Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population and Follow-Up Protocol for HS PDA
2.3. Conservative Management Protocol of HS PDA
2.4. Data Collection
2.5. Statistical Analysis
3. Results
3.1. Prevalence and Natural Course of HS PDA with Conservative Management
3.2. Clinical Characteristics, Fluid and Energy Intake
3.3. Adverse Outcomes
3.4. Adjusted Odds Ratios for Risk of Adverse Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agren, J. The proactive approach to mother-infant dyads at 22–24 weeks of gestation: Perspectives from a Swedish center. Semin. Perinatol. 2022, 46, 151536. [Google Scholar] [CrossRef]
- Soderstrom, F.; Normann, E.; Jonsson, M.; Agren, J. Outcomes of a uniformly active approach to infants born at 22–24 weeks of gestation. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Watkins, P.L.; Dagle, J.M.; Bell, E.F.; Colaizy, T.T. Outcomes at 18 to 22 Months of Corrected Age for Infants Born at 22 to 25 Weeks of Gestation in a Center Practicing Active Management. J. Pediatr. 2020, 217, 52–58.e51. [Google Scholar] [CrossRef] [PubMed]
- Rysavy, M.A.; Mehler, K.; Oberthur, A.; Agren, J.; Kusuda, S.; McNamara, P.J.; Giesinger, R.E.; Kribs, A.; Normann, E.; Carlson, S.J.; et al. An Immature Science: Intensive Care for Infants Born at ≤23 Weeks of Gestation. J. Pediatr. 2021, 233, 16–25.e11. [Google Scholar] [CrossRef] [PubMed]
- Kusuda, S.; Hirano, S.; Nakamura, T. Creating experiences from active treatment towards extremely preterm infants born at less than 25 weeks in Japan. Semin. Perinatol. 2022, 46, 151537. [Google Scholar] [CrossRef] [PubMed]
- Finn, B.P.; Bussmann, N.; Beechinor, T.; Dempsey, E.M. Hemodynamic considerations in preterm infants born at less than 25 weeks gestation. Semin. Perinatol. 2022, 46, 151544. [Google Scholar] [CrossRef]
- Su, B.H.; Lin, H.Y.; Chiu, H.Y.; Tsai, M.L.; Chen, Y.T.; Lu, I.C. Therapeutic strategy of patent ductus arteriosus in extremely preterm infants. Pediatr. Neonatol. 2020, 61, 133–141. [Google Scholar] [CrossRef]
- Clyman, R.I.; Couto, J.; Murphy, G.M. Patent ductus arteriosus: Are current neonatal treatment options better or worse than no treatment at all? Semin. Perinatol. 2012, 36, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Florez, I.D.; Tamayo, M.E.; Mbuagbaw, L.; Vanniyasingam, T.; Veroniki, A.A.; Zea, A.M.; Zhang, Y.; Sadeghirad, B.; Thabane, L. Association of Placebo, Indomethacin, Ibuprofen, and Acetaminophen with Closure of Hemodynamically Significant Patent Ductus Arteriosus in Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2018, 319, 1221–1238. [Google Scholar] [CrossRef]
- Rolland, A.; Shankar-Aguilera, S.; Diomande, D.; Zupan-Simunek, V.; Boileau, P. Natural evolution of patent ductus arteriosus in the extremely preterm infant. Arch. Dis. Child. Fetal Neonatal Ed. 2015, 100, F55–F58. [Google Scholar] [CrossRef]
