Who Should Not Be Surveilled for HCC Development after Successful Therapy with DAAS in Advanced Chronic Hepatitis C? Results of a Long-Term Prospective Study
Abstract
:1. Lay Summary
2. Introduction
3. Patients and Methods
- (1)
- Group 1: patients with LSM ≥ 9.5 ≤ 14.5 kPa and FIB-4 < 3.25 and APRI < 1.5
- (2)
- Group 2: patients with LSM ≥ 9.5 ≤ 14.5 kPa and FIB-4 ≥ 3.25 or APRI ≥ 1.5
- (3)
- Group 3: patients with LSM > 14.5 kPa or clinical/biochemical/US signs of cirrhosis and FIB-4 < 3.25 and APRI < 1.5
- (4)
- Group 4: patients with LSM > 14.5 kPa or clinical/biochemical/US signs of cirrhosis and FIB-4 ≥ 3.25 or APRI ≥ 1.5
Statistical Analysis
4. Results
Impact of Change in FIB-4/APRI on HCC Risk
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Ioannou, G.N. HCC surveillance after SVR in patients with F3/F4 fibrosis. J. Hepatol. 2021, 74, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Ghany, M.G.; Morgan, T.R. Panel A-IHCG. Hepatitis C guidance 2019 update: American Association for the Study of Liver Diseases-Infectious Diseases Society of America recommendations for testing, managing and treating hepatitis C virus infection. Hepatology 2020, 71, 686–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the study of the Liver. EASL recommendations on treatment of Hepatitis C. Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Clinical practice guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Sanchez-Azofra, M.; Fernandez, I.; Garcia-Buey, M.L.; Dominguez-Dominguez, L.; Fernandez-Rodriguez, C.M.; Mancebo, A.; Bonet, L.; Ryan, P.; Gea, F.; Díaz-Sánchez, A.; et al. Hepatocellular Carcinoma risk in hepatitis C stage-3 fibrosis after sustained virological response with direct-acting antivirals. Liver Int. 2021, 41, 2885–2891. [Google Scholar] [CrossRef] [PubMed]
- Negro, F. Residual risk of liver disease after hepatitis C virus eradication. J. Hepatol. 2021, 74, 952–963. [Google Scholar] [CrossRef]
- Ahumada, A.; Rayon, L.; Uson, C.; Banares, R.; Alonso Lopez, S. Hepatocellular Carcinoma risk after viral response in hepatitis C virus-advanced fibrosis: Who to screen and for how long? World J. Gastroenterol. 2021, 27, 6737–6749. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Degasperi, E.; Lampertico, P. Predicting Hepatocellular Carcinoma risk in patients with chronic HCV infection and a sustained virological response to direct-acting antivirals. J. Hepatocell. Carcinoma 2021, 8, 713–739. [Google Scholar] [CrossRef]
- Azzi, J.; Dorival, C.; Cagnot, C.; Fontaine, H.; Lusivika-Nzinga, C.; Leroy, V.; De Ledinghen, V.; Tran, A.; Zoulim, F.; Alric, L.; et al. Prediction of Hepatocellular Carcinoma in hepatitis C patients with advanced fibrosis after sustained virologic response. Clin. Res. Hepatol. Gastroenterol. 2022, 46, 101923. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Aseh, S.M.; Cao, Y.; Li, L.; El-Serag, H.B. Long-term risk of Hepatocellular Carcinoma in HCV patients treated with direct acting antiviral agents. Hepatology 2020, 71, 44–55. [Google Scholar] [CrossRef]
