, D.; Gascón, P. In Vitro Stimulatory Effect of Substance P on Hematopoiesis. Blood 1993, 81, 391–398. [Google Scholar] [CrossRef]
  251. Scicchitano, R.; Biennenstock, J.; Stanisz, A.M. In Vivo Immunomodulation by the Neuropeptide Substance P. Immunology 1988, 63, 733–735. [Google Scholar] [PubMed]
  252. Lambrecht, B.N.; Germonpré, P.R.; Everaert, E.G.; Carro-Muino, I.; De Veerman, M.; De Felipe, C.; Hunt, S.P.; Thielemans, K.; Joos, G.F.; Pauwels, R.A. Endogenously Produced Substance P Contributes to Lymphocyte Proliferation Induced by Dendritic Cells and Direct TCR Ligation. Eur. J. Immunol. 1999, 29, 3815–3825. [Google Scholar] [CrossRef]
  253. Marriott, I.; Bost, K.L. IL-4 and IFN-Gamma up-Regulate Substance P Receptor Expression in Murine Peritoneal Macrophages. J. Immunol. 2000, 165, 182–191. [Google Scholar] [CrossRef] [PubMed]
  254. Simeonidis, S.; Castagliuolo, I.; Pan, A.; Liu, J.; Wang, C.-C.; Mykoniatis, A.; Pasha, A.; Valenick, L.; Sougioultzis, S.; Zhao, D.; et al. Regulation of the NK-1 Receptor Gene Expression in Human Macrophage Cells via an NF-Kappa B Site on Its Promoter. Proc. Natl. Acad. Sci. USA 2003, 100, 2957–2962. [Google Scholar] [CrossRef]
  255. Weinstock, J.V.; Blum, A.; Metwali, A.; Elliott, D.; Bunnett, N.; Arsenescu, R. Substance P Regulates Th1-Type Colitis in IL-10 Knockout Mice. J. Immunol. 2003, 171, 3762–3767. [Google Scholar] [CrossRef]
  256. Beinborn, M.; Blum, A.; Hang, L.; Setiawan, T.; Schroeder, J.C.; Stoyanoff, K.; Leung, J.; Weinstock, J.V. TGF-Beta Regulates T-Cell Neurokinin-1 Receptor Internalization and Function. Proc. Natl. Acad. Sci. USA 2010, 107, 4293–4298. [Google Scholar] [CrossRef]
  257. Weinstock, J.V.; Blum, A.; Metwali, A.; Elliott, D.; Arsenescu, R. IL-18 and IL-12 Signal through the NF-Kappa B Pathway to Induce NK-1R Expression on T Cells. J. Immunol. 2003, 170, 5003–5007. [Google Scholar] [CrossRef]
  258. Serra, M.C.; Bazzoni, F.; Della Bianca, V.; Greskowiak, M.; Rossi, F. Activation of Human Neutrophils by Substance P. Effect on Oxidative Metabolism, Exocytosis, Cytosolic Ca2+ Concentration and Inositol Phosphate Formation. J. Immunol. 1988, 141, 2118–2124. [Google Scholar]
  259. Wozniak, A.; McLennan, G.; Betts, W.H.; Murphy, G.A.; Scicchitano, R. Activation of Human Neutrophils by Substance P: Effect on FMLP-Stimulated Oxidative and Arachidonic Acid Metabolism and on Antibody-Dependent Cell-Mediated Cytotoxicity. Immunology 1989, 68, 359–364. [Google Scholar]
  260. Bar-Shavit, Z.; Goldman, R.; Stabinsky, Y.; Gottlieb, P.; Fridkin, M.; Teichberg, V.I.; Blumberg, S. Enhancement of Phagocytosis—A Newly Found Activity of Substance P Residing in Its N-Terminal Tetrapeptide Sequence. Biochem. Biophys. Res. Commun. 1980, 94, 1445–1451. [Google Scholar] [CrossRef]
  261. Hartung, H.P.; Toyka, K.V. Activation of Macrophages by Substance P: Induction of Oxidative Burst and Thromboxane Release. Eur. J. Pharm. 1983, 89, 301–305. [Google Scholar] [CrossRef]
  262. Murris-Espin, M.; Pinelli, E.; Pipy, B.; Leophonte, P.; Didier, A. Substance P and Alveolar Macrophages: Effects on Oxidative Metabolism and Eicosanoid Production. Allergy 1995, 50, 334–339. [Google Scholar] [CrossRef] [PubMed]
  263. Cuesta, M.C.; Quintero, L.; Pons, H.; Suarez-Roca, H. Substance P and Calcitonin Gene-Related Peptide Increase IL-1 Beta, IL-6 and TNF Alpha Secretion from Human Peripheral Blood Mononuclear Cells. Neurochem. Int. 2002, 40, 301–306. [Google Scholar] [CrossRef]
  264. Lotz, M.; Vaughan, J.H.; Carson, D.A. Effect of Neuropeptides on Production of Inflammatory Cytokines by Human Monocytes. Science 1988, 241, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
  265. Ansel, J.C.; Kaynard, A.H.; Armstrong, C.A.; Olerud, J.; Bunnett, N.; Payan, D. Skin-Nervous System Interactions. J. Investig. Dermatol. 1996, 106, 198–204. [Google Scholar] [CrossRef] [PubMed]
  266. Tancowny, B.P.; Karpov, V.; Schleimer, R.P.; Kulka, M. Substance P Primes Lipoteichoic Acid- and Pam3CysSerLys4-Mediated Activation of Human Mast Cells by up-Regulating Toll-like Receptor 2. Immunology 2010, 131, 220–230. [Google Scholar] [CrossRef] [PubMed]
  267. Guhl, S.; Lee, H.-H.; Babina, M.; Henz, B.M.; Zuberbier, T. Evidence for a Restricted Rather than Generalized Stimulatory Response of Skin-Derived Human Mast Cells to Substance P. J. Neuroimmunol. 2005, 163, 92–101. [Google Scholar] [CrossRef]
  268. Asadi, S.; Alysandratos, K.-D.; Angelidou, A.; Miniati, A.; Sismanopoulos, N.; Vasiadi, M.; Zhang, B.; Kalogeromitros, D.; Theoharides, T.C. Substance P (SP) Induces Expression of Functional Corticotropin-Releasing Hormone Receptor-1 (CRHR-1) in Human Mast Cells. J. Investig. Dermatol. 2012, 132, 324–329. [Google Scholar] [CrossRef]
  269. Shaik-Dasthagirisaheb, Y.B.; Varvara, G.; Murmura, G.; Saggini, A.; Potalivo, G.; Caraffa, A.; Antinolfi, P.; Tete’, S.; Tripodi, D.; Conti, F.; et al. Vascular Endothelial Growth Factor (VEGF), Mast Cells and Inflammation. Int. J. Immunopathol. Pharm. 2013, 26, 327–335. [Google Scholar] [CrossRef]
  270. Croitoru, K.; Ernst, P.B.; Bienenstock, J.; Padol, I.; Stanisz, A.M. Selective Modulation of the Natural Killer Activity of Murine Intestinal Intraepithelial Leucocytes by the Neuropeptide Substance P. Immunology 1990, 71, 196–201. [Google Scholar]
  271. Feistritzer, C.; Clausen, J.; Sturn, D.H.; Djanani, A.; Gunsilius, E.; Wiedermann, C.J.; Kähler, C.M. Natural Killer Cell Functions Mediated by the Neuropeptide Substance P. Regul. Pept. 2003, 116, 119–126. [Google Scholar] [CrossRef]
  272. Fu, W.X.; Qin, B.; Zhou, A.P.; Yu, Q.Y.; Huang, Q.J.; Liang, Z.F. Regulation of NK92-MI Cell Cytotoxicity by Substance P. Scand. J. Immunol. 2011, 74, 107–113. [Google Scholar] [CrossRef] [PubMed]
  273. Lai, J.P.; Douglas, S.D.; Rappaport, E.; Wu, J.M.; Ho, W.Z. Identification of a Delta Isoform of Preprotachykinin MRNA in Human Mononuclear Phagocytes and Lymphocytes. J. Neuroimmunol. 1998, 91, 121–128. [Google Scholar] [CrossRef]
  274. Słoniecka, M.; Le Roux, S.; Boman, P.; Byström, B.; Zhou, Q.; Danielson, P. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS ONE 2015, 10, e0134157. [Google Scholar] [CrossRef]
  275. Watanabe, M.; Nakayasu, K.; Iwatsu, M.; Kanai, A. Endogenous Substance P in Corneal Epithelial Cells and Keratocytes. Jpn. J. Ophthalmol. 2002, 46, 616–620. [Google Scholar] [CrossRef]
  276. Lasagni Vitar, R.M.; Barbariga, M.; Fonteyne, P.; Bignami, F.; Rama, P.; Ferrari, G. Modulating Ocular Surface Pain Through Neurokinin-1 Receptor Blockade. Investig. Ophthalmol. Vis. Sci. 2021, 62, 26. [Google Scholar] [CrossRef]
  277. Yamada, M.; Ogata, M.; Kawai, M.; Mashima, Y.; Nishida, T. Substance P and Its Metabolites in Normal Human Tears. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2622–2625. [Google Scholar]
  278. Yamada, M.; Ogata, M.; Kawai, M.; Mashima, Y.; Nishida, T. Substance P in Human Tears. Cornea 2003, 22, S48–S54. [Google Scholar] [CrossRef]
  279. Kovács, I.; Ludány, A.; Koszegi, T.; Fehér, J.; Kovács, B.; Szolcsányi, J.; Pintér, E. Substance P Released from Sensory Nerve Endings Influences Tear Secretion and Goblet Cell Function in the Rat. Neuropeptides 2005, 39, 395–402. [Google Scholar] [CrossRef]
  280. Gaddipati, S.; Rao, P.; Jerome, A.D.; Burugula, B.B.; Gerard, N.P.; Suvas, S. Loss of Neurokinin-1 Receptor Alters Ocular Surface Homeostasis and Promotes an Early Development of Herpes Stromal Keratitis. J. Immunol. 2016, 197, 4021–4033. [Google Scholar] [CrossRef]
  281. Yang, L.; Sui, W.; Li, Y.; Qi, X.; Wang, Y.; Zhou, Q.; Gao, H. Substance P Inhibits Hyperosmotic Stress-Induced Apoptosis in Corneal Epithelial Cells through the Mechanism of Akt Activation and Reactive Oxygen Species Scavenging via the Neurokinin-1 Receptor. PLoS ONE 2016, 11, e0149865. [Google Scholar] [CrossRef] [PubMed]
  282. Araki-Sasaki, K.; Aizawa, S.; Hiramoto, M.; Nakamura, M.; Iwase, O.; Nakata, K.; Sasaki, Y.; Mano, T.; Handa, H.; Tano, Y. Substance P-Induced Cadherin Expression and Its Signal Transduction in a Cloned Human Corneal Epithelial Cell Line. J. Cell. Physiol. 2000, 182, 189–195. [Google Scholar] [CrossRef]
  283. Vitar, R.L.; Triani, F.; Barbariga, M.; Fonteyne, P.; Rama, P.; Ferrari, G. Substance P/Neurokinin-1 Receptor Pathway Blockade Ameliorates Limbal Stem Cell Deficiency by Modulating MTOR Pathway and Preventing Cell Senescence. Stem Cell Rep. 2022, 17, 849–863. [Google Scholar] [CrossRef]
  284. Barbariga, M.; Fonteyne, P.; Ostadreza, M.; Bignami, F.; Rama, P.; Ferrari, G. Substance P Modulation of Human and Murine Corneal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1305–1312. [Google Scholar] [CrossRef]
  285. Bignami, F.; Giacomini, C.; Lorusso, A.; Aramini, A.; Rama, P.; Ferrari, G. NK1 Receptor Antagonists as a New Treatment for Corneal Neovascularization. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6783–6794. [Google Scholar] [CrossRef] [PubMed]
  286. Ferrari, G.; Bignami, F.; Giacomini, C.; Capitolo, E.; Comi, G.; Chaabane, L.; Rama, P. Ocular Surface Injury Induces Inflammation in the Brain: In Vivo and Ex Vivo Evidence of a Corneal–Trigeminal Axis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6289–6300. [Google Scholar] [CrossRef] [PubMed]
  287. Yang, L.; Di, G.; Qi, X.; Qu, M.; Wang, Y.; Duan, H.; Danielson, P.; Xie, L.; Zhou, Q. Substance P Promotes Diabetic Corneal Epithelial Wound Healing through Molecular Mechanisms Mediated via the Neurokinin-1 Receptor. Diabetes 2014, 63, 4262–4274. [Google Scholar] [CrossRef]
  288. McClellan, S.A.; Zhang, Y.; Barrett, R.P.; Hazlett, L.D. Substance P Promotes Susceptibility to Pseudomonas Aeruginosa Keratitis in Resistant Mice: Anti-Inflammatory Mediators Downregulated. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1502–1511. [Google Scholar] [CrossRef]
  289. Lighvani, S.; Huang, X.; Trivedi, P.P.; Swanborg, R.H.; Hazlett, L.D. Substance P Regulates Natural Killer Cell Interferon-Gamma Production and Resistance to Pseudomonas Aeruginosa Infection. Eur. J. Immunol. 2005, 35, 1567–1575. [Google Scholar] [CrossRef]
  290. Lu, H.; Lu, Q.; Zheng, Y.; Li, Q. Notch Signaling Promotes the Corneal Epithelium Wound Healing. Mol. Vis. 2012, 18, 403–411. [Google Scholar]
  291. Chui, J.; Di Girolamo, N.; Wakefield, D.; Coroneo, M.T. The Pathogenesis of Pterygium: Current Concepts and Their Therapeutic Implications. Ocul. Surf. 2008, 6, 24–43. [Google Scholar] [CrossRef]
  292. Fujishima, H.; Toda, I.; Shimazaki, J.; Tsubota, K. Allergic Conjunctivitis and Dry Eye. Br. J. Ophthalmol. 1996, 80, 994–997. [Google Scholar] [CrossRef] [PubMed]
  293. Paunicka, K.J.; Mellon, J.; Robertson, D.; Petroll, M.; Brown, J.R.; Niederkorn, J.Y. Severing Corneal Nerves in One Eye Induces Sympathetic Loss of Immune Privilege and Promotes Rejection of Future Corneal Allografts Placed in Either Eye. Am. J. Transplant. 2015, 15, 1490–1501. [Google Scholar] [CrossRef]
  294. Lee, S.J.; Im, S.-T.; Wu, J.; Cho, C.S.; Jo, D.H.; Chen, Y.; Dana, R.; Kim, J.H.; Lee, S.-M. Corneal Lymphangiogenesis in Dry Eye Disease Is Regulated by Substance P/Neurokinin-1 Receptor System through Controlling Expression of Vascular Endothelial Growth Factor Receptor 3. Ocul. Surf. 2021, 22, 72–79. [Google Scholar] [CrossRef] [PubMed]
  295. Twardy, B.S.; Channappanavar, R.; Suvas, S. Substance P in the Corneal Stroma Regulates the Severity of Herpetic Stromal Keratitis Lesions. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8604–8613. [Google Scholar] [CrossRef] [PubMed]
  296. McClellan, S.A.; Huang, X.; Barrett, R.P.; Van Rooijen, N.; Hazlett, L.D. Macrophages Restrict Pseudomonas Aeruginosa Growth, Regulate Polymorphonuclear Neutrophil Influx, and Balance pro- and Anti-Inflammatory Cytokines in BALB/c Mice. J. Immunol. 2003, 170, 5219–5227. [Google Scholar] [CrossRef]
  297. Nishida, T. Neurotrophic Mediators and Corneal Wound Healing. Ocul. Surf. 2005, 3, 194–202. [Google Scholar] [CrossRef]
  298. Nishida, T.; Nakamura, M.; Ofuji, K.; Reid, T.W.; Mannis, M.J.; Murphy, C.J. Synergistic Effects of Substance P with Insulin-like Growth Factor-1 on Epithelial Migration of the Cornea. J. Cell. Physiol. 1996, 169, 159–166. [Google Scholar] [CrossRef]
  299. Ogoshi, M.; Inoue, K.; Naruse, K.; Takei, Y. Evolutionary History of the Calcitonin Gene-Related Peptide Family in Vertebrates Revealed by Comparative Genomic Analyses. Peptides 2006, 27, 3154–3164. [Google Scholar] [CrossRef]
  300. Ostrovskaya, A.; Hick, C.; Hutchinson, D.S.; Stringer, B.W.; Wookey, P.J.; Wootten, D.; Sexton, P.M.; Furness, S.G.B. Expression and Activity of the Calcitonin Receptor Family in a Sample of Primary Human High-Grade Gliomas. BMC Cancer 2019, 19, 157. [Google Scholar] [CrossRef]
  301. Jia, S.; Zhang, S.-J.; Wang, X.-D.; Yang, Z.-H.; Sun, Y.-N.; Gupta, A.; Hou, R.; Lei, D.-L.; Hu, K.-J.; Ye, W.-M.; et al. Calcitonin Gene-Related Peptide Enhances Osteogenic Differentiation and Recruitment of Bone Marrow Mesenchymal Stem Cells in Rats. Exp. Med. 2019, 18, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