- Sung, S.I.; Lee, M.H.; Ahn, S.Y.; Chang, Y.S.; Park, W.S. Effect of Nonintervention vs. Oral Ibuprofen in Patent Ductus Arteriosus in Preterm Infants: A Randomized Clinical Trial. JAMA Pediatr. 2020, 174, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.I.; Chang, Y.S.; Ahn, S.Y.; Jo, H.S.; Yang, M.; Park, W.S. Conservative Non-intervention Approach for Hemodynamically Significant Patent Ductus Arteriosus in Extremely Preterm Infants. Front. Pediatr. 2020, 8, 605134. [Google Scholar] [CrossRef]
- Sung, S.I.; Chang, Y.S.; Chun, J.Y.; Yoon, S.A.; Yoo, H.S.; Ahn, S.Y.; Park, W.S. Mandatory Closure Versus Nonintervention for Patent Ductus Arteriosus in Very Preterm Infants. J. Pediatr. 2016, 177, 66–71.e61. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.I.; Chang, Y.S.; Kim, J.; Choi, J.H.; Ahn, S.Y.; Park, W.S. Natural evolution of ductus arteriosus with noninterventional conservative management in extremely preterm infants born at 23–28 weeks of gestation. PLoS ONE 2019, 14, e0212256. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Walsh, M.C.; Kliegman, R.M. Necrotizing enterocolitis: Treatment based on staging criteria. Pediatr. Clin. N. Am. 1986, 33, 179–201. [Google Scholar] [CrossRef]
- International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity revisited. Arch. Ophthalmol. 2005, 123, 991–999. [Google Scholar] [CrossRef]
- Seo, E.S.; Sung, S.I.; Ahn, S.Y.; Chang, Y.S.; Park, W.S. Changes in Serum Creatinine Levels and Natural Evolution of Acute Kidney Injury with Conservative Management of Hemodynamically Significant Patent Ductus Arteriosus in Extremely Preterm Infants at 23–26 Weeks of Gestation. J. Clin. Med. 2020, 9, 699. [Google Scholar] [CrossRef] [Green Version]
- Van Overmeire, B.; Smets, K.; Lecoutere, D.; Van de Broek, H.; Weyler, J.; Degroote, K.; Langhendries, J.P. A comparison of ibuprofen and indomethacin for closure of patent ductus arteriosus. N. Engl. J. Med. 2000, 343, 674–681. [Google Scholar] [CrossRef]
- Koch, J.; Hensley, G.; Roy, L.; Brown, S.; Ramaciotti, C.; Rosenfeld, C.R. Prevalence of spontaneous closure of the ductus arteriosus in neonates at a birth weight of 1000 g or less. Pediatrics 2006, 117, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Nemerofsky, S.L.; Parravicini, E.; Bateman, D.; Kleinman, C.; Polin, R.A.; Lorenz, J.M. The ductus arteriosus rarely requires treatment in infants > 1000 g. Am. J. Perinatol. 2008, 25, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; McNamara, P.J. Patent Ductus Arteriosus-Time for a Definitive Trial. Clin. Perinatol. 2020, 47, 617–639. [Google Scholar] [CrossRef]
