Update on the Pharmacological Treatment of Primary Biliary Cholangitis
Abstract
:1. Introduction
2. Ursodeoxycholic Acid (UDCA) as First-Line PBC Therapy
3. Other Therapeutic Agents for PBC
3.1. Obeticholic Acid
3.2. Non-Bile Acid FXR Agonists
3.3. PPAR Agonists: Fibrates
3.4. Other PPAR Agonists
3.5. Agents Targeting the FGF19 Pathway
3.6. Agents Targeting the NADPH Oxidase (NOX) Enzymes
3.7. Agents with Immunomodulatory Properties
3.8. Antiretroviral Therapy
4. Agents for the Treatment of Specific Symptoms of PBC
4.1. Agents Targeting Pruritus
Ileal Bile Acid Transporter (IBAT) Inhibitors
4.2. Agents Targeting Fatigue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gulamhusein, A.F.; Hirschfield, G.M. Primary biliary cholangitis: Pathogenesis and therapeutic opportunities. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 93–110. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Chen, S.; Li, M.; Zhang, D.; Kong, Y.; Jia, J. Regional variation and temporal trend of primary biliary cholangitis epidemiology: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 1423–1434. [Google Scholar] [CrossRef] [PubMed]
- Baldursdottir, T.R.; Bergmann, O.M.; Jonasson, J.G.; Ludviksson, B.R.; Axelsson, T.A.; Björnsson, E.S. The epidemiology and natural history of primary biliary cirrhosis. Eur. J. Gastroenterol. Hepatol. 2012, 24, 824–830. [Google Scholar] [CrossRef]
- Perez, C.F.M.; Goet, J.C.; Lammers, W.J.; Gulamhusein, A.; van Buuren, H.R.; Ponsioen, C.Y.; Carbone, M.; Mason, A.; Corpechot, C.; Invernizzi, P.; et al. Milder disease stage in patients with primary biliary cholangitis over a 44-year period: A changing natural history. Hepatology 2018, 67, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juran, B.D.; Lazaridis, K.N. Environmental Factors in Primary Biliary Cirrhosis. Semin. Liver Dis. 2014, 34, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, G.; Hirschfield, G. Using GWAS to identify genetic predisposition in hepatic autoimmunity. J. Autoimmun. 2016, 66, 25–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, I.; Carbone, M.; Lleo, A.; Invernizzi, P. Genetics and Epigenetics of Primary Biliary Cirrhosis. Semin. Liver Dis. 2014, 34, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U.; Trauner, M.; Jansen, P.; Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 2015, 62, S25–S37. [Google Scholar] [CrossRef] [Green Version]
- Hirschfield, G.M.; Beuers, U.; Corpechot, C.; Invernizzi, P.; Jones, D.; Marzioni, M.; Schramm, C. EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef]
- Parés, A.; Caballeria, L.; Rodés, J. Excellent Long-Term Survival in Patients with Primary Biliary Cirrhosis and Biochemical Response to Ursodeoxycholic Acid. Gastroenterology 2006, 130, 715–720. [Google Scholar] [CrossRef]
- Corpechot, C.; Abenavoli, L.; Rabahi, N.; Chrétien, Y.; Andréani, T.; Johanet, C.; Chazouillères, O.; Poupon, R. Biochemical response to ursodeoxycholic acid and long-term prognosis in primary biliary cirrhosis. Hepatology 2008, 48, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, E.M.M.; Hansen, B.E.; de Vries, R.A.; den Ouden–Muller, J.W.; van Ditzhuijsen, T.J.M.; Haagsma, E.B.; Houben, M.H.M.G.; Witteman, B.J.M.; van Erpecum, K.J.; van Buuren, H.R. Improved Prognosis of Patients with Primary Biliary Cirrhosis That Have a Biochemical Response to Ursodeoxycholic Acid. Gastroenterology 2009, 136, 1281–1287. [Google Scholar] [CrossRef] [PubMed]