- Semmler, G.; Meyer, E.L.; Kozbial, K.; Schwabl, P.; Hametner-Schreil, S.; Zanetto, A.; Bauer, D.; Chromy, D.; Simbrunner, B.; Scheiner, B.; et al. HCC risk stratification after cure of hepatitis C in patients with compensated advanced chronic liver disease. J. Hepatol. 2022, 76, 812–821. [Google Scholar] [CrossRef] [PubMed]
- METAVIR Cooperative Study Group. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994, 20, 15–20. [Google Scholar] [CrossRef]
- Pawlotsky, J.M.; Aghemo, A.; Back, D.; Dusheiko, G.; Forns, X.; Puoti, M.; Sarrazin, C. EASL recommendations on treatment of Hepatitis C 2015. J. Hepatol. 2015, 63, 199–236. [Google Scholar]
- EASL-ALEH Clinical Practice Guidelines. Non-invasive tests for evaluation of liver disease severity and prognosis. J. Hepatol. 2015, 63, 237–264. [Google Scholar] [CrossRef] [Green Version]
- Tsochatzis, E.A.; Gurusamy, K.S.; Ntaoula, S.; Cholongitas, E.; Davidson, B.R.; Burroughs, A.K. Elastography for the diagnosis of severity of fibrosis in chronic liver disease: A meta-analysis of diagnostic accuracy. J. Hepatol. 2011, 54, 650–659. [Google Scholar] [CrossRef]
- Gaia, S.; Campion, D.; Evangelista, A.; Spandre, M.; Cosso, L.; Brunello, F.; Ciccone, G.; Bugianesi, E.; Rizzetto, M. Non-invasive score system for fibrosis in chronic hepatitis: Proposal for a model based on biochemical, FibroScan and ultrasound data. Liver Int. 2015, 35, 2027–2035. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The fatty liver index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomaset, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV co-infection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Wai, C.T.; Greenson, J.K.; Fontana, R.J.; Kalbfleisch, J.D.; Marrero, J.A.; Conjeevaram, H.S.; Lok, A.S.-F. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 2003, 38, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Chou, R.; Wasson, N. Blood tests to diagnose fibrosis or cirrhosis in patients with chronic hepatitis C virus infection: A systematic review. Ann. Intern. Med. 2013, 158, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Poynard, T.; McHutchison, J.; Manns, M.; Trepo, C.; Lindsay, K.; Goodman, Z.; Ling, M.; Albrecht, J. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 2002, 122, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- EASL Clinical Practice Guidelines. Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singal, A.G.; Lim, J.K.; Kanwal, F. AGA clinical practice update on interaction between oral direct-acting antivirals for chronic hepatitis C infection and Hepatocellular Carcinoma: Expert review. Gastroenterology 2019, 156, 2149–2157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapper, E.B.; Lok, A.S. Use of Liver Imaging and Biopsy in Clinical Practice. N. Engl. J. Med. 2017, 377, 756–768. [Google Scholar] [CrossRef]
- Myers, R.P.; Pomier-Layrargues, G.; Kirsch, R.; Pollett, A.; Beaton, M.; Levstik, M.; Duarte-Rojo, A.; Wong, D.; Crotty, P.; Elkashab, M. Discordance in fibrosis staging between liver biopsy and transient elastography using the Fibroscan XL probe. J. Hepatol. 2012, 56, 564–570. [Google Scholar] [CrossRef]
- Carrat, F.; Fontaine, H.; Dorival, C.; Simony, M.; Diallo, A.; Hezode, C.; De Ledinghen, V.; Larrey, D.; Haour, G.; Bronowicki, J.-P.; et al. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: A prospective cohort study. Lancet 2019, 393, 1453–1464. [Google Scholar] [CrossRef]