  302. Amara, S.G.; Jonas, V.; Rosenfeld, M.G.; Ong, E.S.; Evans, R.M. Alternative RNA Processing in Calcitonin Gene Expression Generates MRNAs Encoding Different Polypeptide Products. Nature 1982, 298, 240–244. [Google Scholar] [CrossRef] [PubMed]
  303. Maggi, C.A.; Giuliani, S.; Meini, S.; Santicioli, P. Calcitonin Gene Related Peptide as Inhibitory Neurotransmitter in the Ureter. Can. J. Physiol. Pharm. 1995, 73, 986–990. [Google Scholar] [CrossRef] [PubMed]
  304. Alevizaki, M.; Shiraishi, A.; Rassool, F.V.; Ferrier, G.J.; MacIntyre, I.; Legon, S. The Calcitonin-like Sequence of the Beta CGRP Gene. FEBS Lett. 1986, 206, 47–52. [Google Scholar] [CrossRef]
  305. Steenbergh, P.H.; Höppener, J.W.; Zandberg, J.; Visser, A.; Lips, C.J.; Jansz, H.S. Structure and Expression of the Human Calcitonin/CGRP Genes. FEBS Lett. 1986, 209, 97–103. [Google Scholar] [CrossRef]
  306. Bowen, E.J.; Schmidt, T.W.; Firm, C.S.; Russo, A.F.; Durham, P.L. Tumor Necrosis Factor-Alpha Stimulation of Calcitonin Gene-Related Peptide Expression and Secretion from Rat Trigeminal Ganglion Neurons. J. Neurochem. 2006, 96, 65–77. [Google Scholar] [CrossRef] [PubMed]
  307. Xu, H.; Ding, J.; Porter, C.B.M.; Wallrapp, A.; Tabaka, M.; Ma, S.; Fu, S.; Guo, X.; Riesenfeld, S.J.; Su, C.; et al. Transcriptional Atlas of Intestinal Immune Cells Reveals That Neuropeptide α-CGRP Modulates Group 2 Innate Lymphoid Cell Responses. Immunity 2019, 51, 696–708.e9. [Google Scholar] [CrossRef]
  308. Tverberg, L.A.; Russo, A.F. Cell-Specific Glucocorticoid Repression of Calcitonin/Calcitonin Gene-Related Peptide Transcription. Localization to an 18-Base Pair Basal Enhancer Element. J. Biol. Chem. 1992, 267, 17567–17573. [Google Scholar] [CrossRef]
  309. Bucknell, S.J.; Ator, M.A.; Brown, A.J.H.; Brown, J.; Cansfield, A.D.; Cansfield, J.E.; Christopher, J.A.; Congreve, M.; Cseke, G.; Deflorian, F.; et al. Structure-Based Drug Discovery of N-((R)-3-(7-Methyl-1H-Indazol-5-Yl)-1-Oxo-1-(((S)-1-Oxo-3-(Piperidin-4-Yl)-1-(4-(Pyridin-4-Yl)Piperazin-1-Yl)Propan-2-Yl)Amino)Propan-2-Yl)-2’-Oxo-1’,2’-Dihydrospiro[Piperidine-4,4’-Pyrido[2,3-d][1,3]Oxazine]-1-Carboxamide (HTL22562): A Calcitonin Gene-Related Peptide Receptor Antagonist for Acute Treatment of Migraine. J. Med. Chem. 2020, 63, 7906–7920. [Google Scholar] [CrossRef]
  310. Matteoli, M.; Haimann, C.; Torri-Tarelli, F.; Polak, J.M.; Ceccarelli, B.; De Camilli, P. Differential Effect of Alpha-Latrotoxin on Exocytosis from Small Synaptic Vesicles and from Large Dense-Core Vesicles Containing Calcitonin Gene-Related Peptide at the Frog Neuromuscular Junction. Proc. Natl. Acad. Sci. USA 1988, 85, 7366–7370. [Google Scholar] [CrossRef]
  311. Meng, J.; Wang, J.; Lawrence, G.; Dolly, J.O. Synaptobrevin I Mediates Exocytosis of CGRP from Sensory Neurons and Inhibition by Botulinum Toxins Reflects Their Anti-Nociceptive Potential. J. Cell Sci. 2007, 120, 2864–2874. [Google Scholar] [CrossRef] [PubMed]
  312. Brain, S.D.; Williams, T.J. Substance P Regulates the Vasodilator Activity of Calcitonin Gene-Related Peptide. Nature 1988, 335, 73–75. [Google Scholar] [CrossRef] [PubMed]
  313. Katayama, M.; Nadel, J.A.; Bunnett, N.W.; Di Maria, G.U.; Haxhiu, M.; Borson, D.B. Catabolism of Calcitonin Gene-Related Peptide and Substance P by Neutral Endopeptidase. Peptides 1991, 12, 563–567. [Google Scholar] [CrossRef]
  314. Nelson, M.T.; Huang, Y.; Brayden, J.E.; Hescheler, J.; Standen, N.B. Arterial Dilations in Response to Calcitonin Gene-Related Peptide Involve Activation of K+ Channels. Nature 1990, 344, 770–773. [Google Scholar] [CrossRef] [PubMed]
  315. Schaeffer, C.; Vandroux, D.; Thomassin, L.; Athias, P.; Rochette, L.; Connat, J.-L. Calcitonin Gene-Related Peptide Partly Protects Cultured Smooth Muscle Cells from Apoptosis Induced by an Oxidative Stress via Activation of ERK1/2 MAPK. Biochim. Biophys. Acta 2003, 1643, 65–73. [Google Scholar] [CrossRef] [PubMed]
  316. Drake, W.M.; Ajayi, A.; Lowe, S.R.; Mirtella, A.; Bartlett, T.J.; Clark, A.J. Desensitization of CGRP and Adrenomedullin Receptors in SK-N-MC Cells: Implications for the RAMP Hypothesis. Endocrinology 1999, 140, 533–537. [Google Scholar] [CrossRef]
  317. Drake, W.M.; Lowe, S.R.; Mirtella, A.; Bartlett, T.J.; Clark, A.J. Desensitisation of Calcitonin Gene-Related Peptide Responsiveness but Not Adrenomedullin Responsiveness in Vascular Smooth Muscle Cells. J. Endocrinol. 2000, 165, 133–138. [Google Scholar] [CrossRef]
  318. Pin, S.S.; Bahr, B.A. Protein Kinase C Is a Common Component of CGRP Receptor Desensitization Induced by Distinct Agonists. Eur. J. Pharm. 2008, 587, 8–15. [Google Scholar] [CrossRef]
  319. Hilairet, S.; Foord, S.M.; Marshall, F.H.; Bouvier, M. Protein-Protein Interaction and Not Glycosylation Determines the Binding Selectivity of Heterodimers between the Calcitonin Receptor-like Receptor and the Receptor Activity-Modifying Proteins. J. Biol. Chem. 2001, 276, 29575–29581. [Google Scholar] [CrossRef]
  320. Cottrell, G.S.; Padilla, B.; Pikios, S.; Roosterman, D.; Steinhoff, M.; Grady, E.F.; Bunnett, N.W. Post-Endocytic Sorting of Calcitonin Receptor-like Receptor and Receptor Activity-Modifying Protein 1. J. Biol. Chem. 2007, 282, 12260–12271. [Google Scholar] [CrossRef]
  321. Spekker, E.; Tanaka, M.; Szabó, Á.; Vécsei, L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2022, 10, 76. [Google Scholar] [CrossRef] [PubMed]
  322. Brain, S.D. Sensory Neuropeptides: Their Role in Inflammation and Wound Healing. Immunopharmacology 1997, 37, 133–152. [Google Scholar] [CrossRef]
  323. Mikami, N.; Miyagi, Y.; Sueda, K.; Takatsuji, M.; Fukada, S.; Yamamoto, H.; Tsujikawa, K. Calcitonin Gene-Related Peptide and Cyclic Adenosine 5’-Monophosphate/Protein Kinase A Pathway Promote IL-9 Production in Th9 Differentiation Process. J. Immunol. 2013, 190, 4046–4055. [Google Scholar] [CrossRef] [PubMed]
  324. Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef] [PubMed]
  325. Asahina, A.; Moro, O.; Hosoi, J.; Lerner, E.A.; Xu, S.; Takashima, A.; Granstein, R.D. Specific Induction of CAMP in Langerhans Cells by Calcitonin Gene-Related Peptide: Relevance to Functional Effects. Proc. Natl. Acad. Sci. USA 1995, 92, 8323–8327. [Google Scholar] [CrossRef]
  326. Ichinose, M.; Sawada, M. Enhancement of Phagocytosis by Calcitonin Gene-Related Peptide (CGRP) in Cultured Mouse Peritoneal Macrophages. Peptides 1996, 17, 1405–1414. [Google Scholar] [CrossRef]
  327. McGillis, J.P.; Humphreys, S.; Rangnekar, V.; Ciallella, J. Modulation of B Lymphocyte Differentiation by Calcitonin Gene-Related Peptide (CGRP). I. Characterization of High-Affinity CGRP Receptors on Murine 70Z/3 Cells. Cell. Immunol. 1993, 150, 391–404. [Google Scholar] [CrossRef]
  328. Umeda, Y.; Takamiya, M.; Yoshizaki, H.; Arisawa, M. Inhibition of Mitogen-Stimulated T Lymphocyte Proliferation by Calcitonin Gene-Related Peptide. Biochem. Biophys. Res. Commun. 1988, 154, 227–235. [Google Scholar] [CrossRef]
  329. Wang, F.; Millet, I.; Bottomly, K.; Vignery, A. Calcitonin Gene-Related Peptide Inhibits Interleukin 2 Production by Murine T Lymphocytes. J. Biol. Chem. 1992, 267, 21052–21057. [Google Scholar] [CrossRef]
  330. Antúnez, C.; Torres, M.J.; López, S.; Rodriguez-Pena, R.; Blanca, M.; Mayorga, C.; Santamaría-Babi, L.F. Calcitonin Gene-Related Peptide Modulates Interleukin-13 in Circulating Cutaneous Lymphocyte-Associated Antigen-Positive T Cells in Patients with Atopic Dermatitis. Br. J. Dermatol. 2009, 161, 547–553. [Google Scholar] [CrossRef]
  331. Arden, W.A.; Fiscus, R.R.; Wang, X.; Yang, L.; Maley, R.; Nielsen, M.; Lanzo, S.; Gross, D.R. Elevations in Circulating Calcitonin Gene-Related Peptide Correlate with Hemodynamic Deterioration during Endotoxic Shock in Pigs. Circ. Shock 1994, 42, 147–153. [Google Scholar] [PubMed]
  332. Arnalich, F.; De Miguel, E.; Perez-Ayala, C.; Martinez, M.; Vazquez, J.J.; Gijon-Banos, J.; Hernanz, A. Neuropeptides and Interleukin-6 in Human Joint Inflammation Relationship between Intraarticular Substance P and Interleukin-6 Concentrations. Neurosci. Lett. 1994, 170, 251–254. [Google Scholar] [CrossRef]
  333. Schou, W.S.; Ashina, S.; Amin, F.M.; Goadsby, P.J.; Ashina, M. Calcitonin Gene-Related Peptide and Pain: A Systematic Review. J. Headache Pain 2017, 18, 34. [Google Scholar] [CrossRef]
  334. Iyengar, S.; Ossipov, M.H.; Johnson, K.W. The Role of Calcitonin Gene–Related Peptide in Peripheral and Central Pain Mechanisms Including Migraine. Pain 2017, 158, 543–559. [Google Scholar] [CrossRef] [PubMed]
  335. Garcia-Hirschfeld, J.; Lopez-Briones, L.G.; Belmonte, C. Neurotrophic Influences on Corneal Epithelial Cells. Exp. Eye Res. 1994, 59, 597–605. [Google Scholar] [CrossRef]
  336. Cortina, M.S.; He, J.; Li, N.; Bazan, N.G.; Bazan, H.E.P. Recovery of Corneal Sensitivity, Calcitonin Gene-Related Peptide–Positive Nerves, and Increased Wound Healing Induced by Pigment Epithelial–Derived Factor Plus Docosahexaenoic Acid After Experimental Surgery. Arch. Ophthalmol. 2012, 130, 76–83. [Google Scholar] [CrossRef]
  337. Mikulec, A.A.; Tanelian, D.L. CGRP Increases the Rate of Corneal Re-Epithelialization in an In Vitro Whole Mount Preparation. J. Ocul. Pharmacol. Ther. 1996, 12, 417–423. [Google Scholar] [CrossRef] [PubMed]
  338. Al-Aqaba, M.A.; Dhillon, V.K.; Mohammed, I.; Said, D.G.; Dua, H.S. Corneal Nerves in Health and Disease. Prog. Retin. Eye Res. 2019, 73, 100762. [Google Scholar] [CrossRef]
  339. Lambiase, A.; Micera, A.; Sacchetti, M.; Cortes, M.; Mantelli, F.; Bonini, S. Alterations of Tear Neuromediators in Dry Eye Disease. Arch. Ophthalmol. 2011, 129, 981–986. [Google Scholar] [CrossRef]
  340. Kitamura, K.; Kangawa, K.; Kawamoto, M.; Ichiki, Y.; Nakamura, S.; Matsuo, H.; Eto, T. Adrenomedullin: A Novel Hypotensive Peptide Isolated from Human Pheochromocytoma. Biochem. Biophys. Res. Commun. 1993, 192, 553–560. [Google Scholar] [CrossRef]
  341. Geven, C.; Kox, M.; Pickkers, P. Adrenomedullin and Adrenomedullin-Targeted Therapy As Treatment Strategies Relevant for Sepsis. Front. Immunol. 2018, 9, 292. [Google Scholar] [CrossRef] [PubMed]
  342. Fischer, J.-P.; Els-Heindl, S.; Beck-Sickinger, A.G. Adrenomedullin—Current Perspective on a Peptide Hormone with Significant Therapeutic Potential. Peptides 2020, 131, 170347. [Google Scholar] [CrossRef] [PubMed]
  343. Ferrero, H.; Larrayoz, I.M.; Gil-Bea, F.J.; Martínez, A.; Ramírez, M.J. Adrenomedullin, a Novel Target for Neurodegenerative Diseases. Mol. Neurobiol. 2018, 55, 8799–8814. [Google Scholar] [CrossRef]
  344. Garayoa, M.; Bodegas, E.; Cuttitta, F.; Montuenga, L.M. Adrenomedullin in Mammalian Embryogenesis. Microsc. Res. Tech. 2002, 57, 40–54. [Google Scholar] [CrossRef] [PubMed]
  345. Zhang, Y.; Li, Y.; Shibahara, S.; Takahashi, K. Synergistic Activation of the Human Adrenomedullin Gene Promoter by Sp1 and AP-2alpha. Peptides 2008, 29, 465–472. [Google Scholar] [CrossRef]
  346. Frede, S.; Freitag, P.; Otto, T.; Heilmaier, C.; Fandrey, J. The Proinflammatory Cytokine Interleukin 1beta and Hypoxia Cooperatively Induce the Expression of Adrenomedullin in Ovarian Carcinoma Cells through Hypoxia Inducible Factor 1 Activation. Cancer Res. 2005, 65, 4690–4697. [Google Scholar] [CrossRef]
  347. Wang, X.; Peters, M.A.; Utama, F.E.; Wang, Y.; Taparowsky, E.J. The Adrenomedullin Gene Is a Target for Negative Regulation by the Myc Transcription Complex. Mol. Endocrinol. 1999, 13, 254–267. [Google Scholar] [CrossRef]
  348. Ozawa, N.; Shichiri, M.; Fukai, N.; Yoshimoto, T.; Hirata, Y. Regulation of Adrenomedullin Gene Transcription and Degradation by the C-Myc Gene. Endocrinology 2004, 145, 4244–4250. [Google Scholar] [CrossRef]
  349. Taylor, M.M.; Samson, W.K. Adrenomedullin and the Integrative Physiology of Fluid and Electrolyte Balance. Microsc. Res. Tech. 2002, 57, 105–109. [Google Scholar] [CrossRef]
  350. Meeran, K.; O’Shea, D.; Upton, P.D.; Small, C.J.; Ghatei, M.A.; Byfield, P.H.; Bloom, S.R. Circulating Adrenomedullin Does Not Regulate Systemic Blood Pressure but Increases Plasma Prolactin after Intravenous Infusion in Humans: A Pharmacokinetic Study. J. Clin. Endocrinol. Metab. 1997, 82, 95–100. [Google Scholar] [CrossRef]
  351. Blom, J.; Giove, T.J.; Pong, W.W.; Blute, T.A.; Eldred, W.D. Evidence for a Functional Adrenomedullin Signaling Pathway in the Mouse Retina. Mol. Vis. 2012, 18, 1339–1353. [Google Scholar] [PubMed]
  352. Huang, W.; Wang, L.; Yuan, M.; Ma, J.; Hui, Y. Adrenomedullin Affects Two Signal Transduction Pathways and the Migration in Retinal Pigment Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
  353. Larráyoz, I.M.; Martínez-Herrero, S.; García-Sanmartín, J.; Ochoa-Callejero, L.; Martínez, A. Adrenomedullin and Tumour Microenvironment. J. Transl. Med. 2014, 12, 339. [Google Scholar] [CrossRef] [PubMed]
  354. Szokodi, I.; Kinnunen, P.; Tavi, P.; Weckström, M.; Tóth, M.; Ruskoaho, H. Evidence for CAMP-Independent Mechanisms Mediating the Effects of Adrenomedullin, a New Inotropic Peptide. Circulation 1998, 97, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