- El-Khuffash, A.; James, A.T.; Corcoran, J.D.; Dicker, P.; Franklin, O.; Elsayed, Y.N.; Ting, J.Y.; Sehgal, A.; Malikiwi, A.; Harabor, A.; et al. A Patent Ductus Arteriosus Severity Score Predicts Chronic Lung Disease or Death before Discharge. J. Pediatr. 2015, 167, 1354–1361.e1352. [Google Scholar] [CrossRef]
- Sellmer, A.; Bjerre, J.V.; Schmidt, M.R.; McNamara, P.J.; Hjortdal, V.E.; Host, B.; Bech, B.H.; Henriksen, T.B. Morbidity and mortality in preterm neonates with patent ductus arteriosus on day 3. Arch. Dis. Child. Fetal Neonatal Ed. 2013, 98, F505–F510. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Paul, E.; Menahem, S. Functional echocardiography in staging for ductal disease severity: Role in predicting outcomes. Eur. J. Pediatr. 2013, 172, 179–184. [Google Scholar] [CrossRef] [PubMed]
- McNamara, P.J.; Sehgal, A. Towards rational management of the patent ductus arteriosus: The need for disease staging. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F424–F427. [Google Scholar] [CrossRef]
- Schena, F.; Francescato, G.; Cappelleri, A.; Picciolli, I.; Mayer, A.; Mosca, F.; Fumagalli, M. Association between Hemodynamically Significant Patent Ductus Arteriosus and Bronchopulmonary Dysplasia. J. Pediatr. 2015, 166, 1488–1492. [Google Scholar] [CrossRef]
- Clyman, R.I.; Hills, N.K.; Cambonie, G.; Debillon, T.; Ligi, I.; Gascoin, G.; Patkai, J.; Beuchee, A.; Favrais, G.; Durrmeyer, X.; et al. Patent ductus arteriosus, tracheal ventilation, and the risk of bronchopulmonary dysplasia. Pediatr. Res. 2022, 91, 652–658. [Google Scholar] [CrossRef]
- Stephens, B.E.; Gargus, R.A.; Walden, R.V.; Mance, M.; Nye, J.; McKinley, L.; Tucker, R.; Vohr, B.R. Fluid regimens in the first week of life may increase risk of patent ductus arteriosus in extremely low birth weight infants. J. Perinatol. 2008, 28, 123–128. [Google Scholar] [CrossRef]
- Sharma, R.; Bhandari, V. Fluid balance in early postnatal life: Should we keep the babies dry to prevent bronchopulmonary dysplasia? Pediatr. Res. 2021, 90, 240–241. [Google Scholar] [CrossRef] [PubMed]
- Semberova, J.; Sirc, J.; Miletin, J.; Kucera, J.; Berka, I.; Sebkova, S.; O’Sullivan, S.; Franklin, O.; Stranak, Z. Spontaneous Closure of Patent Ductus Arteriosus in Infants ≤ 1500 g. Pediatrics 2017, 140, e20164258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benitz, W.E. Learning to live with patency of the ductus arteriosus in preterm infants. J. Perinatol. 2011, 31 (Suppl. 1), S42–S48. [Google Scholar] [CrossRef] [Green Version]
- Clyman, R.I.; Liebowitz, M.; Kaempf, J.; Erdeve, O.; Bulbul, A.; Håkansson, S.; Lindqvist, J.; Farooqi, A.; Katheria, A.; Sauberan, J.; et al. PDA-TOLERATE Trial: An Exploratory Randomized Controlled Trial of Treatment of Moderate-to-Large Patent Ductus Arteriosus at 1 Week of Age. J. Pediatr. 2019, 205, 41–48.e46. [Google Scholar] [CrossRef] [PubMed]
22–23 Gestational Weeks | 24–25 Gestational Weeks | Total | ||||||