- Pons, M.; Rodriguez-Tajes, S.; Esteban, J.I.; Marino, Z.; Vargas, V.; Lens, S.; Buti, M.; Augustin, S.; Forns, X.; Mínguez, B.; et al. Non-invasive prediction of liver-related events in patients with HCV-associated compensated advanced chronic liver disease after oral antivirals. J. Hepatol. 2020, 72, 472–480. [Google Scholar] [CrossRef]
- Kozbial, K.; Moser, S.; Al-Zoairy, R.; Schwarzer, R.; Datz, C.; Stauber, R.; Laferl, H.; Strasser, M.; Beinhardt, S.; Stättermayer, A.F.; et al. Follow-up of sustained virological responders with hepatitis C and advanced liver disease after interferon/ribavirin-free treatment. Liver Int. 2018, 38, 1028–1035. [Google Scholar] [CrossRef]
- Romano, A.; Angeli, P.; Piovesan, S.; Noventa, F.; Anastassopoulos, G.; Chemello, L.; Cavalletto, L.; Gambato, M.; Russo, F.P.; Burra, P.; et al. Newly diagnosed Hepatocellular Carcinoma in patients with advanced hepatitis C treated with DAAs: A prospective population study. J. Hepatol. 2018, 69, 345–352. [Google Scholar] [CrossRef]
- Calvaruso, V.; Cabibbo, G.; Cacciola, I.; Petta, S.; Madonia, S.; Bellia, A.; Tinè, F.; Distefano, M.; Licata, A.; Giannitrapani, L.; et al. Incidence of hepatocellular carcinmoma in patients with HCV-associated cirrhosis treated with direct-acting antiviral agents. Gastroenterology 2018, 155, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Marino, Z.; Darnell, A.; Lens, S.; Sapena, V.; Diaz, A.; Belmonte, E.; Perellò, C.; Calleja, J.L.; Varela, M.; Rodriguez, M.; et al. Time association between hepatitis C therapy and Hepatocellular Carcinoma emergence in cirrhosis: Relevance of non-characterized nodules. J. Hepatol. 2019, 70, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, E.; Furusyo, N.; Nomura, H.; Dohmen, K.; Higashi, N.; Takahashi, K.; Kawano, A.; Azuma, K.; Satoh, T.; Nakamuta, M.; et al. Short-term risk of Hepatocellular Carcinoma after hepatitis C virus eradication following direct-acting anti-viral treatment. Aliment. Pharmacol. Ther. 2018, 47, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nahon, P.; Layese, R.; Bourcier, V.; Cagnot, C.; Marcellin, P.; Guyader, D.; Pol, S.; Larrey, D.; De Lédinghen, V.; Ouzan, D.; et al. Incidence of Hepatocellular Carcinoma after direct antiviral therapy for HCV in patients with cirrhosis included in surveillance programs. Gastroenterology 2018, 155, 1436–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwal, F.; Kramer, J.; Asch, S.M.; Chayanupatkul, M.; Cao, Y.; El-Serag, H.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents. Gastroenterology 2017, 153, 996–1005. [Google Scholar] [CrossRef] [Green Version]
- Mecci, A.J.; Kemos, P.; Leen, C.; Lawson, A.; Richardson, P.; Khakoo, S.I.; Agarwal, K.; Mutimer, D.; Rosenberg, W.M.; Foster, G.R.; et al. The association between Hepatocellular Carcinoma and direct-acting anti-viral treatment in patients with decompensated cirrhosis. Aliment. Pharmacol. Ther. 2019, 50, 204–214. [Google Scholar] [CrossRef]