- Corpechot, C.; Chazouillères, O.; Poupon, R. Early primary biliary cirrhosis: Biochemical response to treatment and prediction of long-term outcome. J. Hepatol. 2011, 55, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Lammers, W.J.; van Buuren, H.R.; Hirschfield, G.M.; Janssen, H.L.; Invernizzi, P.; Mason, A.L.; Ponsioen, C.Y.; Floreani, A.; Corpechot, C.; Mayo, M.J.; et al. Levels of Alkaline Phosphatase and Bilirubin Are Surrogate End Points of Outcomes of Patients with Primary Biliary Cirrhosis: An International Follow-up Study. Gastroenterology 2014, 147, 1338–1349.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagi, T.; Guindi, M.; Fischer, S.E.; Arenovich, T.; Abdalian, R.; Coltescu, C.; Heathcote, J.E.; Hirschfield, G. Baseline Ductopenia and Treatment Response Predict Long-Term Histological Progression in Primary Biliary Cirrhosis. Am. J. Gastroenterol. 2010, 105, 2186–2194. [Google Scholar] [CrossRef]
- Perez, C.F.M.; Harms, M.H.; Lindor, K.D.; van Buuren, H.R.; Hirschfield, G.M.; Corpechot, C.; van der Meer, A.J.; Feld, J.J.; Gulamhusein, A.; Lammers, W.J.; et al. Goals of Treatment for Improved Survival in Primary Biliary Cholangitis: Treatment Target Should Be Bilirubin within the Normal Range and Normalization of Alkaline Phosphatase. Am. J. Gastroenterol. 2020, 115, 1066–1074. [Google Scholar] [CrossRef]
- Cortez-Pinto, H.; Liberal, R.; Lopes, S.; Machado, M.V.; Carvalho, J.; Dias, T.; Santos, A.; Agostinho, C.; Figueiredo, P.; Loureiro, R.; et al. Predictors for incomplete response to ursodeoxycholic acid in primary biliary cholangitis. Data from a national registry of liver disease. United Eur. Gastroenterol. J. 2021, 9, 699–706. [Google Scholar] [CrossRef]
- Harms, M.H.; van Buuren, H.R.; Corpechot, C.; Thorburn, D.; Janssen, H.L.; Lindor, K.D.; Hirschfield, G.M.; Parés, A.; Floreani, A.; Mayo, M.J.; et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J. Hepatol. 2019, 71, 357–365. [Google Scholar] [CrossRef]
- Carbone, M.; Harms, M.H.; Lammers, W.; Marmon, T.; Pencek, R.; MacConell, L.; Shapiro, D.; Jones, D.E.; Mells, G.F.; Hansen, B.E. Clinical application of the GLOBE and United Kingdom-primary biliary cholangitis risk scores in a trial cohort of patients with primary biliary cholangitis. Hepatol. Commun. 2018, 2, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Selmi, C.; Bowlus, C.L.; Gershwin, M.E.; Coppel, R.L. Primary biliary cirrhosis. Lancet 2011, 377, 1600–1609. [Google Scholar] [CrossRef]
- Gerussi, A.; Lucà, M.; Cristoferi, L.; Ronca, V.; Mancuso, C.; Milani, C.; D′Amato, D.; O′Donnell, S.E.; Carbone, M.; Invernizzi, P. New Therapeutic Targets in Autoimmune Cholangiopathies. Front. Med. 2020, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Modica, S.; Petruzzelli, M.; Bellafante, E.; Murzilli, S.; Salvatore, L.; Celli, N.; Di Tullio, G.; Palasciano, G.; Moustafa, T.; Halilbasic, E.; et al. Selective Activation of Nuclear Bile Acid Receptor FXR in the Intestine Protects Mice Against Cholestasis. Gastroenterology 2012, 142, 355–365.e4. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Luketic, V.; Chapman, R.; Hirschfield, G.M.; Poupon, R.; Schramm, C.; Vincent, C.; Rust, C.; Parés, A.; Mason, A.; et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 2018, 67, 1890–1902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevens, F.; Andreone, P.; Mazzella, G.; Strasser, S.I.; Bowlus, C.; Invernizzi, P.; Drenth, J.P.; Pockros, P.J.; Regula, J.; Beuers, U.; et al. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N. Engl. J. Med. 2016, 375, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Trauner, M.; Nevens, F.; Shiffman, M.L.; Drenth, J.P.H.; Bowlus, C.L.; Vargas, V.; Andreone, P.; Hirschfield, G.M.; Pencek, R.; Malecha, E.S.; et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol. Hepatol. 2019, 4, 445–453. [Google Scholar] [CrossRef]