  355. Kato, H.; Shichiri, M.; Marumo, F.; Hirata, Y. Adrenomedullin as an Autocrine/Paracrine Apoptosis Survival Factor for Rat Endothelial Cells*. Endocrinology 1997, 138, 2615–2620. [Google Scholar] [CrossRef] [PubMed]
  356. Xu, Y.; Krukoff, T.L. Adrenomedullin Stimulates Nitric Oxide Release from SK-N-SH Human Neuroblastoma Cells by Modulating Intracellular Calcium Mobilization. Endocrinology 2005, 146, 2295–2305. [Google Scholar] [CrossRef]
  357. Uzan, B.; Villemin, A.; Garel, J.-M.; Cressent, M. Adrenomedullin Is Anti-Apoptotic in Osteoblasts through CGRP1 Receptors and MEK-ERK Pathway. J. Cell. Physiol. 2008, 215, 122–128. [Google Scholar] [CrossRef]
  358. Yanagawa, B.; Nagaya, N. Adrenomedullin: Molecular Mechanisms and Its Role in Cardiac Disease. Amino Acids 2007, 32, 157–164. [Google Scholar] [CrossRef]
  359. Vázquez, R.; Riveiro, M.E.; Berenguer-Daizé, C.; O’Kane, A.; Gormley, J.; Touzelet, O.; Rezai, K.; Bekradda, M.; Ouafik, L. Targeting Adrenomedullin in Oncology: A Feasible Strategy With Potential as Much More Than an Alternative Anti-Angiogenic Therapy. Front. Oncol. 2021, 10, 2678. [Google Scholar] [CrossRef]
  360. Chute, J.P.; Muramoto, G.G.; Dressman, H.K.; Wolfe, G.; Chao, N.J.; Lin, S. Molecular Profile and Partial Functional Analysis of Novel Endothelial Cell-Derived Growth Factors That Regulate Hematopoiesis. Stem Cells 2006, 24, 1315–1327. [Google Scholar] [CrossRef]
  361. Larrue, C.; Guiraud, N.; Mouchel, P.-L.; Dubois, M.; Farge, T.; Gotanègre, M.; Bosc, C.; Saland, E.; Nicolau-Travers, M.-L.; Sabatier, M.; et al. Adrenomedullin-CALCRL Axis Controls Relapse-Initiating Drug Tolerant Acute Myeloid Leukemia Cells. Nat. Commun. 2021, 12, 422. [Google Scholar] [CrossRef] [PubMed]
  362. Harris, D.L.; Lopez, M.J.; Jamali, A.; Hamrah, P. Expression of the Neuropeptide Adrenomedullin and Its Receptors in Normal and Inflamed Murine Corneas. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4038. [Google Scholar]
  363. Harris, D.L.; Jamali, A.; Abbouda, A.; Moein, H.-R.; Hamrah, P. The Neuropeptide Adrenomedullin as a New Target to Treat Corneal Angiogenesis. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3521. [Google Scholar]
  364. Smalley, S.G.R.; Barrow, P.A.; Foster, N. Immunomodulation of Innate Immune Responses by Vasoactive Intestinal Peptide (VIP): Its Therapeutic Potential in Inflammatory Disease. Clin. Exp. Immunol. 2009, 157, 225–234. [Google Scholar] [CrossRef] [PubMed]
  365. Henning, R.J.; Sawmiller, D.R. Vasoactive Intestinal Peptide: Cardiovascular Effects. Cardiovasc. Res. 2001, 49, 27–37. [Google Scholar] [CrossRef]
  366. Hahm, S.H.; Eiden, L.E. Cis-Regulatory Elements Controlling Basal and Inducible VIP Gene Transcription. Ann. N. Y. Acad. Sci. 1998, 865, 10–26. [Google Scholar] [CrossRef]
  367. Liu, Y.-C.; Khawaja, A.M.; Rogers, D.F. Effect of Vasoactive Intestinal Peptide (VIP)-Related Peptides on Cholinergic Neurogenic and Direct Mucus Secretion in Ferret Trachea in Vitro. Br. J. Pharm. 1999, 128, 1353–1359. [Google Scholar] [CrossRef]
  368. Loll, B.; Fabian, H.; Huser, H.; Hee, C.-S.; Ziegler, A.; Uchanska-Ziegler, B.; Ziegler, A. Increased Conformational Flexibility of HLA-B*27 Subtypes Associated With Ankylosing Spondylitis. Arthritis Rheumatol. 2016, 68, 1172–1182. [Google Scholar] [CrossRef]
  369. MacKenzie, C.J.; Lutz, E.M.; Johnson, M.S.; Robertson, D.N.; Holland, P.J.; Mitchell, R. Mechanisms of Phospholipase C Activation by the Vasoactive Intestinal Polypeptide/Pituitary Adenylate Cyclase-Activating Polypeptide Type 2 Receptor. Endocrinology 2001, 142, 1209–1217. [Google Scholar] [CrossRef]
  370. Izzo, R.S.; Scipione, R.A.; Pellecchia, C.; Lokchander, R.S. Binding and Internalization of VIP in Rat Intestinal Epithelial Cells. Regul. Pept. 1991, 33, 21–30. [Google Scholar] [CrossRef]
  371. Yang, K.; Trepanier, C.H.; Li, H.; Beazely, M.A.; Lerner, E.A.; Jackson, M.F.; MacDonald, J.F. Vasoactive intestinal peptide (vip) acts via multiple signal pathways to regulate hippocampal nmda receptors and synaptic transmission. Hippocampus 2009, 19, 779–789. [Google Scholar] [CrossRef] [PubMed]
  372. Fernández, M.; Sánchez-Franco, F.; Palacios, N.; Sánchez, I.; Cacicedo, L. IGF-I and Vasoactive Intestinal Peptide (VIP) Regulate CAMP-Response Element-Binding Protein (CREB)-Dependent Transcription via the Mitogen-Activated Protein Kinase (MAPK) Pathway in Pituitary Cells: Requirement of Rap1. J. Mol. Endocrinol. 2005, 34, 699–712. [Google Scholar] [CrossRef] [PubMed]
  373. Ibrahim, H.; Askar, B.; Barrow, P.; Foster, N. Dysregulation of JAK/STAT Genes by Vasoactive Intestinal Peptide (VIP) in Salmonella-Infected Monocytes May Inhibit Its Therapeutic Potential in Human Sepsis. Cytokine 2018, 105, 49–56. [Google Scholar] [CrossRef] [PubMed]
  374. Symes, A.; Gearan, T.; Eby, J.; Fink, J.S. Integration of Jak-Stat and AP-1 Signaling Pathways at the Vasoactive Intestinal Peptide Cytokine Response Element Regulates Ciliary Neurotrophic Factor-Dependent Transcription. J. Biol. Chem. 1997, 272, 9648–9654. [Google Scholar] [CrossRef]
  375. Ding, W.; Wagner, J.A.; Granstein, R.D. CGRP, PACAP, and VIP Modulate Langerhans Cell Function by Inhibiting NF-ΚB Activation. J. Investig. Dermatol. 2007, 127, 2357–2367. [Google Scholar] [CrossRef]
  376. Chorny, A.; Gonzalez-Rey, E.; Fernandez-Martin, A.; Pozo, D.; Ganea, D.; Delgado, M. Vasoactive Intestinal Peptide Induces Regulatory Dendritic Cells with Therapeutic Effects on Autoimmune Disorders. Proc. Natl. Acad. Sci. USA 2005, 102, 13562–13567. [Google Scholar] [CrossRef] [PubMed]
  377. Gonzalez-Rey, E.; Chorny, A.; Fernandez-Martin, A.; Ganea, D.; Delgado, M. Vasoactive Intestinal Peptide Generates Human Tolerogenic Dendritic Cells That Induce CD4 and CD8 Regulatory T Cells. Blood 2006, 107, 3632–3638. [Google Scholar] [CrossRef]
  378. Delgado, M.; Gonzalez-Rey, E.; Ganea, D. The Neuropeptide Vasoactive Intestinal Peptide Generates Tolerogenic Dendritic Cells. J. Immunol. 2005, 175, 7311–7324. [Google Scholar] [CrossRef]
  379. Pedrera, C.; Lucas, M.; Bellido, L.; López-González, M.A. Receptor-Independent Mechanisms Are Involved in the Priming of Neutrophil’s Oxidase by Vasoactive Intestinal Peptide. Regul. Pept. 1994, 54, 505–511. [Google Scholar] [CrossRef]
  380. Karnad, A.B.; Hartshorn, K.L.; Wright, J.; Myers, J.B.; Schwartz, J.H.; Tauber, A.I. Priming of Human Neutrophils with N-Formyl-Methionyl-Leucyl-Phenylalanine by a Calcium-Independent, Pertussis Toxin-Insensitive Pathway. Blood 1989, 74, 2519–2526. [Google Scholar] [CrossRef]
  381. Tunçel, N.; Gürer, F.; Aral, E.; Uzuner, K.; Aydin, Y.; Bayçu, C. The Effect of Vasoactive Intestinal Peptide (VIP) on Mast Cell Invasion/Degranulation in Testicular Interstitium of Immobilized + Cold Stressed and β-Endorphin-Treated Rats. Peptides 1996, 17, 817–824. [Google Scholar] [CrossRef]
  382. Xu, H.; Shi, X.; Li, X.; Zou, J.; Zhou, C.; Liu, W.; Shao, H.; Chen, H.; Shi, L. Neurotransmitter and Neuropeptide Regulation of Mast Cell Function: A Systematic Review. J. Neuroinflamm. 2020, 17, 356. [Google Scholar] [CrossRef] [PubMed]
  383. Qin, H.; Buckley, J.A.; Li, X.; Liu, Y.; Fox, T.H.; Meares, G.P.; Yu, H.; Yan, Z.; Harms, A.S.; Li, Y.; et al. Inhibition of the JAK/STAT Pathway Protects Against α-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J. Neurosci. 2016, 36, 5144–5159. [Google Scholar] [CrossRef] [PubMed]
  384. Delgado, M.; Ganea, D. Inhibition of IFN-γ-Induced Janus Kinase-1-STAT1 Activation in Macrophages by Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide. J. Immunol. 2000, 165, 3051–3057. [Google Scholar] [CrossRef] [PubMed]
  385. Dunzendorfer, S.; Meierhofer, C.; Wiedermann, C.J. Signaling in Neuropeptide-Induced Migration of Human Eosinophils. J. Leukoc. Biol. 1998, 64, 828–834. [Google Scholar] [CrossRef]
  386. Foey, A.D.; Field, S.; Ahmed, S.; Jain, A.; Feldmann, M.; Brennan, F.M.; Williams, R. Impact of VIP and CAMP on the Regulation of TNF-α and IL-10 Production: Implications for Rheumatoid Arthritis. Arthritis Res. 2003, 5, R317. [Google Scholar] [CrossRef]
  387. Delgado, M.; Munoz-Elias, E.J.; Gomariz, R.P.; Ganea, D. Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide Enhance IL-10 Production by Murine Macrophages: In Vitro and in Vivo Studies. J. Immunol. 1999, 162, 1707–1716. [Google Scholar]
  388. Jiang, X.; McClellan, S.A.; Barrett, R.P.; Zhang, Y.; Foldenauer, M.E.; Hazlett, L.D. The Role of VIP in Cornea. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7560–7566. [Google Scholar] [CrossRef]
  389. Jiang, X.; McClellan, S.A.; Barrett, R.P.; Berger, E.A.; Zhang, Y.; Hazlett, L.D. VIP and Growth Factors in the Infected Cornea. Investig. Ophthalmol. Vis. Sci. 2011, 52, 6154–6161. [Google Scholar] [CrossRef]
  390. Tuncel, N.; Yildirim, N.; Gurer, F.; Basmak, H.; Uzuner, K.; Sahinturk, V.; Gursoy, H. Effect of Vasoactive Intestinal Peptide on the Wound Healing of Alkali-Burned Corneas. Int. J. Ophthalmol. 2016, 9, 204–210. [Google Scholar] [CrossRef]
  391. Zhang, Y.; Gao, N.; Wu, L.; Lee, P.S.Y.; Me, R.; Dai, C.; Xie, L.; Yu, F.X. Role of VIP and Sonic Hedgehog Signaling Pathways in Mediating Epithelial Wound Healing, Sensory Nerve Regeneration, and Their Defects in Diabetic Corneas. Diabetes 2020, 69, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
  392. Yang, L.W.Y.; Mehta, J.S.; Liu, Y.-C. Corneal Neuromediator Profiles Following Laser Refractive Surgery. Neural Regen. Res. 2021, 16, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
  393. Koh, S.W.; Waschek, J.A. Corneal Endothelial Cell Survival in Organ Cultures under Acute Oxidative Stress: Effect of VIP. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4085–4092. [Google Scholar]
  394. Koh, S.-W.M.; Gloria, D.; Molloy, J. Corneal Endothelial Autocrine VIP Enhances Its Integrity in Stored Human Donor Corneoscleral Explant. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5632–5640. [Google Scholar] [CrossRef] [PubMed]
  395. Koh, S.-W.M.; Coll, T.; Gloria, D.; Sprehe, N. Corneal Endothelial Cell Integrity in Precut Human Donor Corneas Enhanced by Autocrine Vasoactive Intestinal Peptide. Cornea 2017, 36, 476–483. [Google Scholar] [CrossRef] [PubMed]
  396. Satitpitakul, V.; Sun, Z.; Suri, K.; Amouzegar, A.; Katikireddy, K.R.; Jurkunas, U.V.; Kheirkhah, A.; Dana, R. Vasoactive Intestinal Peptide Promotes Corneal Allograft Survival. Am. J. Pathol. 2018, 188, 2016–2024. [Google Scholar] [CrossRef]
  397. Berger, E.A.; Vistisen, K.S.; Barrett, R.P.; Hazlett, L.D. Effects of VIP on Corneal Reconstitution and Homeostasis Following Pseudomonas Aeruginosa Induced Keratitis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7432–7439. [Google Scholar] [CrossRef]
  398. Jiang, X.; McClellan, S.A.; Barrett, R.P.; Zhang, Y.; Hazlett, L.D. Vasoactive Intestinal Peptide Downregulates Proinflammatory TLRs While Upregulating Anti-Inflammatory TLRs in the Infected Cornea. J. Immunol. 2012, 189, 269–278. [Google Scholar] [CrossRef]
  399. Berger, E.A.; McClellan, S.A.; Barrett, R.P.; Hazlett, L.D. VIP Promotes Resistance in the Pseudomonas Aeruginosa-Infected Cornea by Modulating Adhesion Molecule Expression. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5776–5782. [Google Scholar] [CrossRef]
  400. Li, C.; Liu, Y.-Y.; Zhao, G.-Q.; Lin, J.; Che, C.-Y.; Jiang, N.; Li, N.; Zhang, J.; He, K.; Peng, X.-D. Role of Vasoactive Intestinal Peptide in Aspergillus Fumigatus-Infected Cornea. Int. J. Ophthalmol. 2018, 11, 183–188. [Google Scholar] [CrossRef]
  401. Legradi, G.; Das, M.; Giunta, B.; Hirani, K.; Mitchell, E.A.; Diamond, D.M. Microinfusion of Pituitary Adenylate Cyclase-Activating Polypeptide into the Central Nucleus of Amygdala of the Rat Produces a Shift from an Active to Passive Mode of Coping in the Shock-Probe Fear/Defensive Burying Test. Neural Plast. 2007, 2007, e79102. [Google Scholar] [CrossRef] [PubMed]
  402. Tompkins, J.D.; Ardell, J.L.; Hoover, D.B.; Parsons, R.L. Neurally Released Pituitary Adenylate Cyclase-Activating Polypeptide Enhances Guinea Pig Intrinsic Cardiac Neurone Excitability. J. Physiol. 2007, 582, 87–93. [Google Scholar] [CrossRef] [PubMed]
  403. Hammack, S.E.; May, V. Pituitary Adenylate Cyclase Activating Polypeptide in Stress-Related Disorders: Data Convergence from Animal and Human Studies. Biol. Psychiatry 2015, 78, 167–177. [Google Scholar] [CrossRef]
  404. Hammack, S.E.; Roman, C.W.; Lezak, K.R.; Kocho-Shellenberg, M.; Grimmig, B.; Falls, W.A.; Braas, K.; May, V. Roles for Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Expression and Signaling in the Bed Nucleus of the Stria Terminalis (BNST) in Mediating the Behavioral Consequences of Chronic Stress. J. Mol. Neurosci. 2010, 42, 327–340. [Google Scholar] [CrossRef]