- Singer, A.W.; Reddy, K.R.; Telep, L.E.; Osinusi, A.O.; Brainard, D.M.; Buti, M.; Chokkalingam, A.P. Direct-acting antiviral treatment for hepatitis C virus infection and risk of incident liver cancer: A retrospective cohort study. Aliment. Pharmacol. Ther. 2018, 47, 1278–1287. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, S.; Aleksandrova, K.; Pischon, T.; Fedirko, V.; Jenab, M.; Trepo, E.; Boffetta, P.; Dahm, C.; Overvad, K.; Tjonneland, A.; et al. Abdominal obesity, weight gain during adulthood and risk of liver and biliary tract cancer in an European cohort. Int. J. Cancer 2013, 132, 645–657. [Google Scholar] [CrossRef]
- Ciancio, A.; Ribaldone, D.G.; Dotta, A.; Giordanino, C.; Sacco, M.; Fagoonee, S.; Pellicano, R.; Saracco, G.M. Long-term follow-up of diabetic and non diabetic patients with chronic hepatitis c successfully treated with direct acting antiviral agents. Liver Int. 2021, 41, 276–287. [Google Scholar] [CrossRef]
- Cucchetti, A.; Cescon, M.; Erroi, V.; Pinna, A.D. Cost-effectiveness of liver cancer screening. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 961–972. [Google Scholar] [CrossRef]
- Farhang Zangneh, H.; Wong, W.W.L.; Sander, B.; Bell, C.M.; Mumtaz, K.; Kowgier, M.; van der Meer, A.J.; Cleary, S.P.; Janssen, H.L.A.; Chan, K.K.W.; et al. Cost-effectiveness of Hepatocellular Carcinoma surveillance after a sustained virologic response to therapy in patients with hepatitis C virus infection and advanced fibrosis. Clin. Gastroenterol. Hepatol. 2019, 17, 1840–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, N.; Singal, A.G.; King, L.Y.; Andersson, K.L.; Fuchs, B.C.; Besa, C.; Taouli, B.; Chung, R.T.; Hoshida, Y. Cost-effectiveness of risk score-stratified Hepatocellular Carcinoma screening in patients with cirrhosis. Clin. Transl. Gastroenterol. 2017, 8, e101. [Google Scholar] [CrossRef]
- Mueller, P.P.; Chen, Q.; Ayer, T.; Nemutlu, G.S.; Hajjar, A.; Bethea, E.D.; Peters, M.L.B.; Lee, B.P.; Janjua, N.Z.; Kanwal, F.; et al. Duration and cost-effectiveness of Hepatocellular Carcinoma surveillance in hepatitis C patients after viral eradication. J. Hepatol. 2022, 77, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Troshina, G.; Santaniello, U.; Rosati, G.; Bombaci, F.; Birolo, G.; Nicolosi, A.; Saracco, G.M.; Ciancio, A. Long-term Hepatocellular Carcinoma development and predictive ability of non-invasive scoring systems in patients with HCV-related cirrhosis treated with direct-acting antivirals. Cancers 2022, 14, 828. [Google Scholar] [CrossRef] [PubMed]
- Casadei Gardini, A.; Foschi, F.G.; Conti, F.; Petracci, E.; Vukotic, R.; Marisi, G.; Buonfiglioli, F.; Vitale, G.; Ravaioli, F.; Gitto, S.; et al. Immune inflammation indicators and ALBI score to predict liver cancer in HCV-patients treated with direct-acting antivirals. Dig. Liver Dis. 2019, 51, 681–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, K.; Wakabayashi, H.; Nakayama, H.; Suzuki, T.; Kuroda, M.; Yoshida, N.; Tojo, J.; Kogure, A.; Rai, T.; Saito, H.; et al. Factors associated with Hepatocellular Carcinoma occurrence after HCV eradication in patients without cirrhosis or with compensated cirrhosis. PLoS ONE 2020, 15, e0243473. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogawa, E.; Huang, C.F.; Toyoda, H.; Jun, D.W.; Tseng, C.H.; Hsu, Y.-C.; Enomoto, M.; Takahashi, H.; Furusyo, N.; et al. HCC risk post-SVR with DAAs in East Asians: Findings from the REAL-C cohort. Hepatol. Int. 2020, 14, 1023–1033. [Google Scholar] [CrossRef]