- Parés, A.; Shiffman, M.; Vargas, V.; Invernizzi, P.; Malecha, E.S.; Liberman, A.; MacConell, L.; Hirschfield, G. Reduction and stabilization of bilirubin with obeticholic acid treatment in patients with primary biliary cholangitis. Liver Int. 2020, 40, 1121–1129. [Google Scholar] [CrossRef] [Green Version]
- Bowlus, C.L.; Pockros, P.J.; Kremer, A.E.; Parés, A.; Forman, L.M.; Drenth, J.P.; Ryder, S.D.; Terracciano, L.; Jin, Y.; Liberman, A.; et al. Long-Term Obeticholic Acid Therapy Improves Histological Endpoints in Patients With Primary Biliary Cholangitis. Clin. Gastroenterol. Hepatol. 2020, 18, 1170–1178.e6. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Floreani, A.; Trivedi, P.J.; Pencek, R.; Liberman, A.; Marmon, T.; MacConell, L. PTU-097 Long-term effect of obeticholic acid on transient elastography and ast to platelet ratio index in patients with pbc. BMJ Gut 2017, 66, A98–A99. [Google Scholar] [CrossRef]
- Roberts, S.B.; Ismail, M.; Kanagalingam, G.; Mason, A.L.; Swain, M.G.; Vincent, C.; Yoshida, E.M.; Tsien, C.; Flemming, J.A.; Janssen, H.L.; et al. Real-World Effectiveness of Obeticholic Acid in Patients with Primary Biliary Cholangitis. Hepatol. Commun. 2020, 4, 1332–1345. [Google Scholar] [CrossRef]
- Gomez, L.E.; Garcia Buey, E.; Molina, M.; Casado, I.; Conde, M.; Berenguer, F.; Jorquera, M.-A.; Simón, A.; Olveira, M.; Hernández-Guerra, M.; et al. Effectiveness and safety of obeticholic acid in a Southern European multicentre cohort of patients with primary biliary cholangitis and suboptimal response to ursodeoxycholic acid. Aliment. Pharm. Ther. 2021, 53, 519–530. [Google Scholar] [CrossRef]
- D’Amato, D.; De Vincentis, A.; Malinverno, F.; Viganò, M.; Alvaro, D.; Pompili, M.; Picciotto, A.; Palitti, V.P.; Russello, M.; Storato, S.; et al. Real-world experience with obeticholic acid in patients with primary biliary cholangitis. JHEP Rep. 2021, 3, 100248. [Google Scholar] [CrossRef] [PubMed]
- Tully, D.C.; Rucker, P.V.; Chianelli, D.; Williams, J.; Vidal, A.; Alper, P.B.; Mutnick, D.; Bursulaya, B.; Schmeits, J.; Wu, X.; et al. Discovery of Tropifexor (LJN452), a Highly Potent Non-bile Acid FXR Agonist for the Treatment of Cholestatic Liver Diseases and Nonalcoholic Steatohepatitis (NASH). J. Med. Chem. 2017, 60, 9960–9973. [Google Scholar] [CrossRef] [PubMed]
- Schramm, C.; Hirschfield, G.; Mason, A.; Wedemeyer, H.; Klickstein, L.; Neelakantham, S.; Koo, P.; Sanni, J.; Badman, M.; Jones, D. Early assessment of safety and efficacy of tropifexor, a potent non bile-acid FXR agonist, in patients with primary biliary cholangitis: An interim analysis of an ongoing phase 2 study. J. Hepatol. 2018, 68, S103. [Google Scholar] [CrossRef]
- Trauner, M.; Gulamhusein, A.; Hameed, B.; Caldwell, S.; Shiffman, M.L.; Landis, C.; Eksteen, B.; Agarwal, K.; Muir, A.; Rushbrook, S.; et al. The Nonsteroidal Farnesoid X Receptor Agonist Cilofexor (GS-9674) Improves Markers of Cholestasis and Liver Injury in Patients with Primary Sclerosing Cholangitis. Hepatology 2019, 70, 788–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowdley, K.V.; Bonder, A.; Heneghan, M.A.; Hodge, A.D.; Ryder, S.D.; Sanchez, A.J.; Vargas, V.; Zeuzem, S.; Ahmad, A.; Larson, K.; et al. Final data of the phase 2a INTREPID study with EDP-305, a non-bile acid farnesoid X receptor (FXR) agonist. Hepatology 2020, 72, 131–1159. [Google Scholar] [CrossRef]