---|---|---|---|---|---|---|---|---|
HS PDA (−) (n = 5) | HS PDA (+) (n = 16) | Total (n = 21) | HS PDA (−) (n = 13) | HS PDA (+) (n = 43) | Total (n = 56) | HS PDA (−) (n = 18) | HS PDA (+) (n = 59) | |
First diagnosis of PDA | ||||||||
Age at first diagnosis, days | 6.8 (3.3) | 7.3 (3.6) | 7.2 (3.5) | 7.4 (3.9) | 6.4 (1.7) | 6.7 (2.4) | 7.2 (3.6) | 6.7 (2.4) |
PDA size at first diagnosis, mm | 2.1 (0.8) | 2.4 (0.5) | 2.3 (0.6) | 1.9 (0.7) | 2.6 (0.5) a | 2.5 (0.6) | 2.0 (0.7) | 2.5 (0.5) a |
LA/Ao ratio at first diagnosis | 1.4 (0.3) | 1.8 (0.3) | 1.7 (0.3) | 1.2 (0.2) | 1.8 (0.3) a | 1.8 (0.3) | 1.3 (0.2) | 1.8 (0.3) a |
Age at ductal closure, days | 43.2 (16.3) | 66.6 (26.0) | 61.6 (25.7) | 35.9 (26.4) | 69.5 (47.4) a | 58.9 (25.4) | 37.6 (24.0) | 68.8 (43.2) a |
Backup treatment | ||||||||
Oral ibuprofen, n (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 4 (9) | 4(7.1) | 0 (0) | 4 (7) |
Age at first ibuprofen treatment, days | 58.8 (17.2) | |||||||
Device closure, n (%) | 0 (0) | 1 (6) | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (2) |
Age at device closure, months | 4 | |||||||
Surgical ligation, n (%) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0.0) | 0 (0) | 0 (0) | 0 (0) |
PDA open until discharge | ||||||||
n (%) | 1 (20) | 2 (13) | 3 (14) | 0 (0) | 5 (12) | 5 (9) | 1 (6) | 7 (12) |
Spontaneous closure at OPD, n (%) | 1 (20) | 0 (0) | 1 (5) | 0 (0) | 0 (0) | 0 (0) | 1 (6) | 0 (0) |
Age at spontaneous closure, months | 17 | |||||||
Device closure at OPD, n (%) | 0 (0) | 1 (6) | 1 (5) | 0 (0.0) | 1 (2) | 1 (2) | 0 (0.0) | 2 (3) |
Age at device closure, months | 17 | 9 |
22–23 Gestational Weeks | 24–25 Gestational Weeks | Total | ||||||
---|---|---|---|---|---|---|---|---|
HS PDA (−) (n = 5) | HS PDA (+) (n = 16) | Total (n = 21) | HS PDA (−) (n = 13) | HS PDA (+) (n = 43) | Total (n = 56) | HS PDA (−) (n = 18) | HS PDA (+) (n = 59) | |
Baseline variables | ||||||||
GA, weeks | 23.0 ± 0.9 | 23.5 ± 0.3 | 23.4 ± 0.5 | 24.9 ± 0.7 b | 25.0 ± 0.7 b | 25.0 ± 0.7 b | 24.4 ± 1.1 | 24.6 ± 0.9 |
Birth weight, g | 548 ± 79 | 597 ± 84 | 585 ± 83 | 658 ± 155 | 725 ± 143 b | 710 ± 147 b | 627 ± 145 | 691 ± 141 |
Male sex | 2 (40) | 7 (44) | 9 (43) | 8 (62) | 22 (51) | 30 (54) | 10 (56) | 29 (49) |
Apgar score, 1 min | 3.6 ± 1.1 | 5.6 ± 0.8 a | 5.1 ± 1.2 | 4.5 ± 5.0 | 5.0 ± 1.6 | 4.9 ± 1.6 | 4.2 ± 1.6 | 5.2 ± 1.5 a |
Apgar score, 5 min | 7.2 ± 0.8 | 7.6 ± 0.8 | 7.5 ± 0.8 | 7.4 ± 1.1 | 7.6 ± 1.4 | 7.5 ± 1.3 | 7.3 ± 1.0 | 7.6 ± 1.2 |
Cesarean delivery | 3 (60) | 15 (94) | 18 (86) | 10 (77) | 39 (91) | 49 (88) | 13 (72) | 54 (92) a |
SGA | 0 (0) | 2 (13) | 2 (10) | 4 (31) | 7 (16) | 11 (20) | 4 (22) | 9 (15) |
Multiple pregnancy | 3 (60) | 7 (44) | 10 (48) | 5 (39) | 23 (54) | 28 (50) | 8 (44) | 30 (51) |