- Van der Meer, A.J.; Feld, J.J.; Hofer, H.; Almasio, P.L.; Calvaruso, V.; Fernandez-Rodriguez, C.M.; Aleman, S.; Ganne-Carrié, N.; D’Ambrosio, R.; Pol, S.; et al. Risk of cirrhosis-related complications in patients with advanced fibrosis following hepatitis C virus eradication. J. Hepatol. 2017, 66, 485–493. [Google Scholar] [CrossRef]
Characteristics | Group 1 n = 324 (32.4%) | Group 2 n = 133 (13.3%) | Group 3 n = 158 (15.8%) | Group 4 n = 385 (38.5%) | p |
---|---|---|---|---|---|
Age (years), median (IQR) | 56 (50–65) | 68 (60–75) | 53 (48–64) | 65 (55–74) | Group 1 vs. 2/4 = 0.0001 Group 2 vs. 3/4 = 0.002 Group 3 vs. 4 = 0.0001 |
Males, n (%) | 186 (57.4%) | 60 (45.1%) | 112 (70.9%) | 221 (57.4%) | Group 1 vs. 2/3 = 0.002 Group 2 vs. 3/4 = 0.01 Group 3 vs. 4 = 0.003 |
Females, n (%) | 138 (42.6%) | 73 (54.5%) | 46 (29.1%) | 164 (42.6%) | |
Ethnicity | N.S. | ||||
Caucasian, n (%) | 316 (97.5%) | 133 (100%) | 155 (98.1%) | 381 (99%) | |
African, n (%) | 8 (2.5%) | 0 (0%) | 3 (1.9%) | 4 (1%) | |
BMI, median (IQR) | 24.8 (22.6–27.4) | 24.2 (22.1–27.8) | 25 (22.8–28.4) | 24.7 (22.7–27.1) | N.S. |
BMI > 25, n (%) | 153 (47.2%) | 54 (40.6%) | 79 (50%) | 178 (46.2%) | N.S. |
Abnormal waist circumference, n (%) | 178 (54.9%) | 94 (70.6%) | 86 (54.4%) | 253 (65.7%) | Group 1 vs. 2/4 = 0.002 Group 2 vs. 3 = 0.005 Group 3 vs. 4 = 0.01 |
Obesity, n (%) | 35 (10.8%) | 18 (13.5%) | 19 (12.0%) | 38 (9.9%) | N.S. |
Duration of infection (years), median (IQR) | 17 (10–23) | 19 (11–24) | 18 (7–24) | 20 (11–24) | Group 1 vs. 4 = 0.01 |
Smoking status | N.S. | ||||
Never, n (%) | 291 (89.8%) | 121 (91%) | 130 (82.3 %) | 345 (89.6%) | |
Past or current, n (%) | 33 (10.2%) | 12 (9%) | 28 (17.7%) | 40 (10.4%) | |
Alcohol intake | N.S. | ||||
No, n (%) | 315 (97.2%) | 132 (99.2%) | 149 (94.3%) | 375 (97.4%) | |
Yes, n (%) | 9 (2.8%) | 1 (0.8%) | 9 (5.7%) | 10 (2.6%) | |
Diabetes, n (%) | 35 (10.8%) | 23 (17.2%) | 35 (22.2%) | 82 (21.3%) | Group 1 vs. 3/4 = 0.0002 |
Metabolic syndrome, n (%) | 47 (14.5%) | 24 (18%) | 32 (20.3%) | 73 (19.0%) | N.S. |
Baseline co-morbidities, n (%) | 67 (20.7%) | 48 (36.1%) | 44 (27.8%) | 115 (29.9%) | Group 1 vs. 2/4 = 0.005 |
Fatty liver index, median (IQR) | 37.2 (21.4–57.9) | 46.2 (26.8–63.8) | 48.8 (28.3–73.0) | 47.6 (30.5–68.0) | Group 1 vs. 2/3/4 = 0.0001 |
Fatty liver index ≥ 60, n (%) | 77 (23.8%) | 37 (27.8%) | 65 (41.1%) | 135 (35.1%) | Group 1 vs. 3/4 = 0.001 Group 2 vs. 3 = 0.02 |
Esophageal varices, n (%) | 0 (0%) | 0 (0%) | 26 (16.5%) | 178 (46.2%) | Group 1/2 vs. 3/4 = 0.0001 |
Characteristics | Group 1 n = 324 (32.4%) | Group 2 n = 133 (13.3%) | Group 3 n = 158 (15.8%) | Group 4 n = 385 (38.5%) | p |
---|---|---|---|---|---|
Liver stiffness (kPa), median (IQR) | 11.6 (10.4–12.8) | 12.6 (11.4–14.0) | 18.2 (16.0–23.7) | 23.4 (16.9–32.4) | Group 1 vs. 2/3/4 = 0.0001 Group 2 vs. 3 = 0.0001 Group 3 vs. 4 = 0.0001 |