- Corpechot, C. The Role of Fibrates in Primary Biliary Cholangitis. Curr. Hepatol. Rep. 2019, 18, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Ghonem, N.S.; Ananthanarayanan, M.; Soroka, C.J.; Boyer, J.L. Peroxisome proliferator-activated receptor α activates human multidrug resistance transporter 3/ATP-binding cassette protein subfamily B4 transcription and increases rat biliary phosphatidylcholine secretion. Hepatology 2014, 59, 1030–1042. [Google Scholar] [CrossRef] [Green Version]
- Honda, A.; Ikegami, T.; Nakamuta, M.; Miyazaki, T.; Iwamoto, J.; Hirayama, T.; Saito, Y.; Takikawa, H.; Imawari, M.; Matsuzaki, Y. Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid. Hepatology 2013, 57, 1931–1941. [Google Scholar] [CrossRef]
- Gabbia, D.; Dalla Pozza, A.; Albertoni, L.; Lazzari, R.; Zigiotto, G.; Carrara, M.; Baldo, V.; Baldovin, T.; Floreani, A.; De Martin, S. Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis. World J. Gastroenterol. 2017, 23, 7519–7530. [Google Scholar] [CrossRef]
- Corpechot, C.; Chazouillères, O.; Rousseau, A.; Le Gruyer, A.; Habersetzer, F.; Mathurin, P.; Goria, O.; Potier, P.; Minello, A.; Silvain, C.; et al. A Placebo-Controlled Trial of Bezafibrate in Primary Biliary Cholangitis. N. Engl. J. Med. 2018, 378, 2171–2181. [Google Scholar] [CrossRef]
- Summerfield, J.; Elias, E.; Sherlock, S. Effects of Clofibrate in Primary Biliary Cirrhosis Hypercholesterolemia and Gallstones. Gastroenterology 1975, 69, 998–1000. [Google Scholar] [CrossRef]
- Reig, A.; Álvarez-Navascués, C.; Gómez, M.V.; Domińguez, E.G.; Moya, A.G.; Pérez-Medrano, I.; Fábrega, E.; Guerra, M.H.; Haym, M.B.; Estevez, P.; et al. Comparative effects of second-line therapy with obeticholic acid or fibrates in primary biliary cholangitis patients. J. Hepatol. 2020, 73, S460–S461. [Google Scholar] [CrossRef]
- Culver, E.; Hayden, J.; Thornburn, D.; Marshall, A. Obeticholic acid and bezafibrate in primary biliary cholangitis: A comparative evaluation of efficacy through real world clinical practice. Hepatology 2019, 70 (Suppl. S1), 770A. [Google Scholar]
- D’Amato, D.; O’Donnell, S.; Cazzagon, N.; Marconi, G.; Gerussi, A.; Cristoferi, L.; Malinverno, F.; Mancuso, C.; Milani, C.; Marzioni, M.; et al. Additive beneficial effects of Fibrates combined with Obeticholic acid in the treatment of patients with Primary Biliary Cholangitis and inadequate response to second-line therapy: Data from the Italian PBC Study Group. Dig. Liver Dis. 2020, 52, e32. [Google Scholar] [CrossRef]
- de Vries, E.; Bolier, R.; Goet, J.; Parés, A.; Verbeek, J.; de Vree, M.; Drenth, J.; van Erpecum, K.; van Nieuwkerk, K.; van der Heide, F.; et al. Fibrates for Itch (FITCH) in Fibrosing Cholangiopathies: A Double-Blind, Randomized, Placebo-Controlled Trial. Gastroenterology 2021, 160, 734–743.e6. [Google Scholar] [CrossRef] [PubMed]
- Floreani, A.; De Martin, S. Treatment of primary sclerosing cholangitis. Dig. Liver Dis. 2021, 53, 1531–1538. [Google Scholar] [CrossRef]
- Schattenberg, J.M.; Pares, A.; Kowdley, K.V.; Heneghan, M.A.; Caldwell, S.; Pratt, D.; Bonder, A.; Hirschfield, G.M.; Levy, C.; Vierling, J.; et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J. Hepatol. 2021, 74, 1344–1354. [Google Scholar] [CrossRef]
- Jones, D.; Boudes, P.F.; Swain, M.G.; Bowlus, C.L.; Galambos, M.R.; Bacon, B.R.; Doerffel, Y.; Gitlin, N.; Gordon, S.C.; Odin, J.A.; et al. (Sasha) Steinberg, FRI133-Durability of treatment response after 1 year of therapy with seladelpar in patients with prima-ry biliary cholangitis (PBC): Final results of an international phase 2 study. J. Hepatol. 2020, 73, S464–S465. [Google Scholar]