Antenatal steroid | 5 (100) | 13 (82) | 18 (86) | 12 (92) | 42 (98) | 54 (96) | 17 (94) | 55 (93) |
Maternal hypertension | 0 (0) | 1 (6) | 1 (5) | 2 (15) | 5 (12) | 7 (13) | 2 (11) | 6 (10) |
Oligohydramnios | 1 (20) | 4 (25) | 5 (24) | 3 (23) | 5 (12) | 8 (14) | 4 (22) | 9 (15) |
Chorioamnionitis | 4 (80) | 11 (69) | 15 (71) | 7 (54) | 22 (51) | 29 (52) | 11 (61) | 33 (56) |
PROM | 2 (40) | 5 (31) | 7 (33) | 4 (31) | 8 (19) | 12 (21) | 6 (33) | 13 (22) |
GA 22–23 Weeks | GA 24–25 Weeks | Total | ||||||
---|---|---|---|---|---|---|---|---|
HS PDA (−) (n = 5) | HS PDA (+) (n = 16) | Total (n = 21) | HS PDA (−) (n = 13) | HS PDA (+) (n = 43) | Total (n = 56) | HS PDA (−) (n = 18) | HS PDA (+) (n = 59) | |
Fluid intake | ||||||||
Input at P1 | 76.6 ± 4.1 | 75.0 ± 4.7 | 75.3 ± 4.5 | 71.7 ± 8.3 | 73.5 ± 5.6 | 73.1 ± 6.3 b | 73.0 ± 7.6 | 73.9 ± 5.3 |
Input at P7 | 135.7 ± 5.5 | 135.3 ± 9.6 | 135.4 ± 8.7 | 137.7 ± 9.8 | 125.1 ± 14.2 a,b | 128.0 ± 14.3 b | 137.1 ± 8.7 | 127.9 ± 13.8 a |
Input at P14 | 132.6 ± 13.4 | 128.0 ± 13.6 | 129.2 ±13.3 | 127.2 ± 18.4 | 120.9 ± 14.3 | 122.2 ± 15.2 | 128.9 ± 16.8 | 122.7 ± 14.3 |
Input at P21 | 120.1 ± 22.7 | 128.5 ± 13.1 | 126.3 ± 15.9 | 129.3 ± 10.8 | 122.9 ± 15.4 | 124.2 ± 14.8 | 126.5 ± 15.3 | 124.3 ± 15.0 |
Input at P28 | 124.4 ± 15.5 | 126.7 ±14.4 | 126.1 ± 14.3 | 129.2 ± 12.0 | 122.7 ± 15.2 | 124.1 ± 14.7 | 127.7 ± 12.9 | 123.7 ± 15.0 |
Calorie intake | ||||||||
Calorie at P1 | 37.0 ± 5.3 | 36.1 ± 5.6 | 36.3 ± 5.4 | 36.2 ± 7.0 | 35.5 ± 6.3 | 35.7 ± 6.4 | 36.4 ± 6.4 | 35.7 ± 6.1 |
Calorie at P7 | 61.7 ± 6.7 | 73.2 ± 12.6 | 70.5 ± 12.4 | 85.1 ± 17.1 b | 78.8 ± 12.7 | 80.2 ± 14.0 b | 78.6 ± 18.3 | 77.3 ± 12.8 |
Calorie at P14 | 73.9 ± 19.8 | 84.3 ± 16.4 | 81.7 ± 17.4 | 86.3 ± 18.9 | 83.3 ± 13.3 | 83.9 ± 14.5 | 82.4 ± 19.4 | 83.5 ± 14.0 |
Calorie at P21 | 74.3 ± 12.2 | 93.0 ± 21.8 | 88.1 ± 21.2 | 83.7 ± 14.2 | 91.7 ± 14.5 | 90.0 ± 14.6 | 80.7 ± 13.9 | 92.0 ± 16.4 a |
Calorie at P28 | 84.8 ± 19.1 | 95.6 ± 17.9 | 92.7 ± 18.3 | 89.3 ± 10.5 | 94.3 ± 13.4 | 93.2 ± 12.9 | 87.9 ± 13.3 | 94.6 ± 14.5 |
22–23 Gestational Weeks | 24–25 Gestational Weeks | Total | ||||||
---|---|---|---|---|---|---|---|---|
HS PDA (−) (n = 5) | HS PDA (+) (n = 16) | Total (n = 21) | HS PDA (−) (n = 13) | HS PDA (+) (n = 43) | Total (n = 56) | HS PDA (−) (n = 18) | HS PDA (+) (n = 59) | |
BPD (grade ≥ 2) or death | 3 (60) | 6 (38) | 9 (43) | 6 (46) | 10 (23) | 16 (29) | 9 (50) | 16 (27) |
Death before discharge | 1 (20) | 3 (19) | 4 (19) | 4 (31) | 2 (5) a | 6 (11) | 5 (28) | 5 (9) a |
BPD (grade ≥ 2) | 2/4 (50) | 3/13 (23) | 5/17 (29) | 3/10 (30) | 9/42 (21) | 12/52 (23) | 5/14 (36) | 12/55 (22) |
NEC (stage ≥ IIb) | 2 (40) | 3 (19) | 5 (24) | 3 (23) | 10 (23) | 13 (23) | 5 (28) | 13 (22) |
IVH (grade ≥ III) | 0 (0) | 2 (13) | 2 (10) | 1 (8) | 3 (7) | 4 (7) | 1 (6) | 5 (9) |