  405. Ressler, K.J.; Mercer, K.B.; Bradley, B.; Jovanovic, T.; Mahan, A.; Kerley, K.; Norrholm, S.D.; Kilaru, V.; Smith, A.K.; Myers, A.J.; et al. Post-Traumatic Stress Disorder Is Associated with PACAP and the PAC1 Receptor. Nature 2011, 470, 492–497. [Google Scholar] [CrossRef]
  406. Hill, J.; Chan, S.-A.; Kuri, B.; Smith, C. Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Recruits Low Voltage-Activated T-Type Calcium Influx under Acute Sympathetic Stimulation in Mouse Adrenal Chromaffin Cells. J. Biol. Chem. 2011, 286, 42459–42469. [Google Scholar] [CrossRef]
  407. Cho, J.-H.; Zushida, K.; Shumyatsky, G.P.; Carlezon, W.A.; Meloni, E.G.; Bolshakov, V.Y. Pituitary Adenylate Cyclase-Activating Polypeptide Induces Postsynaptically Expressed Potentiation in the Intra-Amygdala Circuit. J. Neurosci. 2012, 32, 14165–14177. [Google Scholar] [CrossRef] [PubMed]
  408. Stroth, N.; Kuri, B.A.; Mustafa, T.; Chan, S.-A.; Smith, C.B.; Eiden, L.E. PACAP Controls Adrenomedullary Catecholamine Secretion and Expression of Catecholamine Biosynthetic Enzymes at High Splanchnic Nerve Firing Rates Characteristic of Stress Transduction in Male Mice. Endocrinology 2013, 154, 330–339. [Google Scholar] [CrossRef]
  409. Fukuchi, M.; Tabuchi, A.; Tsuda, M. Activity-Dependent Transcriptional Activation and MRNA Stabilization for Cumulative Expression of Pituitary Adenylate Cyclase-Activating Polypeptide MRNA Controlled by Calcium and CAMP Signals in Neurons. J. Biol. Chem. 2004, 279, 47856–47865. [Google Scholar] [CrossRef]
  410. Hashimoto, R.; Hashimoto, H.; Shintani, N.; Chiba, S.; Hattori, S.; Okada, T.; Nakajima, M.; Tanaka, K.; Kawagishi, N.; Nemoto, K.; et al. Pituitary Adenylate Cyclase-Activating Polypeptide Is Associated with Schizophrenia. Mol. Psychiatry 2007, 12, 1026–1032. [Google Scholar] [CrossRef]
  411. Cummings, K.J.; Gray, S.L.; Simmons, C.J.T.; Kozak, C.A.; Sherwood, N.M. Mouse Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP): Gene, Expression and Novel Splicing. Mol. Cell. Endocrinol. 2002, 192, 133–145. [Google Scholar] [CrossRef]
  412. Kobayashi, N.; Miyoshi, S.; Mikami, T.; Koyama, H.; Kitazawa, M.; Takeoka, M.; Sano, K.; Amano, J.; Isogai, Z.; Niida, S.; et al. Hyaluronan Deficiency in Tumor Stroma Impairs Macrophage Trafficking and Tumor Neovascularization. Cancer Res. 2010, 70, 7073–7083. [Google Scholar] [CrossRef]
  413. Vaudry, D.; Gonzalez, B.J.; Basille, M.; Yon, L.; Fournier, A.; Vaudry, H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: From Structure to Functions. Pharm. Rev. 2000, 52, 269–324. [Google Scholar] [PubMed]
  414. Deutsch, P.J.; Sun, Y. The 38-Amino Acid Form of Pituitary Adenylate Cyclase-Activating Polypeptide Stimulates Dual Signaling Cascades in PC12 Cells and Promotes Neurite Outgrowth. J. Biol. Chem. 1992, 267, 5108–5113. [Google Scholar] [CrossRef]
  415. Spengler, D.; Waeber, C.; Pantaloni, C.; Holsboer, F.; Bockaert, J.; Seeburg, P.H.; Journot, L. Differential Signal Transduction by Five Splice Variants of the PACAP Receptor. Nature 1993, 365, 170–175. [Google Scholar] [CrossRef]
  416. Pisegna, J.R.; Wank, S.A. Cloning and Characterization of the Signal Transduction of Four Splice Variants of the Human Pituitary Adenylate Cyclase Activating Polypeptide Receptor. Evidence for Dual Coupling to Adenylate Cyclase and Phospholipase C. J. Biol. Chem. 1996, 271, 17267–17274. [Google Scholar] [CrossRef]
  417. Barrie, A.P.; Clohessy, A.M.; Buensuceso, C.S.; Rogers, M.V.; Allen, J.M. Pituitary Adenylyl Cyclase-Activating Peptide Stimulates Extracellular Signal-Regulated Kinase 1 or 2 (ERK1/2) Activity in a Ras-Independent, Mitogen-Activated Protein Kinase/ERK Kinase 1 or 2-Dependent Manner in PC12 Cells. J. Biol. Chem. 1997, 272, 19666–19671. [Google Scholar] [CrossRef]
  418. Bouschet, T.; Perez, V.; Fernandez, C.; Bockaert, J.; Eychene, A.; Journot, L. Stimulation of the ERK Pathway by GTP-Loaded Rap1 Requires the Concomitant Activation of Ras, Protein Kinase C, and Protein Kinase A in Neuronal Cells. J. Biol. Chem. 2003, 278, 4778–4785. [Google Scholar] [CrossRef]
  419. May, V.; Lutz, E.; MacKenzie, C.; Schutz, K.C.; Dozark, K.; Braas, K.M. Pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1HOP1 receptor activation coordinates multiple neurotrophic signaling pathways: Akt activation through phosphatidylinositol 3-kinase γ and vesicle endocytosis for neuronal survival. J. Biol. Chem. 2010, 285, 9749–9761. [Google Scholar] [CrossRef]
  420. May, V.; Buttolph, T.R.; Girard, B.M.; Clason, T.A.; Parsons, R.L. PACAP-Induced ERK Activation in HEK Cells Expressing PAC1 Receptors Involves Both Receptor Internalization and PKC Signaling. Am. J. Physiol. Cell Physiol. 2014, 306, C1068–C1079. [Google Scholar] [CrossRef]
  421. Calebiro, D.; Nikolaev, V.O.; Gagliani, M.C.; De Filippis, T.; Dees, C.; Tacchetti, C.; Persani, L.; Lohse, M.J. Persistent CAMP-Signals Triggered by Internalized G-Protein–Coupled Receptors. PLoS Biol. 2009, 7, e1000172. [Google Scholar] [CrossRef]
  422. Calebiro, D.; Nikolaev, V.O.; Persani, L.; Lohse, M.J. Signaling by Internalized G-Protein-Coupled Receptors. Trends Pharm. Sci. 2010, 31, 221–228. [Google Scholar] [CrossRef] [PubMed]
  423. Ferrandon, S.; Feinstein, T.N.; Castro, M.; Wang, B.; Bouley, R.; Potts, J.T.; Gardella, T.J.; Vilardaga, J.-P. Sustained Cyclic AMP Production by Parathyroid Hormone Receptor Endocytosis. Nat. Chem. Biol. 2009, 5, 734–742. [Google Scholar] [CrossRef] [PubMed]
  424. Irannejad, R.; Tomshine, J.C.; Tomshine, J.R.; Chevalier, M.; Mahoney, J.P.; Steyaert, J.; Rasmussen, S.G.F.; Sunahara, R.K.; El-Samad, H.; Huang, B.; et al. Conformational Biosensors Reveal GPCR Signalling from Endosomes. Nature 2013, 495, 534–538. [Google Scholar] [CrossRef] [PubMed]
  425. Vilardaga, J.-P.; Jean-Alphonse, F.G.; Gardella, T.J. Endosomal Generation of CAMP in GPCR Signaling. Nat. Chem. Biol. 2014, 10, 700–706. [Google Scholar] [CrossRef]
  426. Tan, Y.-V.; Waschek, J.A. Targeting VIP and PACAP Receptor Signalling: New Therapeutic Strategies in Multiple Sclerosis. ASN Neuro 2011, 3, AN20110024. [Google Scholar] [CrossRef]
  427. Delgado, M. Vasoactive Intestinal Peptide and Pituitary Adenylate Cyclase-Activating Polypeptide Inhibit the MEKK1/MEK4/JNK Signaling Pathway in Endotoxin-Activated Microglia. Biochem. Biophys. Res. Commun. 2002, 293, 771–776. [Google Scholar] [CrossRef]
  428. Grafer, C.M.; Thomas, R.; Lambrakos, L.; Montoya, I.; White, S.; Halvorson, L.M. GnRH Stimulates Expression of PACAP in the Pituitary Gonadotropes via Both the PKA and PKC Signaling Systems. Mol. Endocrinol. 2009, 23, 1022–1032. [Google Scholar] [CrossRef]
  429. Toth, D.; Tamas, A.; Reglodi, D. The Neuroprotective and Biomarker Potential of PACAP in Human Traumatic Brain Injury. Int. J. Mol. Sci. 2020, 21, 827. [Google Scholar] [CrossRef]
  430. Toth, D.; Szabo, E.; Tamas, A.; Juhasz, T.; Horvath, G.; Fabian, E.; Opper, B.; Szabo, D.; Maugeri, G.; D’Amico, A.G.; et al. Protective Effects of PACAP in Peripheral Organs. Front. Endocrinol. 2020, 11, 377. [Google Scholar] [CrossRef]
  431. Hamelink, C.; Lee, H.-W.; Chen, Y.; Grimaldi, M.; Eiden, L.E. Coincident Elevation of CAMP and Calcium Influx by PACAP-27 Synergistically Regulates Vasoactive Intestinal Polypeptide Gene Transcription through a Novel PKA-Independent Signaling Pathway. J. Neurosci. 2002, 22, 5310–5320. [Google Scholar] [CrossRef] [PubMed]
  432. Ravni, A.; Vaudry, D.; Gerdin, M.J.; Eiden, M.V.; Falluel-Morel, A.; Gonzalez, B.J.; Vaudry, H.; Eiden, L.E. A CAMP-Dependent, Protein Kinase A-Independent Signaling Pathway Mediating Neuritogenesis through Egr1 in PC12 Cells. Mol. Pharm. 2008, 73, 1688–1708. [Google Scholar] [CrossRef] [PubMed]
  433. Delgado, M.; Sun, W.; Leceta, J.; Ganea, D. VIP and PACAP Differentially Regulate the Costimulatory Activity of Resting and Activated Macrophages Through the Modulation of B7.1 and B7.2 Expression. J. Immunol. 1999, 163, 4213–4223. [Google Scholar] [PubMed]
  434. Ganea, D.; Delgado, M. The Neuropeptides VIP/PACAP and T Cells: Inhibitors or Activators? Curr. Pharm. Des. 2003, 9, 997–1004. [Google Scholar] [CrossRef] [PubMed]
  435. Squillacioti, C.; Mirabella, N.; De Luca, A.; Paino, G. Expression of Pituitary Adenylate Cyclase-Activating Polypeptide in the Primary Lymphoid Organs of the Duck Anas Platyrhynchos. J. Anat. 2006, 209, 51–58. [Google Scholar] [CrossRef] [PubMed]
  436. Ma, Y.; Zhao, S.; Wang, X.; Shen, S.; Ma, M.; Xu, W.; Hong, A. A New Recombinant PACAP-Derived Peptide Efficiently Promotes Corneal Wound Repairing and Lacrimal Secretion. Investig. Ophthalmol. Vis. Sci. 2015, 56, 4336–4349. [Google Scholar] [CrossRef]
  437. Wang, Z.; Shan, W.; Li, H.; Feng, J.; Lu, S.; Ou, B.; Ma, M.; Ma, Y. The PACAP-Derived Peptide MPAPO Facilitates Corneal Wound Healing by Promoting Corneal Epithelial Cell Proliferation and Trigeminal Ganglion Cell Axon Regeneration. Int. J. Biol. Sci. 2019, 15, 2676–2691. [Google Scholar] [CrossRef]
  438. Maugeri, G.; Longo, A.; D’Amico, A.G.; Rasà, D.M.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; D’Agata, V. Trophic Effect of PACAP on Human Corneal Endothelium. Peptides 2018, 99, 20–26. [Google Scholar] [CrossRef]
  439. Maugeri, G.; D’Amico, A.G.; Castrogiovanni, P.; Saccone, S.; Federico, C.; Reibaldi, M.; Russo, A.; Bonfiglio, V.; Avitabile, T.; Longo, A.; et al. PACAP through EGFR Transactivation Preserves Human Corneal Endothelial Integrity. J. Cell. Biochem. 2019, 120, 10097–10105. [Google Scholar] [CrossRef]
  440. Larhammar, D. Evolution of Neuropeptide Y, Peptide YY and Pancreatic Polypeptide. Regul. Pept. 1996, 62, 1–11. [Google Scholar] [CrossRef]
  441. Tatemoto, K.; Carlquist, M.; Mutt, V. Neuropeptide Y—A Novel Brain Peptide with Structural Similarities to Peptide YY and Pancreatic Polypeptide. Nature 1982, 296, 659–660. [Google Scholar] [CrossRef] [PubMed]
  442. Nozdrachev, A.D.; Masliukov, P.M. Neuropeptide Y and Autonomic Nervous System. J. Evol. Biochem. Phys. 2011, 47, 121–130. [Google Scholar] [CrossRef]
  443. Diaz-delCastillo, M.; Woldbye, D.P.D.; Heegaard, A.M. Neuropeptide Y and Its Involvement in Chronic Pain. Neuroscience 2018, 387, 162–169. [Google Scholar] [CrossRef] [PubMed]
  444. Dietz, A.B.; Bulur, P.A.; Knutson, G.J.; Matasić, R.; Vuk-Pavlović, S. Maturation of Human Monocyte-Derived Dendritic Cells Studied by Microarray Hybridization. Biochem. Biophys. Res. Commun. 2000, 275, 731–738. [Google Scholar] [CrossRef]
  445. Ferreira, R.; Xapelli, S.; Santos, T.; Silva, A.P.; Cristóvão, A.; Cortes, L.; Malva, J.O. Neuropeptide Y Modulation of Interleukin-1β (IL-1β)-Induced Nitric Oxide Production in Microglia. J. Biol. Chem. 2010, 285, 41921–41934. [Google Scholar] [CrossRef]
  446. Sabol, S.L.; Higuchi, H. Transcriptional Regulation of the Neuropeptide Y Gene by Nerve Growth Factor: Antagonism by Glucocorticoids and Potentiation by Adenosine 3′,5′-Monophosphate and Phorbol Ester. Mol. Endocrinol. 1990, 4, 384–392. [Google Scholar] [CrossRef]
  447. Minth-Worby, C.A. Transcriptional Regulation of the Human Neuropeptide Y Gene by Nerve Growth Factor. J. Biol. Chem. 1994, 269, 15460–15468. [Google Scholar] [CrossRef]
  448. Higuchi, H. Molecular Analysis of Central Feeding Regulation by Neuropeptide Y (NPY) Neurons with NPY Receptor Small Interfering RNAs (SiRNAs). Neurochem. Int. 2012, 61, 936–941. [Google Scholar] [CrossRef]
  449. Muraoka, O.; Xu, B.; Tsurumaki, T.; Akira, S.; Yamaguchi, T.; Higuchi, H. Leptin-Induced Transactivation of NPY Gene Promoter Mediated by JAK1, JAK2 and STAT3 in the Neural Cell Lines. Neurochem. Int. 2003, 42, 591–601. [Google Scholar] [CrossRef]
  450. Shimizu, H.; Bray, G.A. Effects of Neuropeptide Y on Norepinephrine and Serotonin Metabolism in Rat Hypothalamus in Vivo. Brain Res. Bull. 1989, 22, 945–950. [Google Scholar] [CrossRef]
  451. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; et al. Structural Basis of Ligand Binding Modes at the Neuropeptide Y Y1 Receptor. Nature 2018, 556, 520–524. [Google Scholar] [CrossRef] [PubMed]
  452. Herzog, H.; Hort, Y.J.; Ball, H.J.; Hayes, G.; Shine, J.; Selbie, L.A. Cloned Human Neuropeptide Y Receptor Couples to Two Different Second Messenger Systems. Proc. Natl. Acad. Sci. USA 1992, 89, 5794–5798. [Google Scholar] [CrossRef] [PubMed]
  453. Mullins, D.E.; Zhang, X.; Hawes, B.E. Activation of Extracellular Signal Regulated Protein Kinase by Neuropeptide Y and Pancreatic Polypeptide in CHO Cells Expressing the NPY Y1, Y2, Y4 and Y5 Receptor Subtypes. Regul. Pept. 2002, 105, 65–73. [Google Scholar] [CrossRef]
  454. Huang, Y.; Lin, X.; Lin, S. Neuropeptide Y and Metabolism Syndrome: An Update on Perspectives of Clinical Therapeutic Intervention Strategies. Front. Cell Dev. Biol. 2021, 9, 695623. [Google Scholar] [CrossRef]
  455. Li, C.; Wu, X.; Liu, S.; Zhao, Y.; Zhu, J.; Liu, K. Roles of Neuropeptide Y in Neurodegenerative and Neuroimmune Diseases. Front. Neurosci. 2019, 13, 869. [Google Scholar] [CrossRef]