- Levy, C.; Bowlus, C.; Neff, G.; Swain, M.G.; Michael, G.; Mayo, M.J.; Goel, A.; Trivedi, P.; Hirschfield, G.; Aspinall, R.; et al. (Sasha) Steinberg, FRI133 - Durability of treatment response after 1 year of therapy with seladelpar in patients with primary biliary cholangitis (PBC): Final results of an international phase 2 study. J. Hepatol. 2020, 73, S464–S465. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Galambos, M.R.; Aspinall, R.J.; Hirschfield, G.M.; Jones, D.E.; Dörffel, Y.; Gordon, S.C.; Harrison, S.A.; Kremer, A.E.; Mayo, M.J.; et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. J. Hepatol. 2022, 77, 353–364. [Google Scholar] [CrossRef]
- Kremer, A.E.; Mayo, M.J.; Hirschfield, G.; Levy, C.; Bowlus, C.L.; Jones, D.E.; Steinberg, A.; McWherter, C.A.; Choi, Y. Seladelpar improved measures of pruritus, sleep, and fatigue and decreased serum bile acids in patients with primary biliary cholangitis. Liver Int. 2022, 42, 112–123. [Google Scholar] [CrossRef] [PubMed]
- ENHANCE: Safety and Efficacy of Seladelpar in Patients With Primary Biliary Cholangitis-A Phase 3, International, Randomized, Placebo-Controlled Study. Gastroenterol. Hepatol. 2021, 17, 5–6.
- Russell, D.W. Fifty years of advances in bile acid synthesis and metabolism. J. Lipid Res. 2009, 50, S120–S125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayo, M.J.; Wigg, A.J.; Leggett, B.; Arnold, H.; Thompson, A.J.; Weltman, M.; Carey, E.J.; Muir, A.J.; Ling, L.; Rossi, S.J.; et al. NGM 282 for Treatment of Patients With Primary Biliary Cholangitis: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Hepatol. Commun. 2018, 2, 1037–1050. [Google Scholar] [CrossRef]
- Gabbia, D.; Cannella, L.; De Martin, S. The Role of Oxidative Stress in NAFLD–NASH–HCC Transition—Focus on NADPH Oxidases. Biomedicines 2021, 9, 687. [Google Scholar] [CrossRef]
- Dalekos, G.; Invernizzi, P.; Nevens, F.; Hans, V.V.; Zigmond, E.; Andrade, R.J.; Ben Ari, Z.; Heneghan, M.; Huang, J.; Harrison, S.; et al. GS-02-Efficacy of GKT831 in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid: Interim efficacy results of a phase 2 clinical trial. J. Hepatol. 2019, 70, e1–e2. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Beuers, U.; Kupcinskas, L.; Ott, P.; Bergquist, A.; Färkkilä, M.; Manns, M.P.; Parés, A.; Spengler, U.; Stiess, M.; et al. A placebo-controlled randomised trial of budesonide for PBC following an insufficient response to UDCA. J. Hepatol. 2021, 74, 321–329. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Yang, J.; Zhu, R.; Zheng, Y.; Dai, W.; Wang, F.; Chen, K.; Li, J.; Wang, C.; et al. Combination therapy of ursodeoxycholic acid and budesonide for PBC–AIH overlap syndrome: A meta-analysis. Drug Des. Dev. Ther. 2015, 9, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Hempfling, W.; Grunhage, F.; Dilger, K.; Reichel, C.; Sauerbruch, T. Pharmacokinetics and pharmacodynamic action of budesonide in early- and late-stage primary biliary cirrhosis. Hepatology 2003, 38, 196–202. [Google Scholar] [CrossRef]
- Tsuda, M.; Moritoki, Y.; Lian, Z.-X.; Zhang, W.; Yoshida, K.; Wakabayashi, K.; Yang, G.-X.; Nakatani, T.; Vierling, J.; Lindor, K.; et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012, 55, 512–521. [Google Scholar] [CrossRef]