ROP (laser treatment) | 2/4 (50) | 6/13 (46) | 8/17 (47) | 3/10 (30) | 11/42 (26) | 14/52 (27) | 5/14 (36) | 17/55 (31) |
AKI (KDIGO stage 3) | 1 (20) | 6 (38) | 7 (33) | 7 (54) | 15 (35) | 15 (35) | 8 (44) | 21 (36) |
22–23 Gestational Weeks | 24–25 Gestational Weeks | Total | ||||
---|---|---|---|---|---|---|
Adjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | Adjusted OR (95% CI) | p-Value | |
Risk of adverse outcomes by presence of HS PDA | ||||||
BPD (grade ≥ 2) or death | 0.22 (0.01–7.89) | 0.41 | 0.38 (0.09–1.61) | 0.19 | 0.37 (0.13–1.10) | 0.08 |
Death before discharge | 0.22 (0.00–16.07) | 0.49 | 0.14 (0.02–1.00) | 0.05 | 0.29 (0.06–1.48) | 0.14 |
BPD (grade ≥ 2) | 0.45 (0.01–22.28) | 0.69 | 0.67 (0.12–3.83) | 0.66 | 0.47 (0.11–1.98) | 0.30 |
NEC (stage ≥ IIb) | 0.46 (0.01–22.86) | 0.70 | 1.27 (0.25–6.43) | 0.77 | 1.11 (0.28–4.38) | 0.89 |
IVH (grade ≥ III) | - | 0.93 (0.07–12.45) | 0.96 | 1.17 (0.11–12.57) | 0.90 | |
ROP (laser treatment) | 2.08 (0.05–82.30) | 0.70 | 0.68 (0.13–3.71) | 0.66 | 0.70 (0.17–2.85) | 0.61 |
AKI (KDIGO stage 3) | - | 0.36 (0.08–1.58) | 0.18 | 0.72 (0.21–2.53) | 0.61 | |
Risk of adverse outcomes by prolonged duration (per week) of HS PDA | ||||||
BPD (grade ≥ 2) or death | 1.11 (0.79–1.58) | 0.55 | 0.95 (0.71–1.28) | 0.74 | 1.01 (0.84–1.23) | 0.88 |
Death before discharge | 0.31 (0.04–2.22) | 0.24 | - | 0.66 (0.40–1.09) | 0.10 | |
BPD (grade ≥ 2) | - | 0.97 (0.72–1.31) | 0.84 | 1.12 (0.91–1.37) | 0.31 | |
NEC (stage ≥ IIb) | 2.81 (0.51–15.44) | 0.24 | 1.00 (0.71–1.39) | 1.00 | 1.06 (0.85–1.32) | 0.62 |
IVH (grade ≥ III) | - | 2.25 (0.97–5.24) | 0.06 | 1.06 (0.81–1.39) | 0.69 | |
ROP (laser treatment) | 1.03 (0.57–1.86) | 0.93 | 1.00 (0.76–1.33) | 0.98 | 1.01 (0.84–1.23) | 0.89 |
AKI (KDIGO stage 3) | 1.05 (0.74–1.49) | 0.79 | 1.03 (0.77–1.37) | 0.87 | 0.98 (0.81–1.18) | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Chang, Y.S.; Ahn, S.Y.; Sung, S.I.; Jo, H.S.; Park, W.S. Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks. Biomedicines 2023, 11, 78. https://doi.org/10.3390/biomedicines11010078
Yang M, Chang YS, Ahn SY, Sung SI, Jo HS, Park WS. Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks. Biomedicines. 2023; 11(1):78. https://doi.org/10.3390/biomedicines11010078
Chicago/Turabian StyleYang, Misun, Yun Sil Chang, So Yoon Ahn, Se In Sung, Heui Seung Jo, and Won Soon Park. 2023. "Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks" Biomedicines 11, no. 1: 78. https://doi.org/10.3390/biomedicines11010078
APA StyleYang, M., Chang, Y. S., Ahn, S. Y., Sung, S. I., Jo, H. S., & Park, W. S. (2023). Conservative Management of Patent Ductus Arteriosus Is Feasible in the Peri-Viable Infants at 22–25 Gestational Weeks. Biomedicines, 11(1), 78. https://doi.org/10.3390/biomedicines11010078