  456. Pons, J.; Kitlinska, J.; Ji, H.; Lee, E.W.; Zukowska, Z. Mitogenic Actions of Neuropeptide Y in Vascular Smooth Muscle Cells: Synergetic Interactions with the Beta-Adrenergic System. Can. J. Physiol. Pharm. 2003, 81, 177–185. [Google Scholar] [CrossRef]
  457. Zukowska-Grojec, Z.; Neuropeptide, Y. A Novel Sympathetic Stress Hormone and More. Ann. N. Y. Acad. Sci. 1995, 771, 219–233. [Google Scholar] [CrossRef]
  458. Pons, J.; Kitlinska, J.; Jacques, D.; Perreault, C.; Nader, M.; Everhart, L.; Zhang, Y.; Zukowska, Z. Interactions of Multiple Signaling Pathways in Neuropeptide Y-Mediated Bimodal Vascular Smooth Muscle Cell Growth. Can. J. Physiol. Pharm. 2008, 86, 438–448. [Google Scholar] [CrossRef]
  459. Meltzer, J.C.; Grimm, P.C.; Greenberg, A.H.; Nance, D.M. Enhanced Immunohistochemical Detection of Autonomic Nerve Fibers, Cytokines and Inducible Nitric Oxide Synthase by Light and Fluorescent Microscopy in Rat Spleen. J. Histochem. Cytochem. 1997, 45, 599–610. [Google Scholar] [CrossRef]
  460. Straub, R.H.; Schaller, T.; Miller, L.E.; Von Hörsten, S.; Jessop, D.S.; Falk, W.; Schölmerich, J. Neuropeptide Y Cotransmission with Norepinephrine in the Sympathetic Nerve—Macrophage Interplay. J. Neurochem. 2000, 75, 2464–2471. [Google Scholar] [CrossRef]
  461. Vasamsetti, S.B.; Florentin, J.; Coppin, E.; Stiekema, L.C.A.; Zheng, K.H.; Nisar, M.U.; Sembrat, J.; Levinthal, D.J.; Rojas, M.; Stroes, E.S.G.; et al. Sympathetic Neuronal Activation Triggers Myeloid Progenitor Proliferation and Differentiation. Immunity 2018, 49, 93–106.e7. [Google Scholar] [CrossRef] [PubMed]
  462. Chen, W.; Liu, Y.; Liu, W.; Zhou, Y.; He, H.; Lin, S. Neuropeptide Y Is an Immunomodulatory Factor: Direct and Indirect. Front. Immunol. 2020, 11, 2624. [Google Scholar] [CrossRef] [PubMed]
  463. Jang, S.; Uematsu, S.; Akira, S.; Salgame, P. IL-6 and IL-10 Induction from Dendritic Cells in Response to Mycobacterium Tuberculosis Is Predominantly Dependent on TLR2-Mediated Recognition. J. Immunol. 2004, 173, 3392–3397. [Google Scholar] [CrossRef]
  464. Buttari, B.; Profumo, E.; Domenici, G.; Tagliani, A.; Ippoliti, F.; Bonini, S.; Businaro, R.; Elenkov, I.; Riganò, R. Neuropeptide Y Induces Potent Migration of Human Immature Dendritic Cells and Promotes a Th2 Polarization. FASEB J. 2014, 28, 3038–3049. [Google Scholar] [CrossRef] [PubMed]
  465. Bedoui, S.; Von Hörsten, S.; Gebhardt, T. A Role for Neuropeptide Y (NPY) in Phagocytosis: Implications for Innate and Adaptive Immunity. Peptides 2007, 28, 373–376. [Google Scholar] [CrossRef]
  466. Phan, T.A.; Taylor, A.W. The Neuropeptides α-MSH and NPY Modulate Phagocytosis and Phagolysosome Activation in RAW 264.7 Cells. J. Neuroimmunol. 2013, 260, 9–16. [Google Scholar] [CrossRef]
  467. Farzi, A.; Reichmann, F.; Holzer, P. The Homeostatic Role of Neuropeptide Y in Immune Function and Its Impact on Mood and Behaviour. Acta Physiol. 2015, 213, 603–627. [Google Scholar] [CrossRef]
  468. Elitsur, Y.; Luk, G.D.; Colberg, M.; Gesell, M.S.; Dosescu, J.; Moshier, J.A. Neuropeptide Y (NPY) Enhances Proliferation of Human Colonic Lamina Propria Lymphocytes. Neuropeptides 1994, 26, 289–295. [Google Scholar] [CrossRef]
  469. Wheway, J.; Mackay, C.R.; Newton, R.A.; Sainsbury, A.; Boey, D.; Herzog, H.; Mackay, F. A Fundamental Bimodal Role for Neuropeptide Y1 Receptor in the Immune System. J. Exp. Med. 2005, 202, 1527–1538. [Google Scholar] [CrossRef]
  470. Macia, L.; Yulyaningsih, E.; Pangon, L.; Nguyen, A.D.; Lin, S.; Shi, Y.C.; Zhang, L.; Bijker, M.; Grey, S.; Mackay, F.; et al. Neuropeptide Y1 Receptor in Immune Cells Regulates Inflammation and Insulin Resistance Associated With Diet-Induced Obesity. Diabetes 2012, 61, 3228–3238. [Google Scholar] [CrossRef]
  471. Zhang, Y.; Liu, C.-Y.; Chen, W.-C.; Shi, Y.-C.; Wang, C.-M.; Lin, S.; He, H.-F. Regulation of Neuropeptide Y in Body Microenvironments and Its Potential Application in Therapies: A Review. Cell Biosci. 2021, 11, 151. [Google Scholar] [CrossRef]
  472. Stone, R.A. Neuropeptide Y and the Innervation of the Human Eye. Exp. Eye Res. 1986, 42, 349–355. [Google Scholar] [CrossRef]
  473. Di Zazzo, A.; Coassin, M.; Micera, A.; Mori, T.; De Piano, M.; Scartozzi, L.; Sgrulletta, R.; Bonini, S. Ocular Surface Diabetic Disease: A Neurogenic Condition? Ocul. Surf. 2021, 19, 218–223. [Google Scholar] [CrossRef] [PubMed]
  474. Sacchetti, M.; Micera, A.; Lambiase, A.; Speranza, S.; Mantelli, F.; Petrachi, G.; Bonini, S.; Bonini, S. Tear Levels of Neuropeptides Increase after Specific Allergen Challenge in Allergic Conjunctivitis. Mol. Vis. 2011, 17, 47–52. [Google Scholar] [PubMed]
  475. Ekstrand, A.J.; Cao, R.; Björndahl, M.; Nyström, S.; Jönsson-Rylander, A.-C.; Hassani, H.; Hallberg, B.; Nordlander, M.; Cao, Y. Deletion of Neuropeptide Y (NPY) 2 Receptor in Mice Results in Blockage of NPY-Induced Angiogenesis and Delayed Wound Healing. Proc. Natl. Acad. Sci. USA 2003, 100, 6033–6038. [Google Scholar] [CrossRef]
  476. Low, M.J. Clinical Endocrinology and Metabolism. The Somatostatin Neuroendocrine System: Physiology and Clinical Relevance in Gastrointestinal and Pancreatic Disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 607–622. [Google Scholar] [CrossRef]
  477. O’Toole, T.J.; Sharma, S. Physiology, Somatostatin. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
  478. Miller, G.M.; Alexander, J.M.; Bikkal, H.A.; Katznelson, L.; Zervas, N.T.; Klibanski, A. Somatostatin Receptor Subtype Gene Expression in Pituitary Adenomas. J. Clin. Endocrinol. Metab. 1995, 80, 1386–1392. [Google Scholar] [CrossRef]
  479. Patel, Y.C.; Panetta, R.; Escher, E.; Greenwood, M.; Srikant, C.B. Expression of Multiple Somatostatin Receptor Genes in AtT-20 Cells. Evidence for a Novel Somatostatin-28 Selective Receptor Subtype. J. Biol. Chem. 1994, 269, 1506–1509. [Google Scholar] [CrossRef]
  480. Capone, G.; Choi, C.; Vertifuille, J. Regulation of the Preprosomatostatin Gene by Cyclic-AMP in Cerebrocortical Neurons. Brain Res. Mol. Brain Res. 1998, 60, 247–258. [Google Scholar] [CrossRef]
  481. Schwartz, P.T.; Pérez-Villamil, B.; Rivera, A.; Moratalla, R.; Vallejo, M. Pancreatic Homeodomain Transcription Factor IDX1/IPF1 Expressed in Developing Brain Regulates Somatostatin Gene Transcription in Embryonic Neural Cells. J. Biol. Chem. 2000, 275, 19106–19114. [Google Scholar] [CrossRef]
  482. Ponna, S.K.; Ruskamo, S.; Myllykoski, M.; Keller, C.; Boeckers, T.M.; Kursula, P. Structural Basis for PDZ Domain Interactions in the Post-Synaptic Density Scaffolding Protein Shank3. J. Neurochem. 2018, 145, 449–463. [Google Scholar] [CrossRef] [PubMed]
  483. Hagemeister, A.L.; Sheridan, M.A. Somatostatin Inhibits Hepatic Growth Hormone Receptor and Insulin-like Growth Factor I MRNA Expression by Activating the ERK and PI3K Signaling Pathways. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R490–R497. [Google Scholar] [CrossRef] [PubMed]
  484. Hanson, A.; Poudyal, D.; Hagemeister, A.; Reindl, K.M.; Sheridan, M.A. The ERK and PI3K Signaling Pathways Mediate Inhibition of Insulin-like Growth Factor-1 Receptor MRNA Expression by Somatostatin. Mol. Cell. Endocrinol. 2010, 315, 57–62. [Google Scholar] [CrossRef] [PubMed]
  485. Li, M.; Fisher, W.E.; Kim, H.J.; Wang, X.; Brunicardi, C.F.; Chen, C.; Yao, Q. Somatostatin, Somatostatin Receptors, and Pancreatic Cancer. World J. Surg. 2005, 29, 293–296. [Google Scholar] [CrossRef]
  486. Wang, H.; Muiznieks, L.D.; Ghosh, P.; Williams, D.; Solarski, M.; Fang, A.; Ruiz-Riquelme, A.; Pomès, R.; Watts, J.C.; Chakrabartty, A.; et al. Somatostatin Binds to the Human Amyloid β Peptide and Favors the Formation of Distinct Oligomers. eLife 2017, 6, e28401. [Google Scholar] [CrossRef]
  487. Theodoropoulou, M.; Stalla, G.K. Somatostatin Receptors: From Signaling to Clinical Practice. Front. Neuroendocr. 2013, 34, 228–252. [Google Scholar] [CrossRef]
  488. Vargas, S.H.; Kossatz, S.; Voss, J.; Ghosh, S.C.; Tran Cao, H.S.; Simien, J.; Reiner, T.; Dhingra, S.; Fisher, W.E.; Azhdarinia, A. Specific Targeting of Somatostatin Receptor Subtype-2 for Fluorescence-Guided Surgery. Clin. Cancer Res. 2019, 25, 4332–4342. [Google Scholar] [CrossRef]
  489. Hofland, L.J.; Liu, Q.; Van Koetsveld, P.M.; Zuijderwijk, J.; Van der Ham, F.; De Krijger, R.R.; Schonbrunn, A.; Lamberts, S.W.J. Immunohistochemical Detection of Somatostatin Receptor Subtypes Sst1 and Sst2A in Human Somatostatin Receptor Positive Tumors. J. Clin. Endocrinol. Metab. 1999, 84, 775–780. [Google Scholar] [CrossRef]
  490. Aguila, M.C.; Dees, W.L.; Haensly, W.E.; McCann, S.M. Evidence That Somatostatin Is Localized and Synthesized in Lymphoid Organs. Proc. Natl. Acad. Sci. USA 1991, 88, 11485–11489. [Google Scholar] [CrossRef]
  491. Felten, D.L.; Felten, S.Y.; Carlson, S.L.; Olschowka, J.A.; Livnat, S. Noradrenergic and Peptidergic Innervation of Lymphoid Tissue. J. Immunol. 1985, 135, 755s–765s. [Google Scholar]
  492. Levite, M.; Cahalon, L.; Hershkoviz, R.; Steinman, L.; Lider, O. Neuropeptides, via Specific Receptors, Regulate T Cell Adhesion to Fibronectin. J. Immunol. 1998, 160, 993–1000. [Google Scholar] [PubMed]
  493. Sharma, K.; Srikant, C.B. Induction of Wild-Type P53, Bax, and Acidic Endonuclease during Somatostatin-Signaled Apoptosis in MCF-7 Human Breast Cancer Cells. Int. J. Cancer 1998, 76, 259–266. [Google Scholar] [CrossRef]
  494. Woltering, E.A. Development of Targeted Somatostatin-Based Antiangiogenic Therapy: A Review and Future Perspectives. Cancer Biother. Radiopharm. 2003, 18, 601–609. [Google Scholar] [CrossRef] [PubMed]
  495. Pyronnet, S.; Bousquet, C.; Najib, S.; Azar, R.; Laklai, H.; Susini, C. Antitumor Effects of Somatostatin. Mol. Cell. Endocrinol. 2008, 286, 230–237. [Google Scholar] [CrossRef] [PubMed]
  496. Kimata, H.; Yoshida, A.; Fujimoto, M.; Mikawa, H. Effect of Vasoactive Intestinal Peptide, Somatostatin, and Substance P on Spontaneous IgE and IgG4 Production in Atopic Patients. J. Immunol. 1993, 150, 4630–4640. [Google Scholar] [PubMed]
  497. Klisovic, D.D.; O’Dorisio, M.S.; Katz, S.E.; Sall, J.W.; Balster, D.; O’Dorisio, T.M.; Craig, E.; Lubow, M. Somatostatin Receptor Gene Expression in Human Ocular Tissues: RT-PCR and Immunohistochemical Study. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2193–2201. [Google Scholar]
  498. Wu, P.-C.; Liu, C.-C.; Chen, C.; Kou, H.-K.; Shen, S.-C.; Lu, C.-Y.; Chou, W.-Y.; Sung, M.-T.; Yang, L.-C. Inhibition of Experimental Angiogenesis of Cornea by Somatostatin. Graefe’s Arch. Clin. Exp. Ophthalmol. 2003, 241, 63–69. [Google Scholar] [CrossRef]
  499. Hampel, U.; Frömmling, P.; Bräuer, L.; Schaefer, I.; Sel, S.; Holland, D.; Paulsen, F. Somatostatin Supports Corneal Wound Healing in Vivo. Ann. Anat. 2016, 205, 1–8. [Google Scholar] [CrossRef]
  500. Duque-Díaz, E.; Alvarez-Ojeda, O.; Coveñas, R. Enkephalins and ACTH in the Mammalian Nervous System. Vitam. Horm. 2019, 111, 147–193. [Google Scholar] [CrossRef]
  501. Harno, E.; Gali Ramamoorthy, T.; Coll, A.P.; White, A. POMC: The Physiological Power of Hormone Processing. Physiol. Rev. 2018, 98, 2381–2430. [Google Scholar] [CrossRef]
  502. Slominski, A.; Wortsman, J.; Luger, T.; Paus, R.; Solomon, S. Corticotropin Releasing Hormone and Proopiomelanocortin Involvement in the Cutaneous Response to Stress. Physiol. Rev. 2000, 80, 979–1020. [Google Scholar] [CrossRef] [PubMed]
  503. Jenks, B.G. Regulation of Proopiomelanocortin Gene Expression: An Overview of the Signaling Cascades, Transcription Factors, and Responsive Elements Involved. Ann. N. Y. Acad. Sci. 2009, 1163, 17–30. [Google Scholar] [CrossRef] [PubMed]
  504. Israeli, H.; Degtjarik, O.; Fierro, F.; Chunilal, V.; Gill, A.K.; Roth, N.J.; Botta, J.; Prabahar, V.; Peleg, Y.; Chan, L.F.; et al. Structure Reveals the Activation Mechanism of the MC4 Receptor to Initiate Satiation Signaling. Science 2021, 372, 808–814. [Google Scholar] [CrossRef] [PubMed]
  505. Wallingford, N.; Perroud, B.; Gao, Q.; Coppola, A.; Gyengesi, E.; Liu, Z.-W.; Gao, X.-B.; Diament, A.; Haus, K.A.; Shariat-Madar, Z.; et al. Prolylcarboxypeptidase Regulates Food Intake by Inactivating α-MSH in Rodents. J. Clin. Investig. 2009, 119, 2291–2303. [Google Scholar] [CrossRef]
  506. Catania, A.; Gatti, S.; Colombo, G.; Lipton, J.M. Targeting Melanocortin Receptors as a Novel Strategy to Control Inflammation. Pharm. Rev. 2004, 56, 1–29. [Google Scholar] [CrossRef]
  507. Ichiyama, T.; Sato, S.; Okada, K.; Catania, A.; Lipton, J.M. The Neuroimmunomodulatory Peptide α-MSH. Ann. N. Y. Acad. Sci. 2000, 917, 221–226. [Google Scholar] [CrossRef]
  508. Edling, A.E.; Gomes, D.; Weeden, T.; Dzuris, J.; Stefano, J.; Pan, C.; Williams, J.; Kaplan, J.; Perricone, M.A. Immunosuppressive Activity of a Novel Peptide Analog of Alpha-Melanocyte Stimulating Hormone (α-MSH) in Experimental Autoimmune Uveitis. J. Neuroimmunol. 2011, 236, 1–9. [Google Scholar] [CrossRef]
  509. Benque, I.J.; Xia, P.; Shannon, R.; Ng, T.F.; Taylor, A.W. The Neuropeptides of Ocular Immune Privilege, α-MSH and NPY, Suppress Phagosome Maturation in Macrophages. Immunohorizons 2018, 2, 314–323. [Google Scholar] [CrossRef]