FIB-4 score, median (IQR) | 1.8 (1.3–2.4) | 4.5 (3.7–6.1) | 2.1 (1.5–2.7) | 6.2 (4.5–9.3) | Group 1 vs. 2/3/4 = 0.0001 Group 2 vs. 3/4 = 0.003 Group 3 vs. 4= 0.0001 |
APRI score, median (IQR) | 0.3 (0.2–0.4) | 0.7 (0.4–1.1) | 0.3 (0.2–0.4) | 0.9 (0.6–1.4) | Group 1 vs. 2/3/4 = 0.003 Group 2 vs. 3/4 = 0.001 Group 3 vs. 4 = 0.0001 |
MELD score, median (IQR) | 7 (6–7) | 7 (7–9) | 7 (7–8) | 8 (7–10) | Group 1 vs. 2/3/4 = 0.003 Group 2 vs. 3/4 = 0.03 Group 3 vs. 4= 0.0001 |
MELD > 15, n (%) | 0 (0%) | 0 (0%) | 8 (5.1%) | 16 (4.2%) | Group 1 vs. 3/4 = 0.0001 Group 2 vs. 3/4 = 0.0001 |
AST (IU/mL), median (IQR) | 47 (33.5–57.5) | 80 (50–121.8) | 50 (33–68) | 84 (57–117) | Group 1 vs. 2/4 = 0.0001 Group 2 vs. 3 = 0.001 Group 3 vs. 4 = 0.0001 |
ALT (IU/mL), median (IQR) | 64 (41–87) | 79 (51.8–140.5) | 64.5 (38–88) | 72 (51–121) | Group 1 vs. 2/4 = 0.0001 Group 2 vs. 3 = 0.0001 Group 3 vs. 4 = 0.0002 |
GGT (IU/mL), median (IQR) | 31 (28–71) | 60 (37.8–102.3) | 64 (51–105) | 64 (48–103) | Group 1 vs. 2/3/4 = 0.0008 Group 2 vs. 4 = 0.02 |
Platelets count (×103/mm3), median (IQR) | 188 (159–231) | 123 (98–150) | 163 (133–213) | 92 (66–123) | Group 1 vs. 2/3/4 = 0.0002 Group 2 vs. 3/4 = 0.0001 Group 3 vs. 4 = 0.0001 |
Albumin (g/dL), median (IQR) | 4.4 (4.2–4.6) | 4.2 (3.9–4.4) | 4.3 (4–4.5) | 3.9 (3.5–4.2) | Group 1 vs. 2/3/4 = 0.007 Group 2 vs. 3/4 = 0.0007 Group 3 vs. 4 = 0.0001 |
Total cholesterol (mg/dL), median (IQR) | 158 (131–183) | 149 (130–170) | 144 (130 - 165) | 130 (123–156) | Group 1 vs. 2/3/4 = 0.005 Group 2 vs. 4 = 0.0003 Group 3 vs. 4 = 0.0001 |
Triglycerides (mg/dL), median (IQR) | 98 (72–116) | 96 (75–109) | 96 (68–110) | 100 (77–107) | N.S. |
Genotypes, 1 | 236 (72.8%) | 106 (79.7%) | 113 (71.5%) | 290 (75.3%) | N.S. |
2 | 15 (4.6%) | 8 (6.0%) | 6 (3.8%) | 18 (4.7%) | |
3 | 35 (10.8%) | 6 (4.5%) | 15 (9.5%) | 30 (7.8%) | |
4 | 38 (11.8%) | 13 (9.8%) | 24 (15.2%) | 47 (12.2%) |
Hazard Ratio (95% CI) | ||||
---|---|---|---|---|
Characteristic | Univariate | p | Multivariate | p |
Age in years | 1.02 (1.00–1.05) | 0.03 | 1.02 (0.996–1.043) | 0.10 |
Male gender | 1.75 (1.05–2.91) | 0.03 | 1.93 (1.12–3.31) | 0.02 |
Liver stiffness (kPa) | 1.04 (1.03–1.06) | <0.0001 | 1.01 (0.997–1.030) | 0.12 |
Cirrhosis (yes) | 4.02 (2.81–6.43) | 0.0001 | 3.6 (2.42–5.88) | 0.001 |
APRI > 1.5 | 3.42 (2.04–5.75) | <0.0001 | 1.36 (0.76–2.44) | 0.31 |
FIB-4 > 3.25 | 4.34 (2.38–7.99) | <0.0001 | 0.82 (0.35–1.92) | 0.65 |
MELD > 15 | 4.01 (1.61–9.58) | 0.003 | 2.3 (0.88–6.00) | 0.09 |
Esophageal varices (yes) | 4.52 (2.83–7.20) | <0.0001 | 1.76 (1.03–3.01) | 0.04 |
Platelet count < 120.000/mm3 | 4.28 (2.55–7.18) | <0.0001 | 1.54 (0.75–3.18) | 0.24 |
Albumin < 4 g/dL | 1.68 (1.55–1.75) | <0.0001 | 1.37 (0.97–1.61) | 0.06 |
Total cholesterol < 150 mg/dL | 1.01 (1.002–1.16) | 0.04 | 1.06 (0.998–1.014) | 0.17 |
Group 2 (reference Group 1) | 14.49 (1.74–120.34) | 0.01 | 10.95 (1.19–100.51) | 0.03 |
Group 3–4 (reference Group 1) | 38.83 (5.39–279.91) | 0.0003 | 15.8 (2.03–123.44) | 0.009 |
Improved (252 pts) | Not Improved (266 pts) | p | |
---|---|---|---|
Age (years), median [IQR] | 66 [57–74] | 66.5 [56–74] | 0.89 |
Males (n, %) | 124 (49.2%) | 157 (59%) | 0.03 |
Females (n, %) | 128 (50.8%) | 109 (41%) | |