- Myers, R.P.; Swain, M.G.; Lee, S.S.; Shaheen, A.A.M.; Burak, K.W. B-Cell Depletion with Rituximab in Patients with Primary Biliary Cirrhosis Refractory to Ursodeoxycholic Acid. Am. J. Gastroenterol. 2013, 108, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Jopson, L.; Howel, D.; Bryant, A.; Blamire, A.; Newton, J.L.; Jones, D.E. Rituximab Is Ineffective for Treatment of Fatigue in Primary Biliary Cholangitis: A Phase 2 Randomized Controlled Trial. Hepatology 2019, 70, 1646–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groom, J.R.; Luster, A.D. CXCR3 ligands: Redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 2011, 89, 207–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lleo, A.; Zhang, W.; Zhao, M.; Tan, Y.; Bernuzzi, F.; Zhu, B.; Liu, Q.; Tan, Q.; Malinverno, F.; Valenti, L.; et al. DNA methylation profiling of the X chromosome reveals an aberrant demethylation on CXCR3 promoter in primary biliary cirrhosis. Clin. Epigenetics 2015, 7, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, Y.-H.; Lian, Z.-X.; Cheng, C.-M.; Lan, R.Y.; Yang, G.-X.; Moritoki, Y.; Chiang, B.-L.; Ansari, A.A.; Tsuneyama, K.; Coppel, R.L.; et al. Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J. Autoimmun. 2005, 25, 126–132. [Google Scholar] [CrossRef]
- De Graaf, K.L.; Lapeyre, G.; Guilhot, F.; Ferlin, W.; Curbishley, S.M.; Carbone, M.; Richardson, P.; Moreea, S.; McCune, C.A.; Ryder, S.D.; et al. NI-0801, an anti-chemokine (C-X-C motif) ligand 10 antibody, in patients with primary biliary cholangitis and an incomplete response to ursodeoxycholic acid. Hepatol. Commun. 2018, 2, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Hirschfield, G.M.; Gershwin, M.E.; Strauss, R.; Mayo, M.J.; Levy, C.; Zou, B.; Johanns, J.; Nnane, I.P.; Dasgupta, B.; Li, K.; et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: A proof-of-concept study. Hepatology 2016, 64, 189–199. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Yang, G.-X.; Liu, C.H.; Johnson, C.R.; Dhaliwal, S.S.; Frank, D.; Levy, C.; Peters, M.G.; Vierling, J.M.; Gershwin, M.E. Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature. J. Autoimmun. 2019, 101, 26–34. [Google Scholar] [CrossRef]
- Gordon, S.C.; Trudeau, S.; Regev, A.; Uhas, J.M.; Chakladar, S.; Pinto-Correia, A.; Gottlieb, K.; Schlichting, D. Baricitinib and primary biliary cholangitis. J. Transl. Autoimmun. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Tanaka, H.; Yang, G.; Iwakoshi, N.; Knechtle, S.J.; Kawata, K.; Tsuneyama, K.; Leung, P.; Coppel, R.L.; Ansari, A.A.; Joh, T.; et al. Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin. Exp. Immunol. 2013, 174, 364–371. [Google Scholar] [CrossRef]
- Arsenijevic, A.; Harrell, C.R.; Fellabaum, C.; Volarevic, V. Mesenchymal Stem Cells as New Therapeutic Agents for the Treatment of Primary Biliary Cholangitis. Anal. Cell. Pathol. 2017, 2017, 7492836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaifi, M.; Eom, Y.W.; Newsome, P.N.; Baik, S.K. Mesenchymal stromal cell therapy for liver diseases. J. Hepatol. 2018, 68, 1272–1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Li, J.; Liu, H.; Li, Y.; Fu, J.; Sun, Y.; Xu, R.; Lin, H.; Wang, S.; Lv, S.; et al. A pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J. Gastroenterol. Hepatol. 2013, 28, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, Q.; Chen, H.; Wang, K.; Shan, G.-L.; Kong, F.; Yang, Y.-J.; Li, Y.-Z.; Zhang, X.; Dong, F.; et al. Allogeneic Bone Marrow Mesenchymal Stem Cell Transplantation in Patients with UDCA-Resistant Primary Biliary Cirrhosis. Stem Cells Dev. 2014, 23, 2482–2489. [Google Scholar] [CrossRef] [PubMed]
- Lytvyak, E.; Hosamani, I.; Montano-Loza, A.J.; Saxinger, L.; Mason, A.L. Randomized clinical trial: Combination antiretroviral therapy with tenofovir-emtricitabine and lopinavir-ritonavir in patients with primary biliary cholangitis. Can. Liver J. 2019, 2, 31–44. [Google Scholar] [CrossRef]
- Lytvyak, E.; Niazi, M.; Pai, R.; He, D.; Zhang, G.; Hübscher, S.G.; Mason, A.L. Combination antiretroviral therapy improves recurrent primary biliary cholangitis following liver transplantation. Liver Int. 2021, 41, 1879–1883. [Google Scholar] [CrossRef]
