Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.2. Laboratory Parameters
2.3. Serum Osmolarity Determination
2.4. Subsection
- low: <287 mOsm/L,
- intermediate low: 287–294 mOsm/L,
- intermediate high: 295–304 mOsm/L,
- high: >304 mOsm/L.
- one-year all-cause mortality,
- worsening of HF (WHF),
- worsening of renal function (WRF).
2.5. Statistical Analysis
3. Results
3.1. Baseline Study Group Characteristics
3.2. Comparison of Baseline Characteristics by Osmolarity Quartiles
3.3. Basic Laboratory Parameters by Osmolarity Quartiles
3.4. Kidney Function Parameters and Components of Serum Osmolarity by Quartiles
3.5. Urine Composition by Osmolarity Quartiles
3.6. The Relationship between Serum Osmolarity and Vasopressin Concentration
3.7. The Comparison of De Novo and Acute Decompensated Chronic Heart Failure Regarding Vasopressin Concentration, Kidney Function, and Urine Laboratory Parameters by Osmolarity
3.8. Outcomes of the Study
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Mebazaa, A.; Harjola, V.-P.; Coats, A.J.; Piepoli, M.F.; Crespo-Leiro, M.G.; Laroche, C.; Seferovic, P.M.; Anker, S.D.; Ferrari, R.; et al. Clinical Phenotypes and Outcome of Patients Hospitalized for Acute Heart Failure: The ESC Heart Failure Long-Term Registry. Eur. J. Heart Fail. 2017, 19, 1242–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurmani, S.; Squire, I. Acute Heart Failure: Definition, Classification and Epidemiology. Curr. Heart Fail. Rep. 2017, 14, 385–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boorsma, E.M.; ter Maaten, J.M.; Damman, K.; Dinh, W.; Gustafsson, F.; Goldsmith, S.; Burkhoff, D.; Zannad, F.; Udelson, J.E.; Voors, A.A. Congestion in Heart Failure: A Contemporary Look at Physiology, Diagnosis and Treatment. Nat. Rev. Cardiol. 2020, 17, 641–655. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Marti, C.N.; Mentz, R.J.; Greene, S.J.; Ambrosy, A.P.; Subacius, H.P.; Fonarow, G.C.; Chioncel, O.; Bazari, H.; Maggioni, A.P.; et al. Serum Osmolality and Postdischarge Outcomes after Hospitalization for Heart Failure. Am. J. Cardiol. 2016, 117, 1144–1150. [Google Scholar] [CrossRef]
- Goldsmith, S.R. Arginine Vasopressin Antagonism in Heart Failure: Current Status and Possible New Directions; Elsevier: Amsterdam, The Netherlands, 2019; Volume 74, pp. 49–52. [Google Scholar]
- Bankir, L.; Bichet, D.G.; Morgenthaler, N.G. Vasopressin: Physiology, Assessment and Osmosensation. J. Intern. Med. 2017, 282, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Kanbay, M.; Yilmaz, S.; Dincer, N.; Ortiz, A.; Sag, A.A.; Covic, A.; Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cherney, D.Z.I.; Johnson, R.J.; et al. Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown? J. Clin. Endocrinol. Metab. 2019, 104, 5406–5420. [Google Scholar] [CrossRef]
- Enhörning, S.; Melander, O. The Vasopressin System in the Risk of Diabetes and Cardiorenal Disease, and Hydration as a Potential Lifestyle Intervention. Ann. Nutr. Metab. 2018, 72, 21–27. [Google Scholar] [CrossRef]