Ethnicity | 0.051 | ||
Caucasian (n, %) | 252 (100%) | 262 (98.5%) | |
African (n, %) | 0 (0%) | 4 (1.5%) | |
BMI, median (IQR) | 24.1 (22.1–26.9) | 25.3 (22.9–27.6) | 0.004 |
BMI > 25, n (%) | 158 (37.3%) | 138 (51.9%) | 0.0009 |
Abnormal waist circumference, n (%) | 177 (70.2%) | 170 (63.9%) | 0.62 |
Obese patients (n, %) | 26 (10.3%) | 30 (11.3%) | 0.73 |
Smoking status | 0.16 | ||
Never (n, %) | 230 (91.3%) | 236 (88.7%) | |
Past or current smokers (n, %) | 22 (8.7%) | 30 (11.3%) | |
Alcohol abuse | 0.32 | ||
No (n, %) | 245 (97.2%) | 262 (98.5%) | |
Yes (n, %) | 7 (2.8%) | 4 (1.5%) | |
Infection duration (years), median (IQR) | 20 (11–24) | 19 (13–24) | 0.76 |
Metabolic syndrome (n, %) | 57 (22.6%) | 40 (15%) | 0.03 |
Baseline co-morbidities (n, %) | 78 (31%) | 85 (32%) | 0.81 |
Liver stiffness (kPa), median (IQR) | 17.3 (14–26.8) | 20.6 (14–30.7) | 0.009 |
FIB-4, median (IQR) | 4.5 (3.8–5.8) | 7.7 (4.0–11.5) | <0.0001 |
APRI, median (IQR) | 0.7 (0.5–1) | 1 (0.7–1.6) | <0.0001 |
MELD > 15, n (%) | 3 (1.2%) | 13 (4.9%) | 0.02 |
Esophageal varices, n (%) | 51 (20.2%) | 127 (47.7%) | <0.0001 |
ALT (IU/L), median (IQR) | 81 (55.5–140) | 70 (48–109) | 0.0004 |
GGT (IU/L), median (IQR) | 62 (45–109) | 61.5 (46–100) | 0.6 |
Platelet count (×103/mm3), median (IQR) | 120 (99–145) | 80.5 (57–106) | <0.0001 |
Albumin (g/dL), median (IQR) | 4.2 (3.9–4.4) | 3.8 (3.4–4.1) | <0.0001 |
Total cholesterol (mg/dL), median (IQR) | 144 (130–165.5) | 130 (120–155) | 0.0004 |
FLI, median (IQR) | 46.6 (28–68.3) | 47.2 (30.3–67.4) | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciancio, A.; Ribaldone, D.G.; Spertino, M.; Risso, A.; Ferrarotti, D.; Caviglia, G.P.; Carucci, P.; Gaia, S.; Rolle, E.; Sacco, M.; et al. Who Should Not Be Surveilled for HCC Development after Successful Therapy with DAAS in Advanced Chronic Hepatitis C? Results of a Long-Term Prospective Study. Biomedicines 2023, 11, 166. https://doi.org/10.3390/biomedicines11010166
Ciancio A, Ribaldone DG, Spertino M, Risso A, Ferrarotti D, Caviglia GP, Carucci P, Gaia S, Rolle E, Sacco M, et al. Who Should Not Be Surveilled for HCC Development after Successful Therapy with DAAS in Advanced Chronic Hepatitis C? Results of a Long-Term Prospective Study. Biomedicines. 2023; 11(1):166. https://doi.org/10.3390/biomedicines11010166
Chicago/Turabian StyleCiancio, Alessia, Davide Giuseppe Ribaldone, Matteo Spertino, Alessandra Risso, Debora Ferrarotti, Gian Paolo Caviglia, Patrizia Carucci, Silvia Gaia, Emanuela Rolle, Marco Sacco, and et al. 2023. "Who Should Not Be Surveilled for HCC Development after Successful Therapy with DAAS in Advanced Chronic Hepatitis C? Results of a Long-Term Prospective Study" Biomedicines 11, no. 1: 166. https://doi.org/10.3390/biomedicines11010166
APA StyleCiancio, A., Ribaldone, D. G., Spertino, M., Risso, A., Ferrarotti, D., Caviglia, G. P., Carucci, P., Gaia, S., Rolle, E., Sacco, M., & Saracco, G. M. (2023). Who Should Not Be Surveilled for HCC Development after Successful Therapy with DAAS in Advanced Chronic Hepatitis C? Results of a Long-Term Prospective Study. Biomedicines, 11(1), 166. https://doi.org/10.3390/biomedicines11010166