- Talwalkar, J.A.; Souto, E.; Jorgensen, R.A.; Lindor, K.D. Natural history of pruritus in primary biliary cirrhosis. Clin. Gastroenterol. Hepatol. 2003, 1, 297–302. [Google Scholar] [CrossRef]
- Hegade, V.; Mells, G.; Lammert, C.; Juran, B.; Lleo, A.; Carbone, M.; Lazaridis, K.; Invernizzi, P.; Kendrick, S.; Sandford, R.; et al. P1152: A Comparative study of pruritus in PBC cohorts from UK, USA and Italy. J. Hepatol. 2015, 62, S785. [Google Scholar] [CrossRef]
- Mayo, M.J.; Pockros, P.J.; Jones, D.; Bowlus, C.L.; Levy, C.; Patanwala, I.; Bacon, B.; Luketic, V.; Vuppalanchi, R.; Medendorp, S.; et al. A Randomized, Controlled, Phase 2 Study of Maralixibat in the Treatment of Itching Associated with Primary Biliary Cholangitis. Hepatol. Commun. 2019, 3, 365–381. [Google Scholar] [CrossRef] [Green Version]
- Hegade, V.S.; Kendrick, S.; Dobbins, R.L.; Miller, S.R.; Thompson, D.; Richards, D.; Storey, J.; Dukes, G.E.; Corrigan, M.; Elferink, R.P.J.O.; et al. Effect of ileal bile acid transporter inhibitor GSK2330672 on pruritus in primary biliary cholangitis: A double-blind, randomised, placebo-controlled, crossover, phase 2a study. Lancet 2017, 389, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Al-Dury, S.; Wahlström, A.; Wahlin, S.; Langedijk, J.; Elferink, R.O.; Ståhlman, M.; Marschall, H.-U. Pilot study with IBAT inhibitor A4250 for the treatment of cholestatic pruritus in primary biliary cholangitis. Sci. Rep. 2018, 8, 6658. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, A. Development, validation, and evaluation of the PBC-40, a disease specific health related quality of life measure for primary biliary cirrhosis. Gut 2005, 54, 1622–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, E.D. Odevixibat: First Approval. Drugs 2021, 81, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Zenouzi, R.; Weiler-Normann, C.; Lohse, A.W. Is fatigue in primary biliary cirrhosis cured by transplantation? J. Hepatol. 2013, 59, 418–419. [Google Scholar] [CrossRef] [Green Version]
- Hollingsworth, K.G.; Newton, J.L.; Taylor, R.; McDonald, C.; Palmer, J.M.; Blamire, A.M.; Jones, D.E. Pilot Study of Peripheral Muscle Function in Primary Biliary Cirrhosis: Potential Implications for Fatigue Pathogenesis. Clin. Gastroenterol. Hepatol. 2008, 6, 1041–1048. [Google Scholar] [CrossRef]
- Jones, D.E.J.; Newton, J.L. An open study of modafinil for the treatment of daytime somnolence and fatigue in primary biliary cirrhosis. Aliment. Pharmacol. Ther. 2007, 25, 471–476. [Google Scholar] [CrossRef]
- Millar, B.; Richardson, C.; McKay, K.; Pechlivanis, A.; Innes, B.; Kirby, J.; Jones, D.; Holmes, E.; Oakley, F. Obeticholic acid therapy improves cognitive decline in cholestatic liver disease. J. Hepatol. 2017, 66, S364–S365. [Google Scholar] [CrossRef]
- Lee, J.Y.; Danford, C.J.; Trivedi, H.D.; Tapper, E.B.; Patwardhan, V.R.; Bonder, A. Treatment of Fatigue in Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis. Am. J. Dig. Dis. 2019, 64, 2338–2350. [Google Scholar] [CrossRef]
- Bertolini, A.; Fiorotto, R.; Strazzabosco, M. Bile acids and their receptors: Modulators and therapeutic targets in liver inflammation. Semin. Immunopathol. 2022, 44, 547–564. [Google Scholar] [CrossRef]
- Mayo, M.J. Mechanisms and molecules: What are the treatment targets for primary biliary cholangitis? Hepatology 2022, 76, 518–531. [Google Scholar] [CrossRef]
- Gochanour, E.M.; Kowdley, K.V. Investigational drugs in early phase development for primary biliary cholangitis. Expert Opin. Investig. Drugs 2021, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
Agent | Study Design | Aim/Outcome | Nr. pts | Phase | Duration | NCT nr. |
---|---|---|---|---|---|---|
PPAR agonists | ||||||
BEZA | RCT | Utility of BEZA as add-on therapy/complete biochemical response | 34 | 3 | 12 m | NCT02937012 |
FENO | RCT | Clinical efficacy of FENO + UDCA/amelioration of ALP | 72 | 1–2 | 12 m | NCT02965911 |
FENO | OL | Utility of FENO + UDCA/complete biochemical response | 200 | 3 | 44 w | NCT02823353 |
Seladelpar | OL | Long-term safety and tolerability of seladelpar/measures of adverse events, death | 500 | 3 | 60 m | NCT03301506 |
Seladelpar | RCT | Safety and effect of 2 seladelpar regimens on cholestasis/percentage of participants to composite endpoint | 240 | 3 | 52 w | NCT03602560 |
BEZA | observational | Influence of BEZA on macrophage activation markers and fibrosis/sCD163 levels | 100 | 3 | 36 m | NCT04514965 |
Seladelpar | RCT | Effect of seladelpar on cholestasis/composite endpoint of ALP and total bilirubin | 180 | 3 | 12 m | NCT04620733 |
Seladelpar | OL | Effect of hepatic impairment on the pharmacokinetics of seladelpar/pharmacokinetic measures | 24 | 1 | 17 w | NCT04950764 |
Saroglitazar Mg | RCT | Safety, tolerability, and efficacy of saroglitazar/improvement in ALP levels | 36 | 2 | 16 w | NCT03112681 |
Saroglitazar Mg (EPICS-III) | RCT | Efficacy and safety of saroglitazas/ biochemical response on the composite endpoint of ALP and total bilirubin | 192 | 2 b–3 | 52 w | NCT05133336 |
FXR agonists + PPAR agonists | ||||||
OCA + BEZA | RCT | Effect of OCA + BEZA/change in ALP | 75 | 2 | 12 w | NCT04594694 |
OCA + BEZA | RCT | Effect of BEZA alone or in combination with OCA/change in ALP | 60 | 2 | 12 w | NCT05239468 |
FXR Agonists | ||||||
EDP-305 | RCT | Safety, tolerability, and efficacy of EDP-305/percentage of participants with at least 20% reduction in ALP | 119 | 2 | 12 w | NCT03394924 |
Cilofexor | RCT | Safety and tolerability of cilofexor/percentage of adverse events | 71 | 2 | 12 w + 30 d | NCT02943447 |
Immunomodulants | ||||||
Baricitinib | RCT | Safety and efficacy of baricitinib/change in ALP | 52 | 2 | 12 w | NCT03742973 |
MSCs transplantation | RCT | Safety and efficacy of MSC/change in ALP | 14 | 1–2 | 12 m | NCT03668145 |
MSCs transplantation | RCT | Safety and efficacy of UC-MSC/change in ALP | 100 | 1–2 | 12 w | NCT01662973 |
CNP-104 nanoparticle Incapsulating PDC-E2 | RCT | Safety, tolerability, pharmacodynamics of CNP-104 nanoparticle/frequency of adverse events, changes in ALP | 40 | 2 | 12 d + 20 m | NCT05104853 |
Antiretroviral therapy | ||||||
Tenofovir, raltegravir | RCT | Efficacy of antiretroviral therapy/change in ALP | 60 | 2 | 24 m | NCT03954327 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floreani, A.; Gabbia, D.; De Martin, S. Update on the Pharmacological Treatment of Primary Biliary Cholangitis. Biomedicines 2022, 10, 2033. https://doi.org/10.3390/biomedicines10082033
Floreani A, Gabbia D, De Martin S. Update on the Pharmacological Treatment of Primary Biliary Cholangitis. Biomedicines. 2022; 10(8):2033. https://doi.org/10.3390/biomedicines10082033
Chicago/Turabian StyleFloreani, Annarosa, Daniela Gabbia, and Sara De Martin. 2022. "Update on the Pharmacological Treatment of Primary Biliary Cholangitis" Biomedicines 10, no. 8: 2033. https://doi.org/10.3390/biomedicines10082033
APA StyleFloreani, A., Gabbia, D., & De Martin, S. (2022). Update on the Pharmacological Treatment of Primary Biliary Cholangitis. Biomedicines, 10(8), 2033. https://doi.org/10.3390/biomedicines10082033