  510. Weng, W.-T.; Wu, C.-S.; Wang, F.-S.; Wu, C.-Y.; Ma, Y.-L.; Chan, H.-H.; Wu, D.-C.; Wu, J.-C.; Chu, T.-H.; Huang, S.-C.; et al. α-Melanocyte-Stimulating Hormone Attenuates Neovascularization by Inducing Nitric Oxide Deficiency via MC-Rs/PKA/NF-ΚB Signaling. Int. J. Mol. Sci. 2018, 19, 3823. [Google Scholar] [CrossRef]
  511. Rajora, N.; Ceriani, G.; Catania, A.; Star, R.A.; Murphy, M.T.; Lipton, J.M. α-MSH Production, Receptors, and Influence on Neopterin in a Human Monocyte/Macrophage Cell Line. J. Leukoc. Biol. 1996, 59, 248–253. [Google Scholar] [CrossRef]
  512. Auriemma, M.; Brzoska, T.; Klenner, L.; Kupas, V.; Goerge, T.; Voskort, M.; Zhao, Z.; Sparwasser, T.; Luger, T.A.; Loser, K. α-MSH-Stimulated Tolerogenic Dendritic Cells Induce Functional Regulatory T Cells and Ameliorate Ongoing Skin Inflammation. J. Investig. Dermatol. 2012, 132, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
  513. Loser, K.; Brzoska, T.; Oji, V.; Auriemma, M.; Voskort, M.; Kupas, V.; Klenner, L.; Mensing, C.; Hauschild, A.; Beissert, S.; et al. The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Is Critically Involved in the Development of Cytotoxic CD8+ T Cells in Mice and Humans. PLoS ONE 2010, 5, e8958. [Google Scholar] [CrossRef] [PubMed]
  514. Taylor, A.W.; Lee, D. Applications of the Role of α-MSH in Ocular Immune Privilege. Adv. Exp. Med. Biol. 2010, 681, 143–149. [Google Scholar] [CrossRef] [PubMed]
  515. Nishida, T.; Taylor, A.W. Specific Aqueous Humor Factors Induce Activation of Regulatory T Cells. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2268–2274. [Google Scholar]
  516. Denniston, A.K.; Kottoor, S.H.; Khan, I.; Oswal, K.; Williams, G.P.; Abbott, J.; Wallace, G.R.; Salmon, M.; Rauz, S.; Murray, P.I.; et al. Endogenous Cortisol and TGF-β in Human Aqueous Humor Contribute to Ocular Immune Privilege by Regulating Dendritic Cell Function. J. Immunol. 2011, 186, 305–311. [Google Scholar] [CrossRef]
  517. Biros, D.J.; Taylor, A.W. Suppression of Experimental Autoimmune Uveitis Using a Plasmid Encoding the Ocular Immunosuppressive Cytokine Alpha-Melanocyte Stimulating Hormone. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4307. [Google Scholar]
  518. Luger, T.A.; Brzoska, T. A-MSH Related Peptides: A New Class of Anti-inflammatory and Immunomodulating Drugs. Ann. Rheum. Dis. 2007, 66, iii52–iii55. [Google Scholar] [CrossRef]
  519. Hamrah, P.; Haskova, Z.; Taylor, A.W.; Zhang, Q.; Ksander, B.R.; Dana, M.R. Local Treatment with Alpha-Melanocyte Stimulating Hormone Reduces Corneal Allorejection. Transplantation 2009, 88, 180–187. [Google Scholar] [CrossRef]
  520. Lužnik Marzidovšek, Z.; Blanco, T.; Sun, Z.; Alemi, H.; Ortiz, G.; Nakagawa, H.; Chauhan, S.K.; Taylor, A.W.; Jurkunas, U.V.; Yin, J.; et al. The Neuropeptide Alpha-Melanocyte-Stimulating Hormone Is Critical for Corneal Endothelial Cell Protection and Graft Survival after Transplantation. Am. J. Pathol. 2022, 192, 270–280. [Google Scholar] [CrossRef]
  521. Li, C.; Wu, M.; Gu, L.; Yin, M.; Li, H.; Wu, Y.; Lin, J.; Wang, Q.; Xu, Q.; Jiang, N.; et al. α- MSH Plays Anti-Inflammatory and Anti-Fungal Role in Aspergillus Fumigatus Keratitis. Curr. Eye Res. 2022, 47, 343–351. [Google Scholar] [CrossRef]
  522. Ru, Y.; Huang, Y.; Liu, H.; Du, J.; Meng, Z.; Dou, Z.; Liu, X.; Wei, R.H.; Zhang, Y.; Zhao, S. α-Melanocyte-Stimulating Hormone Ameliorates Ocular Surface Dysfunctions and Lesions in a Scopolamine-Induced Dry Eye Model via PKA-CREB and MEK-Erk Pathways. Sci. Rep. 2015, 5, 18619. [Google Scholar] [CrossRef] [PubMed]
  523. Chu, C.; Huang, Y.; Ru, Y.; Lu, X.; Zeng, X.; Liu, K.; Gan, L.; Zhang, Y.; Zhao, S. α-MSH Ameliorates Corneal Surface Dysfunction in Scopolamine-Induced Dry Eye Rats and Human Corneal Epithelial Cells via Enhancing EGFR Expression. Exp. Eye Res. 2021, 210, 108685. [Google Scholar] [CrossRef] [PubMed]
  524. Lang, R.; Gundlach, A.L.; Kofler, B. The Galanin Peptide Family: Receptor Pharmacology, Pleiotropic Biological Actions, and Implications in Health and Disease. Pharmacol. Ther. 2007, 115, 177–207. [Google Scholar] [CrossRef] [PubMed]
  525. Rökaeus, A.; Brownstein, M.J. Construction of a Porcine Adrenal Medullary CDNA Library and Nucleotide Sequence Analysis of Two Clones Encoding a Galanin Precursor. Proc. Natl. Acad. Sci. USA 1986, 83, 6287–6291. [Google Scholar] [CrossRef]
  526. Webling, K.E.B.; Runesson, J.; Bartfai, T.; Langel, Ü. Galanin Receptors and Ligands. Front. Endocrinol. 2012, 3, 146. [Google Scholar] [CrossRef]
  527. Kofler, B.; Evans, H.F.; Liu, M.L.; Falls, V.; Iismaa, T.P.; Shine, J.; Herzog, H. Characterization of the 5’-Flanking Region of the Human Preprogalanin Gene. DNA Cell Biol. 1995, 14, 321–329. [Google Scholar] [CrossRef] [PubMed]
  528. Anouar, Y.; Lee, H.W.; Eiden, L.E. Both Inducible and Constitutive Activator Protein-1-like Transcription Factors Are Used for Transcriptional Activation of the Galanin Gene by Different First and Second Messenger Pathways. Mol. Pharm. 1999, 56, 162–169. [Google Scholar] [CrossRef]
  529. Habert-Ortoli, E.; Amiranoff, B.; Loquet, I.; Laburthe, M.; Mayaux, J.F. Molecular Cloning of a Functional Human Galanin Receptor. Proc. Natl. Acad. Sci. USA 1994, 91, 9780–9783. [Google Scholar] [CrossRef]
  530. Parker, E.M.; Izzarelli, D.G.; Nowak, H.P.; Mahle, C.D.; Iben, L.G.; Wang, J.; Goldstein, M.E. Cloning and Characterization of the Rat GALR1 Galanin Receptor from Rin14B Insulinoma Cells. Mol. Brain Res. 1995, 34, 179–189. [Google Scholar] [CrossRef]
  531. Wang, S.; He, C.; Hashemi, T.; Bayne, M. Cloning and Expressional Characterization of a Novel Galanin Receptor: Identification of Different Pharmacophores within Galanin for the Three Galanin Receptor Subtypes. J. Biol. Chem. 1997, 272, 31949–31952. [Google Scholar] [CrossRef]
  532. Wang, S.; Hashemi, T.; Fried, S.; Clemmons, A.L.; Hawes, B.E. Differential Intracellular Signaling of the GalR1 and GalR2 Galanin Receptor Subtypes. Biochemistry 1998, 37, 6711–6717. [Google Scholar] [CrossRef] [PubMed]
  533. Fathi, Z.; Cunningham, A.M.; Iben, L.G.; Battaglino, P.B.; Ward, S.A.; Nichol, K.A.; Pine, K.A.; Wang, J.; Goldstein, M.E.; Iismaa, T.P.; et al. Cloning, Pharmacological Characterization and Distribution of a Novel Galanin Receptor. Mol. Brain Res. 1997, 51, 49–59. [Google Scholar] [CrossRef]
  534. Ding, X.; MacTavish, D.; Kar, S.; Jhamandas, J.H. Galanin Attenuates β-Amyloid (Aβ) Toxicity in Rat Cholinergic Basal Forebrain Neurons. Neurobiol. Dis. 2006, 21, 413–420. [Google Scholar] [CrossRef] [PubMed]
  535. Elliott-Hunt, C.R.; Pope, R.J.P.; Vanderplank, P.; Wynick, D. Activation of the Galanin Receptor 2 (GalR2) Protects the Hippocampus from Neuronal Damage. J. Neurochem. 2007, 100, 780–789. [Google Scholar] [CrossRef]
  536. Smith, K.E.; Walker, M.W.; Artymyshyn, R.; Bard, J.; Borowsky, B.; Tamm, J.A.; Yao, W.-J.; Vaysse, P.J.-J.; Branchek, T.A.; Gerald, C.; et al. Cloned Human and Rat Galanin GALR3 Receptors: Pharmacology and Activation of g-Protein Inwardly Rectifying k+ Channels. J. Biol. Chem. 1998, 273, 23321–23326. [Google Scholar] [CrossRef]
  537. Ethuin, F.; Gérard, B.; Benna, J.E.; Boutten, A.; Gougereot-Pocidalo, M.-A.; Jacob, L.; Chollet-Martin, S. Human Neutrophils Produce Interferon Gamma upon Stimulation by Interleukin-12. Lab. Investig. 2004, 84, 1363–1371. [Google Scholar] [CrossRef]
  538. Kerr, B.J.; Gupta, Y.; Pope, R.; Thompson, S.W.N.; Wynick, D.; McMahon, S.B. Endogenous Galanin Potentiates Spinal Nociceptive Processing Following Inflammation. Pain 2001, 93, 267–277. [Google Scholar] [CrossRef]
  539. Xu, Z.-Q.D.; Shi, T.-J.S.; Hökfelt, T. Galanin/GMAP- and NPY-like Immunoreactivities in Locus Coeruleus and Noradrenergic Nerve Terminals in the Hippocampal Formation and Cortex with Notes on the Galanin-R1 and -R2 Receptors. J. Comp. Neurol. 1998, 392, 227–251. [Google Scholar] [CrossRef]
  540. Sun, Y.-G.; Gu, X.-L.; Lundeberg, T.; Yu, L.-C. An Antinociceptive Role of Galanin in the Arcuate Nucleus of Hypothalamus in Intact Rats and Rats with Inflammation. Pain 2003, 106, 143–150. [Google Scholar] [CrossRef]
  541. Liu, H.; Hökfelt, T. Effect of Intrathecal Galanin and Its Putative Antagonist M35 on Pain Behavior in a Neuropathic Pain Model. Brain Res. 2000, 886, 67–72. [Google Scholar] [CrossRef]
  542. Flatters, S.J.L.; Fox, A.J.; Dickenson, A.H. In Vivo and in Vitro Effects of Peripheral Galanin on Nociceptive Transmission in Naive and Neuropathic States. Neuroscience 2003, 116, 1005–1012. [Google Scholar] [CrossRef]
  543. Blakeman, K.H.; Holmberg, K.; Hao, J.-X.; Xu, X.; Kahl, U.; Lendahl, U.; Bartfai, T.; Wiesenfeld-Hallin, Z.; Hökfelt, T. Mice Over-Expressing Galanin Have Elevated Heat Nociceptive Threshold. Neuroreport 2001, 12, 423–425. [Google Scholar] [CrossRef] [PubMed]
  544. Holmes, A.; Kinney, J.W.; Wrenn, C.C.; Li, Q.; Yang, R.J.; Ma, L.; Vishwanath, J.; Saavedra, M.C.; Innerfield, C.E.; Jacoby, A.S.; et al. Galanin GAL-R1 Receptor Null Mutant Mice Display Increased Anxiety-Like Behavior Specific to the Elevated Plus-Maze. Neuropsychopharmacology 2003, 28, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
  545. Schrödl, F.; Kaser-Eichberger, A.; Trost, A.; Strohmaier, C.; Bogner, B.; Runge, C.; Bruckner, D.; Motloch, K.; Holub, B.; Kofler, B.; et al. Distribution of Galanin Receptors in the Human Eye. Exp. Eye Res. 2015, 138, 42–51. [Google Scholar] [CrossRef] [PubMed]
  546. Adeghate, E. Pattern of Distribution of Neuropeptides in the Camel Lacrimal Gland. Neuropeptides 1996, 30, 566–571. [Google Scholar] [CrossRef]
  547. Adeghate, E.; Singh, J. Immunohistochemical Identification of Galanin and Leucin-Enkephalin in the Porcine Lacrimal Gland. Neuropeptides 1994, 27, 285–289. [Google Scholar] [CrossRef]
  548. Hughes, J.; Kosterlitz, H.; Smith, T. The Distribution of Methionine-Enkephalin and Leucine-Enkephalin in the Brain and Peripheral Tissues. Br. J. Pharm. 1997, 120, 426–427. [Google Scholar] [CrossRef]
  549. Zhao, D.; Plotnikoff, N.; Griffin, N.; Song, T.; Shan, F. Methionine Enkephalin, Its Role in Immunoregulation and Cancer Therapy. Int. Immunopharmacol. 2016, 37, 59–64. [Google Scholar] [CrossRef]
  550. Legon, S.; Glover, D.M.; Hughes, J.; Lowry, P.J.; Rigby, P.W.; Watson, C.J. The Structure and Expression of the Preproenkephalin Gene. Nucleic Acids Res. 1982, 10, 7905–7918. [Google Scholar] [CrossRef]
  551. Noda, M.; Teranishi, Y.; Takahashi, H.; Toyosato, M.; Notake, M.; Nakanishi, S.; Numa, S. Isolation and Structural Organization of the Human Preproenkephalin Gene. Nature 1982, 297, 431–434. [Google Scholar] [CrossRef]
  552. Weisinger, G. The Transcriptional Regulation of the Preproenkephalin Gene. Biochem. J. 1995, 307, 617–629. [Google Scholar] [CrossRef] [PubMed]
  553. Claff, T.; Yu, J.; Blais, V.; Patel, N.; Martin, C.; Wu, L.; Han, G.W.; Holleran, B.J.; Van der Poorten, O.; White, K.L.; et al. Elucidating the Active δ-Opioid Receptor Crystal Structure with Peptide and Small-Molecule Agonists. Sci. Adv. 2019, 5, eaax9115. [Google Scholar] [CrossRef] [PubMed]
  554. Breslin, M.B.; Lindberg, I.; Benjannet, S.; Mathis, J.P.; Lazure, C.; Seidah, N.G. Differential Processing of Proenkephalin by Prohormone Convertases 1(3) and 2 and Furin. J. Biol. Chem. 1993, 268, 27084–27093. [Google Scholar] [CrossRef]
  555. Zagon, I.S.; Donahue, R.; McLaughlin, P.J. Targeting the Opioid Growth Factor: Opioid Growth Factor Receptor Axis for Treatment of Human Ovarian Cancer. Exp. Biol. Med. 2013, 238, 579–587. [Google Scholar] [CrossRef] [PubMed]
  556. Kerr, M.A.; Kenny, A.J. The Purification and Specificity of a Neutral Endopeptidase from Rabbit Kidney Brush Border. Biochem. J. 1974, 137, 477–488. [Google Scholar] [CrossRef]
  557. Hambrook, J.M.; Morgan, B.A.; Rance, M.J.; Smith, C.F. Mode of Deactivation of the Enkephalins by Rat and Human Plasma and Rat Brain Homogenates. Nature 1976, 262, 782–783. [Google Scholar] [CrossRef]
  558. Petty, H.R.; Martin, S.M. Combinative Ligand-Receptor Interactions: Effects of CAMP, Epinephrine, and Met-Enkephalin on RAW264 Macrophage Morphology, Spreading, Adherence, and Microfilaments. J. Cell. Physiol. 1989, 138, 247–256. [Google Scholar] [CrossRef]
  559. McLaughlin, P.J.; Zagon, I.S. The Opioid Growth Factor-Opioid Growth Factor Receptor Axis: Homeostatic Regulator of Cell Proliferation and Its Implications for Health and Disease. Biochem. Pharm. 2012, 84, 746–755. [Google Scholar] [CrossRef]
  560. Cheng, F.; McLaughlin, P.J.; Verderame, M.F.; Zagon, I.S. The OGF-OGFr Axis Utilizes the P16INK4a and P21WAF1/CIP1 Pathways to Restrict Normal Cell Proliferation. Mol. Biol. Cell 2009, 20, 319–327. [Google Scholar] [CrossRef]
  561. Sizemore, R.C.; Dienglewicz, R.L.; Pecunia, E.; Gottlieb, A.A. Modulation of Concanavalin A-Induced, Antigen-Nonspecific Regulatory Cell Activity by Leu-Enkephalin and Related Peptides. Clin. Immunol. Immunopathol. 1991, 60, 310–318. [Google Scholar] [CrossRef]