- Vinod, P.; Krishnappa, V.; Chauvin, A.M.; Khare, A.; Raina, R. Cardiorenal Syndrome: Role of Arginine Vasopressin and Vaptans in Heart Failure. Cardiol. Res. 2017, 8, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, M. Basic Concepts and Practical Equations on Osmolality: Biochemical Approach. Clin. Biochem. 2016, 49, 936–941. [Google Scholar] [CrossRef]
- Arévalo-Lorido, J.C.; Gómez, J.C.; Formiga, F.; Conde-Martel, A.; Carrera-Izquierdo, M.; Muela-Molinero, A.; Dávila-Ramos, M.F.; Serrado-Iglesias, A.; Manzano-Espinosa, L.; Montero-Pérez-Barquero, M. High Serum Osmolarity at Admission Determines a Worse Outcome in Patients with Heart Failure: Is a New Target Emerging? Int. J. Cardiol. 2016, 221, 238–242. [Google Scholar] [CrossRef]
- Lo, K.B.; Salacup, G.; Pelayo, J.; Putthapiban, P.; Swamy, S.; Nakity, R.; Naranjo-Tovar, M.; Rangaswami, J. Serum and Urine Osmolality as Predictors of Adequate Diuresis in Acute Decompensated Heart Failure: A Prospective Cohort Study. Cardiorenal Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, A.; Yasumura, Y.; Yoshida, C.; Okumura, T.; Tateishi, J.; Yoshida, J.; Tamaki, S.; Yano, M.; Hayashi, T.; Nakagawa, Y.; et al. Prognostic Relevance of Elevated Plasma Osmolality on Admission in Acute Decompensated Heart Failure with Preserved Ejection Fraction: Insights from PURSUIT-HFpEF Registry. BMC Cardiovasc. Disord. 2021, 21, 281. [Google Scholar] [CrossRef] [PubMed]
- Sokolski, M.; Zymliński, R.; Biegus, J.; Siwołowski, P.; Nawrocka-Millward, S.; Todd, J.; Yerramilli, M.R.; Estis, J.; Jankowska, E.A.; Banasiak, W.; et al. Urinary Levels of Novel Kidney Biomarkers and Risk of True Worsening Renal Function and Mortality in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2017, 19, 760–767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; Haapio, M.; House, A.A.; Anavekar, N.; Bellomo, R. Cardiorenal Syndrome. J. Am. Coll. Cardiol. 2008, 52, 1527–1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolski, M.; Zymliński, R.; Sokolska, J.M.; Biegus, J.; Banasiak, W.; Ponikowski, P. True Worsening Renal Function Identifies Patients with Acute Heart Failure with an Ominous Outcome. Pol. Arch. Intern. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mullens, W.; Abrahams, Z.; Francis, G.S.; Sokos, G.; Taylor, D.O.; Starling, R.C.; Young, J.B.; Tang, W.H.W. Importance of Venous Congestion for Worsening of Renal Function in Advanced Decompensated Heart Failure. J. Am. Coll. Cardiol. 2009, 53, 589–596. [Google Scholar] [CrossRef] [Green Version]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.J.V.; Ponikowski, P.; Poole-Wilson, P.A.; Strömberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.W.; et al. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008. Eur. Heart J. 2008, 29, 2388–2442. [Google Scholar]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- Butler, J.; Gheorghiade, M.; Kelkar, A.; Fonarow, G.C.; Anker, S.; Greene, S.J.; Papadimitriou, L.; Collins, S.; Ruschitzka, F.; Yancy, C.W.; et al. In-Hospital Worsening Heart Failure. Eur. J. Heart Fail. 2015, 17, 1104–1113. [Google Scholar] [CrossRef]
- Butler, J.; Yang, M.; Manzi, M.A.; Hess, G.P.; Patel, M.J.; Rhodes, T.; Givertz, M.M. Clinical Course of Patients with Worsening Heart Failure with Reduced Ejection Fraction. J. Am. Coll. Cardiol. 2019, 73, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Damman, K.; Tang, W.H.W.; Testani, J.M.; McMurray, J.J.V. Terminology and Definition of Changes Renal Function in Heart Failure. Eur. Heart J. 2014, 35, 3413–3416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zymliński, R.; Sokolski, M.; Biegus, J.; Siwołowski, P.; Nawrocka-Millward, S.; Sokolska, J.M.; Dudkowiak, M.; Marciniak, D.; Todd, J.; Jankowska, E.A.; et al. Multi-Organ Dysfunction/Injury on Admission Identifies Acute Heart Failure Patients at High Risk of Poor Outcome. Eur. J. Heart Fail. 2019, 21, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Niewinski, P.; Josiak, K.; Kulej, K.; Ponikowska, B.; Nowak, K.; Zymlinski, R.; Ponikowski, P. Pathophysiology of Advanced Heart Failure. Heart Fail. Clin. 2021, 17, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Todd, J.; Cotter, G.; Metra, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Serial Assessment of Spot Urine Sodium Predicts Effectiveness of Decongestion and Outcome in Patients with Acute Heart Failure. Eur. J. Heart Fail. 2019, 21, 624–633. [Google Scholar] [CrossRef]
- Biegus, J.; Zymliński, R.; Testani, J.; Marciniak, D.; Zdanowicz, A.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Renal Profiling Based on Estimated Glomerular Filtration Rate and Spot Urine Sodium Identifies High-risk Acute Heart Failure Patients. Eur. J. Heart Fail. 2021, 23, 729–739. [Google Scholar] [CrossRef]
- Biegus, J.; Nawrocka-Millward, S.; Zymliński, R.; Fudim, M.; Testani, J.; Marciniak, D.; Rosiek-Biegus, M.; Ponikowska, B.; Guzik, M.; Garus, M.; et al. Distinct Renin/Aldosterone Activity Profiles Correlate with Renal Function, Natriuretic Response, Decongestive Ability and Prognosis in Acute Heart Failure. Int. J. Cardiol. 2021, 345, 54–60. [Google Scholar] [CrossRef]
- Biegus, J.; Zymliński, R.; Sokolski, M.; Jankowska, E.A.; Banasiak, W.; Ponikowski, P. Elevated Lactate in Acute Heart Failure Patients with Intracellular Iron Deficiency as Identifier of Poor Outcome. Kardiol. Pol. 2019, 77, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Zymliński, R.; Biegus, J.; Sokolski, M.; Siwołowski, P.; Nawrocka-Millward, S.; Todd, J.; Jankowska, E.A.; Banasiak, W.; Cotter, G.; Cleland, J.G.; et al. Increased Blood Lactate Is Prevalent and Identifies Poor Prognosis in Patients with Acute Heart Failure without Overt Peripheral Hypoperfusion. Eur. J. Heart Fail. 2018, 20, 1011–1018. [Google Scholar] [CrossRef] [Green Version]
- Biegus, J.; Zymliński, R.; Gajewski, P.; Sokolski, M.; Siwołowski, P.; Sokolska, J.; Swoboda, K.; Banasiak, M.; Banasiak, W.; Ponikowski, P. Persistent Hyperlactataemia Is Related to High Rates of In-Hospital Adverse Events and Poor Outcome in Acute Heart Failure. Kardiol. Pol. 2019, 77, 355–362. [Google Scholar] [CrossRef] [Green Version]
Serum Osmolarity, mOsm/L | Low | Intermediate Low | Intermediate High | High | p-Value |
---|---|---|---|---|---|
Age, years | 63 ± 14 | 66 ± 13 | 69 ± 12 | 74 ± 11 | <0.001 |
Men, N (%) | 61 (74) | 63 (76) | 63 (74) | 71 (81) | 0.780 |
Systolic BP, mmHg | 122 ± 27 | 135 ± 29 | 140 ± 35 | 133 ± 31 | 0.002 |
Diastolic BP, mmHg | 74 ± 13 | 79 ± 15 | 81 ± 18 | 80 ± 18 | 0.043 |
Heart rate, b.p.m | 90 [75–105] | 90 [75–110] | 80 [71–100] | 80 [70–100] | 0.090 |
Body weight, kg | 80 ± 20 | 82 ± 18 | 82 ± 18 | 82 ± 15 | 0.913 |
LVEF, % | 30 [20–43] | 30 [25–45] | 31 [25–40] | 35 [23–48] | 0.804 |
AHF de novo, N (%) | 20 (24) | 32 (40) | 32 (39) | 23 (27) | 0.073 |
Arterial hypertension, N (%) | 49 (60) | 60 (73) | 67 (80) | 68 (80) | 0.015 |
Chronic kidney disease, N (%) | 26 (35) | 29 (37) | 46 (60) | 69 (80) | <0.001 |
Diabetes mellitus, N (%) | 23 (29) | 26 (33) | 32 (38) | 48 (55) | 0.034 |
Hospitalization length, days | 7 [5–10] | 6 [5–8] | 7 [5–10] | 8 [6–12] | 0.003 |
AST, IU/L | 28 [23–40] | 26 [20–36] | 28 [21–38] | 26 [18–38] | 0.465 |
ALT, IU/L | 29 [21–43] | 28 [20–52] | 29 [18–46] | 25 [16–45] | 0.512 |
Bilirubin, mg/dL | 1.5 [0.9–2.2] | 1.0 [0.7–1.5] | 0.9 [0.7–1.5] | 1.1 [0.7–1.7] | <0.001 |
Albumin, mg/dL | 3.6 ± 0.4 | 3.8 ± 0.4 | 3.8 ± 0.4 | 3.7 ± 0.3 | 0.043 |
Hemoglobin, g/dL | 13 ± 2 | 13 ± 2 | 13 ± 2 | 12 ± 2 | 0.001 |
CRP, mg/L | 10 [5–22] | 6 [3–14] | 7 [3–14] | 6 [3–17] | 0.134 |
Glucose, mg/dL | 118 ± 31 | 126 ± 47 | 139 ± 56 | 152 ± 74 | 0.002 |
Creatinine, mg/dL | 1.0 ± 0.3 | 1.1 ± 0.3 | 1.3 ± 0.4 | 1.9 ± 0.8 | <0.001 |
Urea, mg/dL | 37 [28–48] | 44 [37–54] | 56 [43–68] | 89 [71–115] | <0.001 |
Na+, mmol/L | 135 [133–138] | 139 [138–141] | 141 [138–143] | 141 [138–144] | <0.001 |
K+, mmol/L | 3.9 [3.6–4.4] | 4.2 [3.8–4.5] | 4.3 [3.9–4.5] | 4.2 [4.0–4.8] | 0.002 |
Lactate, mmol/L | 2.2 [1.8–2.7] | 1.8 [1.5–2.2] | 1.6 [1.4–2.2] | 2.0 [1.5–2.5] | 0.001 |
NT-proBNP, pg/mL | 6124 [3189–11958] | 4191 [2608–7550] | 5363 [2671–9930] | 7611 [5255–8654] | <0.001 |
Vasopressin, pg/mL | 61.6 [44.0–81.0] | 57.8 [50.0–77.3] | 52.7 [43.1–69.2] | 45.0 [30.7–60.7] | 0.034 |
Urine sodium, mmol/L | 53 [32–88] | 84 [39–110] | 73 [49–113] | 86 [49–118] | 0.040 |
Urine urea, mg/dL | 1128 [698–1788] | 1441 [1151–2076] | 1211 [593–1681] | 986 [594–1401] | 0.010 |
Urine creatinine, mg/dL | 122 [39–175] | 128 [74–217] | 84 [42–131] | 65 [35–98] | 0.006 |
Serum Osmolarity, mOsm/kg | Low | Intermediate Low | Intermediate High | High | p-Value |
---|---|---|---|---|---|
Loop diuretics, N (%) | 85 (100) | 80 (96) | 84 (99) | 85 (100) | 0.101 |
Inotropes, N (%) | 12 (14) | 3 (4) | 7 (8) | 14 (17) | 0.026 |
Beta-blocker, N (%) | 81 (96) | 80 (96) | 84 (99) | 77 (92) | 0.128 |
ACEI/ARB, N (%) | 72 (87) | 72 (89) | 76 (94) | 72 (86) | 0.361 |
MRA, N (%) | 42 (51) | 41 (51) | 29 (46) | 36 (53) | 0.155 |
Serum Osmolarity, mOsm/L | Low | Intermediate Low | Intermediate High | High | p-Value | |
---|---|---|---|---|---|---|
Vasopressin, pg/mL | AHF de novo | 63.6 [55.3–94.5] | 58.0 [50.7–78.6] | 52.0 [46.0–58.0] | 38.0 [27.0–57.0] | 0.002 |
ADHF | 59.5 [37.4–80.0] | 52.0 [38.0–74.5] | 57.0 [38.0–79.0] | 50.0 [33.0–84.0] | 0.849 | |
Urine sodium, mmol/L | AHF de novo | 58 [37–85] | 77 [38–98] | 73 [53–108] | 108 [75–134] | 0.053 |
ADHF | 52 [32–88] | 89 [40–113] | 62 [38–118] | 73 [47–94] | 0.472 | |
Urine creatinine, mg/dL | AHF de novo | 141 [51–261] | 164 [78–240] | 95 [60–124] | 55 [41–114] | 0.036 |
ADHF | 113 [38–145] | 88 [39–151] | 86 [42–132] | 64 [34–92] | 0.190 | |
Urine urea, mg/dL | AHF de novo | 1560 [1045–2000] | 1796 [1207–2533] | 1173 [650–1681] | 1014 [658–1362] | 0.011 |
ADHF | 1029 [689–1577] | 1013 [758–1787] | 1492 [744–1650] | 960 [594–1466] | 0.376 | |
Serum sodium, mmol/L | AHF de novo | 137 [136–139] | 140 [139–141] | 141 [140–144] | 143 [140–146] | <0.001 |
ADHF | 135 [131–138] | 138 [135–141] | 140 [137–143] | 141 [137–143] | <0.001 | |
Serum creatinine, mg/dL | AHF de novo | 0.93 [0.81–1.20] | 1.02 [0.88–1.10] | 1.15 [1.01–1.39] | 1.70 [1.34–1.96] | <0.001 |
ADHF | 0.96 [0.85–1.20] | 1.23 [1.05–1.43] | 1.26 [1.06–1.51] | 1.73 [1.38–2.12] | <0.001 | |
Serum urea, mg/dL | AHF de novo | 35 [27–38] | 40 [33–48] | 45 [40–57] | 79 [58–105] | <0.001 |
ADHF | 39 [31–51] | 44 [39–62] | 58 [49–71] | 89 [70–119] | <0.001 |
Serum Osmolarity, mOsm/L | Low | Intermediate Low | Intermediate High | High | p-Value |
---|---|---|---|---|---|
All-cause one-year mortality, N (%) | 25 (31) | 14 (19) | 20 (23) | 32 (37) | 0.022 |
Worsening of Heart Failure, N (%) | 16 (20) | 7 (9) | 8 (10) | 18 (22) | 0.032 |
Worsening of Renal Function, N (%) | 3 (4) | 2 (2) | 11 (13) | 10 (11) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzik, M.; Sokolski, M.; Hurkacz, M.; Zdanowicz, A.; Iwanek, G.; Marciniak, D.; Zymliński, R.; Ponikowski, P.; Biegus, J. Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome. Biomedicines 2022, 10, 2034. https://doi.org/10.3390/biomedicines10082034
Guzik M, Sokolski M, Hurkacz M, Zdanowicz A, Iwanek G, Marciniak D, Zymliński R, Ponikowski P, Biegus J. Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome. Biomedicines. 2022; 10(8):2034. https://doi.org/10.3390/biomedicines10082034
Chicago/Turabian StyleGuzik, Mateusz, Mateusz Sokolski, Magdalena Hurkacz, Agata Zdanowicz, Gracjan Iwanek, Dominik Marciniak, Robert Zymliński, Piotr Ponikowski, and Jan Biegus. 2022. "Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome" Biomedicines 10, no. 8: 2034. https://doi.org/10.3390/biomedicines10082034
APA StyleGuzik, M., Sokolski, M., Hurkacz, M., Zdanowicz, A., Iwanek, G., Marciniak, D., Zymliński, R., Ponikowski, P., & Biegus, J. (2022). Serum Osmolarity and Vasopressin Concentration in Acute Heart Failure—Influence on Clinical Course and Outcome. Biomedicines, 10(8), 2034. https://doi.org/10.3390/biomedicines10082034