  562. Kay, N.; Allen, J.; Morley, J.E. Endorphins Stimulate Normal Human Peripheral Blood Lymphocyte Natural Killer Activity. Life Sci. 1984, 35, 53–59. [Google Scholar] [CrossRef]
  563. Kraut, R.P.; Greenberg, A.H. Effects of Endogenous and Exogenous Opioids on Splenic Natural Killer Cell Activity. Nat. Immun. Cell Growth Regul. 1986, 5, 28–40. [Google Scholar]
  564. Srisuchart, B.; Fuchs, B.A.; Sikorski, E.E.; Munson, A.E.; Loveless, S.E. Antitumor Activity of Enkephalin Analogues in Inhibiting PYB6 Tumor Growth in Mice and Immunological Effects of Methionine Enkephalinamide. Int. J. Immunopharmacol. 1989, 11, 487–500. [Google Scholar] [CrossRef]
  565. Kowalski, J. Effect of Enkephalins and Endorphins on Cytotoxic Activity of Natural Killer Cells and Macrophages/Monocytes in Mice. Eur. J. Pharm. 1997, 326, 251–255. [Google Scholar] [CrossRef]
  566. Liang, X.; Liu, R.; Chen, C.; Ji, F.; Li, T. Opioid System Modulates the Immune Function: A Review. Transl. Perioper. Pain Med. 2016, 1, 5–13. [Google Scholar] [PubMed]
  567. Zagon, I.S.; Sassani, J.W.; McLaughlin, P.J. Cellular Dynamics of Corneal Wound Re-Epithelialization in the Rat: I. Fate of Ocular Surface Epithelial Cells Synthesizing DNA Prior to Wounding. Brain Res. 1999, 822, 149–163. [Google Scholar] [CrossRef]
  568. Sassani, J.W.; Mc Laughlin, P.J.; Zagon, I.S. The Yin and Yang of the Opioid Growth Regulatory System: Focus on Diabetes-The Lorenz, E. Zimmerman Tribute Lecture. J. Diabetes Res. 2016, 2016, 9703729. [Google Scholar] [CrossRef]
  569. Singh, V.K.; Bajpai, K.; Narayan, P.; Yadav, V.S.; Dhawan, V.C.; Haq, W.; Mathur, K.B.; Agarwal, S.S. Delta-Opioid Receptor Antagonist Inhibits Immunomodulation by Met-Enkephalin Analogs. Neuroimmunomodulation 1999, 6, 355–360. [Google Scholar] [CrossRef]
  570. Boules, M.; Li, Z.; Smith, K.; Fredrickson, P.; Richelson, E. Diverse Roles of Neurotensin Agonists in the Central Nervous System. Front. Endocrinol. 2013, 4, 36. [Google Scholar] [CrossRef]
  571. Carraway, R.; Leeman, S.E. The Isolation of a New Hypotensive Peptide, Neurotensin, from Bovine Hypothalami. J. Biol. Chem. 1973, 248, 6854–6861. [Google Scholar] [CrossRef]
  572. Kitabgi, P. Inactivation of Neurotensin and Neuromedin N by Zn Metallopeptidases. Peptides 2006, 27, 2515–2522. [Google Scholar] [CrossRef] [PubMed]
  573. Wang, C.; Xu, H.; Chen, H.; Li, J.; Zhang, B.; Tang, C.; Ghishan, F.K. Somatostatin Stimulates Intestinal NHE8 Expression via P38 MAPK Pathway. Am. J. Physiol. Cell Physiol. 2011, 300, C375–C382. [Google Scholar] [CrossRef] [PubMed]
  574. Wang, X.; Gulhati, P.; Li, J.; Dobner, P.R.; Weiss, H.; Townsend, C.M.; Evers, B.M. Characterization of Promoter Elements Regulating the Expression of the Human Neurotensin/Neuromedin N Gene. J. Biol. Chem. 2011, 286, 542–554. [Google Scholar] [CrossRef]
  575. Evers, B.M. Endocrine Gene Neurotensin: Molecular Mechanisms and a Model of Intestinal Differentiation. World J. Surg. 2002, 26, 799–805. [Google Scholar] [CrossRef] [PubMed]
  576. Egloff, P.; Hillenbrand, M.; Klenk, C.; Batyuk, A.; Heine, P.; Balada, S.; Schlinkmann, K.M.; Scott, D.J.; Schütz, M.; Plückthun, A. Structure of Signaling-Competent Neurotensin Receptor 1 Obtained by Directed Evolution in Escherichia Coli. Proc. Natl. Acad. Sci. USA 2014, 111, E655–E662. [Google Scholar] [CrossRef] [PubMed]
  577. St-Gelais, F.; Jomphe, C.; Trudeau, L.-E. The Role of Neurotensin in Central Nervous System Pathophysiology: What Is the Evidence? J. Psychiatry Neurosci. 2006, 31, 229–245. [Google Scholar] [PubMed]
  578. Geisler, S.; Zahm, D.S. Neurotensin Afferents of the Ventral Tegmental Area in the Rat: [1] Re-Examination of Their Origins and [2] Responses to Acute Psychostimulant and Antipsychotic Drug Administration. Eur. J. Neurosci. 2006, 24, 116–134. [Google Scholar] [CrossRef]
  579. Smith, D.J.; Hawranko, A.A.; Monroe, P.J.; Gully, D.; Urban, M.O.; Craig, C.R.; Smith, J.P.; Smith, D.L. Dose-Dependent Pain-Facilitatory and -Inhibitory Actions of Neurotensin Are Revealed by SR 48692, a Nonpeptide Neurotensin Antagonist: Influence on the Antinociceptive Effect of Morphine. J. Pharm. Exp. 1997, 282, 899–908. [Google Scholar]
  580. Zhao, D.; Zhan, Y.; Zeng, H.; Koon, H.-W.; Moyer, M.P.; Pothoulakis, C. Neurotensin Stimulates Interleukin-8 Expression through Modulation of IκBα Phosphorylation and P65 Transcriptional Activity: Involvement of Protein Kinase Cα. Mol. Pharm. 2005, 67, 2025–2031. [Google Scholar] [CrossRef]
  581. Da Silva, L.; Neves, B.M.; Moura, L.; Cruz, M.T.; Carvalho, E. Neurotensin Downregulates the Pro-Inflammatory Properties of Skin Dendritic Cells and Increases Epidermal Growth Factor Expression. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2011, 1813, 1863–1871. [Google Scholar] [CrossRef]
  582. Kim, C.; Barbut, D.; Heinemann, M.H.; Pasternak, G.; Rosenblatt, M.I. Synthetic Neurotensin Analogues Are Nontoxic Analgesics for the Rabbit Cornea. Investig. Ophthalmol. Vis. Sci. 2014, 55, 3586–3593. [Google Scholar] [CrossRef] [PubMed]
  583. Nakamura, M.; Ofuji, K.; Chikama, T.; Nishida, T. Combined Effects of Substance P and Insulin-like Growth Factor-1 on Corneal Epithelial Wound Closure of Rabbit in Vivo. Curr. Eye Res. 1997, 16, 275–278. [Google Scholar] [CrossRef] [PubMed]
  584. Brown, S.M.; Lamberts, D.W.; Reid, T.W.; Nishida, T.; Murphy, C.J. Neurotrophic and Anhidrotic Keratopathy Treated With Substance P and Insulinlike Growth Factor 1. Arch. Ophthalmol. 1997, 115, 926–927. [Google Scholar] [CrossRef]
  585. Murphy, C.J.; Marfurt, C.F.; McDermott, A.; Bentley, E.; Abrams, G.A.; Reid, T.W.; Campbell, S. Spontaneous Chronic Corneal Epithelial Defects (SCCED) in Dogs: Clinical Features, Innervation, and Effect of Topical SP, with or without IGF-1. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2252–2261. [Google Scholar]
  586. Lee, G.A.; Shah, P.; Cooling, R.J.; Dart, J.K.; Bunce, C. Penetrating Keratoplasty for Silicone Oil Keratopathy. Clin. Exp. Ophthalmol. 2001, 29, 303–306. [Google Scholar] [CrossRef]
  587. Chikama, T.; Fukuda, K.; Morishige, N.; Nishida, T. Treatment of Neurotrophic Keratopathy with Substance-P-Derived Peptide (FGLM) and Insulin-like Growth Factor I. Lancet 1998, 351, 1783–1784. [Google Scholar] [CrossRef]
  588. Nagano, T.; Nakamura, M.; Nakata, K.; Yamaguchi, T.; Takase, K.; Okahara, A.; Ikuse, T.; Nishida, T. Effects of Substance P and IGF-1 in Corneal Epithelial Barrier Function and Wound Healing in a Rat Model of Neurotrophic Keratopathy. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3810–3815. [Google Scholar] [CrossRef]
  589. Kingsley, R.E.; Marfurt, C.F. Topical Substance P and Corneal Epithelial Wound Closure in the Rabbit. Investig. Ophthalmol. Vis. Sci. 1997, 38, 388–395. [Google Scholar]
  590. Yamada, N.; Matsuda, R.; Morishige, N.; Yanai, R.; Chikama, T.-i.; Nishida, T.; Ishimitsu, T.; Kamiya, A. Open Clinical Study of Eye-Drops Containing Tetrapeptides Derived from Substance P and Insulin-like Growth Factor-1 for Treatment of Persistent Corneal Epithelial Defects Associated with Neurotrophic Keratopathy. Br. J. Ophthalmol. 2008, 92, 896–900. [Google Scholar] [CrossRef]
  591. Chikamoto, N.; Chikama, T.; Yamada, N.; Nishida, T.; Ishimitsu, T.; Kamiya, A. Efficacy of Substance P and Insulin-like Growth Factor-1 Peptides for Preventing Postsurgical Superficial Punctate Keratopathy in Diabetic Patients. Jpn. J. Ophthalmol. 2009, 53, 464–469. [Google Scholar] [CrossRef]
  592. Semeraro, F.; Forbice, E.; Braga, O.; Bova, A.; Di Salvatore, A.; Azzolini, C. Evaluation of the Efficacy of 50% Autologous Serum Eye Drops in Different Ocular Surface Pathologies. Biomed. Res. Int. 2014, 2014, 826970. [Google Scholar] [CrossRef] [PubMed]
  593. Shigematsu, S.; Yamauchi, K.; Nakajima, K.; Iijima, S.; Aizawa, T.; Hashizume, K. IGF-1 Regulates Migration and Angiogenesis of Human Endothelial Cells. Endocr. J. 1999, 46, S59–S62. [Google Scholar] [CrossRef] [PubMed]
  594. Nakamura, M.; Chikama, T.; Nishida, T. Synergistic Effect with Phe-Gly-Leu-Met-NH2 of the C-Terminal of Substance P and Insulin-like Growth Factor-1 on Epithelial Wound Healing of Rabbit Cornea. Br. J. Pharm. 1999, 127, 489–497. [Google Scholar] [CrossRef] [PubMed]
  595. Baudouin, C.; Irkeç, M.; Messmer, E.M.; Benítez-Del-Castillo, J.M.; Bonini, S.; Figueiredo, F.C.; Geerling, G.; Labetoulle, M.; Lemp, M.; Rolando, M.; et al. Clinical Impact of Inflammation in Dry Eye Disease: Proceedings of the ODISSEY Group Meeting. Acta Ophthalmol. 2018, 96, 111–119. [Google Scholar] [CrossRef]
  596. Liu, L.; Dana, R.; Yin, J. Sensory Neurons Directly Promote Angiogenesis in Response to Inflammation via Substance P Signaling. FASEB J. 2020, 34, 6229–6243. [Google Scholar] [CrossRef]
  597. Yu, M.; Lee, S.-M.; Lee, H.; Amouzegar, A.; Nakao, T.; Chen, Y.; Dana, R. Neurokinin-1 Receptor Antagonism Ameliorates Dry Eye Disease by Inhibiting Antigen-Presenting Cell Maturation and T Helper 17 Cell Activation. Am. J. Pathol. 2020, 190, 125–133. [Google Scholar] [CrossRef]
  598. Taketani, Y.; Naderi, A.; Wang, S.; Blanco, T.; Yung, A.; Yin, J.; Dohlman, T.; Chen, Y.; Chauhan, S.; Dana, R. Neurokinin-1 Receptor Antagonism Ameliorates Ocular Pain and Immune Responses in Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1286. [Google Scholar]
  599. Taketani, Y.; Dohlman, T.; Chen, Y.; Dana, R. Restoration of Regulatory T Cell Function in Dry Eye Disease by Targeting Substance P/Neurokinin 1 Receptor. Investig. Ophthalmol. Vis. Sci. 2019, 60, 306. [Google Scholar]
  600. Zhou, X.; Shen, M.; Xie, J.; Wang, J.; Jiang, L.; Pan, M.; Qu, J.; Lu, F. The Development of the Refractive Status and Ocular Growth in C57BL/6 Mice. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5208–5214. [Google Scholar] [CrossRef]
  601. Hazlett, L.D.; McClellan, S.A.; Barrett, R.P.; Liu, J.; Zhang, Y.; Lighvani, S. Spantide I Decreases Type I Cytokines, Enhances IL-10, and Reduces Corneal Perforation in Susceptible Mice after Pseudomonas Aeruginosa Infection. Investig. Ophthalmol. Vis. Sci. 2007, 48, 797–807. [Google Scholar] [CrossRef]
  602. Hong, H.S.; Lee, J.; Lee, E.; Kwon, Y.S.; Lee, E.; Ahn, W.; Jiang, M.H.; Kim, J.C.; Son, Y. A New Role of Substance P as an Injury-Inducible Messenger for Mobilization of CD29(+) Stromal-like Cells. Nat. Med. 2009, 15, 425–435. [Google Scholar] [CrossRef] [PubMed]
  603. Neelam, S.; Niederkorn, J.Y. Corneal Nerve Ablation Abolishes Ocular Immune Privilege by Downregulating CD103 on T Regulatory Cells. Investig. Ophthalmol. Vis. Sci. 2020, 61, 25. [Google Scholar] [CrossRef] [PubMed]
  604. Satitpitakul, V.; Taweekitikul, P.; Puangsricharern, V.; Kasetsuwan, N.; Reinprayoon, U.; Kittipibul, T. Alteration of Corneal Biomechanical Properties in Patients with Dry Eye Disease. PLoS ONE 2021, 16, e0254442. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Neuropeptides interact with their G protein-coupled receptors (GPCRs) and the β/γ dimer is separated from the Gα subunit classified as Gs, Gq/11, or Gi/o, which transduce the signal intracellularly via effector proteins. Adapted from “GPCR Effector Pathways”, by BioRender.com accessed on 26 July 2022. Retrieved from https://app.biorender.com/biorender-templates accessed on 12 April 2022. SP—Substance P, CGRP—calcitonin gene-related peptide, AM—adrenomedullin, VIP—vasoactive intestinal peptide, PACAP—pituitary Adenylyl Cyclase activating peptide, NPY—neuropeptide Y, SST—somatostatin.
Figure 1. Neuropeptides interact with their G protein-coupled receptors (GPCRs) and the β/γ dimer is separated from the Gα subunit classified as Gs, Gq/11, or Gi/o, which transduce the signal intracellularly via effector proteins. Adapted from “GPCR Effector Pathways”, by BioRender.com accessed on 26 July 2022. Retrieved from https://app.biorender.com/biorender-templates accessed on 12 April 2022. SP—Substance P, CGRP—calcitonin gene-related peptide, AM—adrenomedullin, VIP—vasoactive intestinal peptide, PACAP—pituitary Adenylyl Cyclase activating peptide, NPY—neuropeptide Y, SST—somatostatin.
Biomedicines 10 01985 g001
Figure 2. Neuropeptide Substance P and neurokinin receptor: (a) transcription and synthesis of SP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of Substance P (https://pubchem.ncbi.nlm.nih.gov/compound/36511#section=2D-Structure, accessed on 22 October 2021); (c) bound-state structure representation of Substance P (brown) to NK1R (green). The solution conformation of Substance P in water was complexed with NK1R. Image from the RCSB PDB (rcsb.org) of PDB ID 2KS9 [73].
Figure 2. Neuropeptide Substance P and neurokinin receptor: (a) transcription and synthesis of SP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of Substance P (https://pubchem.ncbi.nlm.nih.gov/compound/36511#section=2D-Structure, accessed on 22 October 2021); (c) bound-state structure representation of Substance P (brown) to NK1R (green). The solution conformation of Substance P in water was complexed with NK1R. Image from the RCSB PDB (rcsb.org) of PDB ID 2KS9 [73].
Biomedicines 10 01985 g002
Figure 3. Neuropeptide CGRP and CLR receptor: (a) transcription and synthesis of CGRP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of CGRP (https://pubchem.ncbi.nlm.nih.gov/compound/16132372#section=2D-Structure, accessed on 22 October 2021); (c) Crystal structure of a CGRP receptor ectodomain heterodimer with bound high-affinity inhibitor. Image from the RCSB PDB (rcsb.org) of PDB ID 6ZHO [309].
Figure 3. Neuropeptide CGRP and CLR receptor: (a) transcription and synthesis of CGRP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of CGRP (https://pubchem.ncbi.nlm.nih.gov/compound/16132372#section=2D-Structure, accessed on 22 October 2021); (c) Crystal structure of a CGRP receptor ectodomain heterodimer with bound high-affinity inhibitor. Image from the RCSB PDB (rcsb.org) of PDB ID 6ZHO [309].
Biomedicines 10 01985 g003
Figure 4. Neuropeptide AM and receptors: (a) transcription and synthesis of AM (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of AM (https://pubchem.ncbi.nlm.nih.gov/compound/56841671#section=2D-Structure, accessed on 22 October 2021); (c) CryoEM structure of the active adrenomedullin 1 receptor G protein complex with adrenomedullin peptide. Image from the RCSB PDB (rcsb.org) of PDB ID 6UUN [85].
Figure 4. Neuropeptide AM and receptors: (a) transcription and synthesis of AM (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of AM (https://pubchem.ncbi.nlm.nih.gov/compound/56841671#section=2D-Structure, accessed on 22 October 2021); (c) CryoEM structure of the active adrenomedullin 1 receptor G protein complex with adrenomedullin peptide. Image from the RCSB PDB (rcsb.org) of PDB ID 6UUN [85].
Biomedicines 10 01985 g004
Figure 5. Neuropeptide VIP: (a) transcription and synthesis of VIP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of VIP (https://pubchem.ncbi.nlm.nih.gov/compound/53314964#section=2D-Structure, accessed on 22 October 2021); (c) crystal structure of B*27:06 bound to the pVIPR peptide. Image from the RCSB PDB (rcsb.org) of PDB ID 5DEG [368].
Figure 5. Neuropeptide VIP: (a) transcription and synthesis of VIP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of VIP (https://pubchem.ncbi.nlm.nih.gov/compound/53314964#section=2D-Structure, accessed on 22 October 2021); (c) crystal structure of B*27:06 bound to the pVIPR peptide. Image from the RCSB PDB (rcsb.org) of PDB ID 5DEG [368].
Biomedicines 10 01985 g005
Figure 6. Neuropeptide PACAP and PAC1R: (a) transcription and synthesis of PACAP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of PACAP (https://pubchem.ncbi.nlm.nih.gov/compound/137699541#section=2D-Structure, accessed on 22 October 2021); (c) Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein. Image from the RCSB PDB (rcsb.org) of PDB ID 6LPB [412].
Figure 6. Neuropeptide PACAP and PAC1R: (a) transcription and synthesis of PACAP (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of PACAP (https://pubchem.ncbi.nlm.nih.gov/compound/137699541#section=2D-Structure, accessed on 22 October 2021); (c) Cryo-EM structure of the human PAC1 receptor coupled to an engineered heterotrimeric G protein. Image from the RCSB PDB (rcsb.org) of PDB ID 6LPB [412].
Biomedicines 10 01985 g006
Figure 7. Neuropeptide Y and receptor: (a) transcription and synthesis of NPY (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of NPY (https://pubchem.ncbi.nlm.nih.gov/compound/16132350#section=2D-Structure, accessed on 22 October 2021); (c) the crystal structure of a human neuropeptide Y Y1 receptor with UR-MK299. Image from the RCSB PDB (rcsb.org) of PDB ID 5ZBQ [451].
Figure 7. Neuropeptide Y and receptor: (a) transcription and synthesis of NPY (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of NPY (https://pubchem.ncbi.nlm.nih.gov/compound/16132350#section=2D-Structure, accessed on 22 October 2021); (c) the crystal structure of a human neuropeptide Y Y1 receptor with UR-MK299. Image from the RCSB PDB (rcsb.org) of PDB ID 5ZBQ [451].
Biomedicines 10 01985 g007aBiomedicines 10 01985 g007b
Figure 8. Neuropeptide SST and receptor: (a) transcription and synthesis of SST (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of SST (https://pubchem.ncbi.nlm.nih.gov/compound/16129706#section=2D-Structure, accessed on 22 October 2021); (c) PDZ domain from rat Shank3 bound to the C terminus of somatostatin receptor subtype 2. Image from the RCSB PDB (rcsb.org) of PDB ID 6EXJ [482].
Figure 8. Neuropeptide SST and receptor: (a) transcription and synthesis of SST (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of SST (https://pubchem.ncbi.nlm.nih.gov/compound/16129706#section=2D-Structure, accessed on 22 October 2021); (c) PDZ domain from rat Shank3 bound to the C terminus of somatostatin receptor subtype 2. Image from the RCSB PDB (rcsb.org) of PDB ID 6EXJ [482].
Biomedicines 10 01985 g008
Figure 9. Neuropeptide α-MSH and MC4R: (a) transcription and synthesis of α-MSH (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of α-MSH (https://pubchem.ncbi.nlm.nih.gov/compound/44273719#section=2D-Structure, accessed on 22 October 2021); (c) melanocortin receptor 4 (MC4R) Gs protein complex. Image from the RCSB PDB (rcsb.org) of PDB ID 7AUE [504].
Figure 9. Neuropeptide α-MSH and MC4R: (a) transcription and synthesis of α-MSH (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of α-MSH (https://pubchem.ncbi.nlm.nih.gov/compound/44273719#section=2D-Structure, accessed on 22 October 2021); (c) melanocortin receptor 4 (MC4R) Gs protein complex. Image from the RCSB PDB (rcsb.org) of PDB ID 7AUE [504].
Biomedicines 10 01985 g009
Figure 10. Neuropeptide GAL: (a) transcription and synthesis of GAL (created with BioRender.com accessed on 4 November 2021); (b) 2D structure image of GAL (swine) (https://pubchem.ncbi.nlm.nih.gov/compound/16174786#section=2D-Structure, accessed on 22 October 2021).
Figure 10. Neuropeptide GAL: (a) transcription and synthesis of GAL (created with BioRender.com accessed on 4 November 2021); (b) 2D structure image of GAL (swine) (https://pubchem.ncbi.nlm.nih.gov/compound/16174786#section=2D-Structure, accessed on 22 October 2021).
Biomedicines 10 01985 g010
Figure 11. Neuropeptide MENK and opioid receptor: (a) transcription and synthesis of MENK (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of MENK (https://pubchem.ncbi.nlm.nih.gov/compound/443363#section=2D-Structure, accessed on 22 October 2021); (c) crystal structure of the active delta opioid receptor in the complex with the small molecule agonist DPI-287. Image from the RCSB PDB (rcsb.org) of PDB ID 6PT3 [553].
Figure 11. Neuropeptide MENK and opioid receptor: (a) transcription and synthesis of MENK (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of MENK (https://pubchem.ncbi.nlm.nih.gov/compound/443363#section=2D-Structure, accessed on 22 October 2021); (c) crystal structure of the active delta opioid receptor in the complex with the small molecule agonist DPI-287. Image from the RCSB PDB (rcsb.org) of PDB ID 6PT3 [553].
Biomedicines 10 01985 g011
Figure 12. Neuropeptide NT and NTS1 receptor: (a) transcription and synthesis of NT (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of NT (https://pubchem.ncbi.nlm.nih.gov/compound/25077406#section=2D-Structure, accessed on 22 October 2021); (c) high-resolution structure of thermostable agonist-bound neurotensin receptor 1 mutant without lysozyme fusion. Image from the RCSB PDB (rcsb.org) of PDB ID 4BUO [576].
Figure 12. Neuropeptide NT and NTS1 receptor: (a) transcription and synthesis of NT (created with BioRender.com accessed on 22 October 2021); (b) 2D structure image of NT (https://pubchem.ncbi.nlm.nih.gov/compound/25077406#section=2D-Structure, accessed on 22 October 2021); (c) high-resolution structure of thermostable agonist-bound neurotensin receptor 1 mutant without lysozyme fusion. Image from the RCSB PDB (rcsb.org) of PDB ID 4BUO [576].
Biomedicines 10 01985 g012
Table 1. Neuropeptide structures and their receptors.
Table 1. Neuropeptide structures and their receptors.
NeuropeptidesSequenceReceptors and Relative AffinityReferences
Substance PRPKPQQFFGLMNK1R-F (Full) > NK1R-T (Truncated) >> NK2R, NK3R[71,72,73,74,75,76,77]
CGRPACDTATCVTHRLALLSRSGG-VVKNNFVPTNVGSKAFCLR/RAMP1 >> CLR/RAMP2 ≈ CLR/RAMP3[78,79,80,81,82,83]
AdrenomedullinYRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYGFTDKDKDNVAPRSKISPQGY CLR/RAMP2 ≈ CLR/RAMP3 >> CLR/RAMP1[84,85,86]
VIPHSDAVFTDNYTRLRKQMAVKKYLNSILNVPAC1R > VPAC2R >> PAC1R[87,88,89,90,91,92,93,94,95]
PACAPHSDGIFTDSYSRYRKQMAVKKYLAAVLGKRYKQRVKNKPAC1R >> VPAC1R ≈ VPAC2R[87,96,97,98,99,100,101,102,103]
NPYYPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRYY1 ≈ Y2 ≈ Y5 >> Y4[104,105,106,107,108,109,110,111,112,113,114]
SSTSANSNPAMAPRERKAGCKNFFWKTFTSCSST2 ≈ SST3 ≈ SST5 > SST1 ≈ SST4[115,116,117,118,119]
α-MSHSYSMEHFRWGKPVMC1R ≈ MC3R > MC4R > MC5R[120,121,122,123,124,125,126]
GalaninGWTLNSAGYLLGPHAVGNHRSFSDKNGLTSGAL1R ≈ GAL2R > GAL3R[127,128,129,130,131,132,133,134,135,136,137,138]
Opioid Growth Factor (OGF)/Met-enkephalinYGGFMμ >> OGFR > δ >> κ[139,140,141,142,143,144]
NeurotensinQLYENKPRRPYIL NTS1R ≈ NTS2R[145,146,147,148,149,150,151,152,153]
Table 2. Expression of neuropeptides and their receptors on the ocular surface.
Table 2. Expression of neuropeptides and their receptors on the ocular surface.
Neuropeptides
(Tissue or Fluid)
Receptors
(Tissue or Fluid)
References
SP (nerve fibers in corneal epithelium and stroma, normal tears) NK1R (native and cultured corneal epithelial cells, mast cells, T cells, monocytes, conventional dendritic cells, and Langerhans cells)[10,154,169,170,171,172,173,174,175,176,177]
CGRP (nerve fibers in corneal epithelium and stroma, normal tears)CLR/RAMP1 (corneal and limbal epithelial cells, T cells, innate lymphoid cells, macrophages, conventional dendritic cells)[158,159,169,178,179,180,181,182,183,184]
Adrenomedullin (corneal nerves)CLR/RAMP2, CLR/RAMP3 (Corneal epithelium, stroma, and endothelium; lymphatic and vascular endothelium; T cells, dendritic cells)[185,186,187,188,189]
VIP (corneal nerves in anterior stroma)VPAC1-R, VPAC2-R (lacrimal glands—basal side of acinar cells and ducts, T cells, monocytes)[158,180,190,191]
PACAP (corneal nerves, tears, lacrimal gland nerves, and acinar cells)PAC1-R, VPAC1-R, VPAC2-R (lacrimal glands—basal side of acinar cells and ducts, T cells, monocytes)[87,190,191,192,193,194,195,196]
NPY (corneal nerves in anterior stroma)Y1, Y2, Y4, Y5, and y6 receptors (T cells, monocytes, mast cells)[158,161,162,163,164,165,166,197,198,199,200]
SST (lacrimal gland, corneal nerves)SST1R-SST5R (meibomian gland, T cells, B cells, monocytes)[158,201,202,203]
α-MSH (cornea)MC1R-MC5R (corneal endothelial cells, acinar cells in lacrimal glands, T cells, B cells, NK cells, monocytes, granulocytes) [69,204,205,206,207]
Galanin (corneal and conjunctival sensory nerves)GalR1, GalR2, and GalR3 (NK cells, neutrophils, macrophages)[156,158,208,209,210,211,212]
Opioid Growth Factor (OGF)/Met-Enkephalin (Corneal nerves, corneal epithelium)OGFr (corneal epithelial cells)[158,205]
Neurotensin (corneal nerves)Neurotensin receptor (cultured human corneal keratocytes)[165,167,168]
Table 3. Summary of neuropeptide functions.
Table 3. Summary of neuropeptide functions.
NeuropeptideFunctionsReferences
Substance PPro-inflammatory. Promotes macrophage and neutrophil phagocytosis, increases pro-inflammatory cytokine secretion, activates mast cells and NK cells, and enhances T cell proliferation. Promotes tear secretion and anti-apoptotic functions on corneal epithelial cells. May maintain stemness of limbal stem cells and promotes corneal wound healing. Promotes corneal angiogenesis and lymphangiogenesis, as well as leukocyte recruitment to the cornea during inflammation. Also has a chief role in pain.[68,179,195,227,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298]
CGRPCauses vasodilation and is pro-inflammatory. Enhances the pro-inflammatory activity of lymphocytes, cDCs, and macrophages. Promotes corneal wound healing through effects on corneal epithelial cells. Its levels correlate with lacrimal gland function. Also has a role in pain.[322,323,324,325,326,327,328,329,330,331,332,334,335,336,337,338,339]
AdrenomedullinPromotes the proliferation of CD34+ progenitor cells and hematopoietic stem cells. Elevated levels in models of corneal inflammation. Knockdown diminishes corneal angiogenesis.[187,341,344,360,361,362,363]
VIPPro- and anti-inflammatory effects that may be context- or receptor-dependent. Primes the oxidative burst response in neutrophils, and causes histamine release in mast cells. Inhibits production of inflammatory cytokines and increases IL-10 production. Enhances corneal wound healing and corneal allograft survival. Promotes corneal nerve regeneration by regulating neurotrophic factors. Promotes survival of corneal endothelial cells.[67,364,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396]
PACAPPro- and anti-inflammatory effects mediated in a context-dependent manner. Inhibits secretion of pro-inflammatory cytokines from macrophages. Involved in T cell maturation and can skew towards a Th2 phenotype. Regulates tear secretion and may have utility as a treatment for dry eye disease. Enhances corneal nerve regeneration and sensitivity and accelerates corneal wound healing.[70,190,429,430,431,432,433,434,435,436,437,438]
NPYPro- and anti-inflammatory effects. Increases chemotaxis in various immune cells. Inhibits the maturation of cDCs and proliferation of T cells. Promotes pro-inflammatory cytokine release from macrophages. Enhances corneal angiogenesis through the Y2 receptor.[462,463,464,465,466,467,468,469,470,471,472,473,474,475]
SSTPro- and anti-inflammatory effects. Correlates with activation state of immune cells. Regulates lymphocyte migration and macrophage/monocyte phagocytosis. Demonstrated to have antiangiogenic properties, including inhibiting corneal neovascularization.[201,488,489,490,491,492,493,494,495,496,497,498,499]
α-MSHAnti-inflammatory effects with widespread suppression of inflammation. Inhibits pro-inflammatory cytokine production and immune cell chemotaxis. Promotes the induction of regulatory T cells. Improves survival of corneal allografts and enhances survival of corneal endothelial cells. Increases tear secretion and goblet cell function in dry eye disease.[69,121,124,502,507,508,509,510,511,512,513,519,520,521,522,523]
GalaninModulates neutrophil and NK cell functions. Present in the tear film, although its precise role in healthy and diseased corneas remains unclear. Also involved in pain signaling. [210,212,524,537,538,539,540,541,542,543,544,545,546,547]
OGF/
Met-Enkephalin
Immunomodulatory effects on many immune cells, such as inhibiting regulatory T cells, enhancing NK cell activity, and increasing phagocytosis. Effects may be dependent on the presence of a potent immune stimulus. Suppresses corneal wound healing.[549,555,561,562,563,564,565,566,567,568,569]
NeurotensinPro- and anti-inflammatory effects. Enhances chemotaxis and may stimulate or inhibit cytokine synthesis. Involved in pain signaling and has analgesic effects on the cornea.[578,579,580,581,582]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Puri, S.; Kenyon, B.M.; Hamrah, P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022, 10, 1985. https://doi.org/10.3390/biomedicines10081985

AMA Style

Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines. 2022; 10(8):1985. https://doi.org/10.3390/biomedicines10081985

Chicago/Turabian Style

Puri, Sudan, Brendan M. Kenyon, and Pedram Hamrah. 2022. "Immunomodulatory Role of Neuropeptides in the Cornea" Biomedicines 10, no. 8: 1985. https://doi.org/10.3390/biomedicines10081985

APA Style

Puri, S., Kenyon, B. M., & Hamrah, P. (2022). Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines, 10(8), 1985. https://doi.org/10.3390/biomedicines10081985

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop