Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Nanoparticles
2.3. In Vitro Characterization
2.3.1. Zeta Size, Zeta Potential, and Polydispersity Index
2.3.2. Encapsulation Efficiency
2.3.3. FT-IR Analysis
2.3.4. SEM Imaging
2.4. In Vivo Study
2.4.1. Experimental Animals
2.4.2. Experimental Design
- GI—Normal group: normal rats received 3 mL/kg b.w. of saline solution (i.p.).
- GII—Model group: untreated arthritic rats were administered 3 mL/kg b.w. of saline solution (i.p.).
- GIII—Cur group: arthritic rats treated with 15 mg/kg b.w. of curcumin (i.p.).
- GIV—Mlx group: arthritic rats treated with 4 mg/kg b.w. of meloxicam (i.p.).
- GV—Cur/Mlx group: arthritic rats treated with 15 mg/kg b.w. of curcumin plus 4 mg/kg b.w. of meloxicam (i.p.).
- GVI—nCur group: arthritic rats treated with PLGA nanoparticles encapsulating 15 mg/kg b.w. of curcumin (i.p.).
- GVII—nMlx group: arthritic rats treated with PLGA nanoparticles encapsulating 4 mg/kg b.w. of meloxicam (i.p.).
- GVIII—nCur/Mlx group: arthritic rats treated with PLGA nanoparticles co-encapsulating 15 mg/kg b.w. of curcumin plus 4 mg/kg b.w. of meloxicam (i.p.).
2.4.3. Assessment of Polyarthritis
2.4.4. Blood and Organ Sampling
2.4.5. Hematological Analysis
2.4.6. Biochemical Analysis
2.4.7. Gene Expression Analysis
2.4.8. Radiological Examination
2.4.9. Histological Examination
2.5. Statistical Analysis
3. Results
3.1. Characterization of Nanoparticles
3.1.1. Zeta Size, Zeta Potential, Polydispersity Index, and Encapsulation Efficiency
3.1.2. FT-IR and SEM Characterization
3.2. Effect on Paw Swelling and Arthritic Score
3.3. Effect on Body Weight and Immune Organ Index
3.4. Effect on Hematological Parameters
3.5. Effect on Serum Inflammatory Markers
3.6. Effect on Oxidative Stress Parameters
3.7. Effect on Inflammatory Cytokines and OPG/RANKL Expressions
3.8. Gross and Radiological Findings
3.9. Histopathological Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gravallese, E.M.; Firestein, G.S. Rheumatoid arthritis—Common origins, divergent mechanisms. N. Engl. J. Med. 2023, 388, 529–542. [Google Scholar] [CrossRef]
- Dijkshoorn, B.; Raadsen, R.; Nurmohamed, M.T. Cardiovascular disease risk in rheumatoid arthritis anno 2022. J. Clin. Med. 2022, 11, 2704. [Google Scholar] [CrossRef]
- Finckh, A.; Gilbert, B.; Hodkinson, B.; Bae, S.C.; Thomas, R.; Deane, K.D.; Alpizar-Rodriguez, D.; Lauper, K. Global epidemiology of rheumatoid arthritis. Nat. Rev. Rheumatol. 2022, 18, 591–602. [Google Scholar] [CrossRef]
- Alivernini, S.; Firestein, G.S.; McInnes, I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022, 55, 2255–2270. [Google Scholar] [CrossRef]
- Colquhoun, M.; Gulati, M.; Farah, Z.; Mouyis, M. Clinical features of rheumatoid arthritis. Medicine 2022, 50, 138–142. [Google Scholar] [CrossRef]
- Wu, D.; Luo, Y.; Li, T.; Zhao, X.; Lv, T.; Fang, G.; Ou, P.; Li, H.; Luo, X.; Huang, A.; et al. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front. Immunol. 2022, 13, 1051082. [Google Scholar] [CrossRef]
- Ding, Q.; Hu, W.; Wang, R.; Yang, Q.; Zhu, M.; Li, M.; Cai, J.; Rose, P.; Mao, J.; Zhu, Y.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy. Signal Transduct. Target. Ther. 2023, 8, 68. [Google Scholar] [CrossRef]
- Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G.A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. Rheumatoid arthritis and oxidative stress. Cell. Mol. Biol. 2022, 68, 174–184. [Google Scholar] [CrossRef]
- Mushtaq, A.; Aslam, B.; Muhammad, F.; Khan, J.A. Hepatoprotective activity of Nigella sativa and Piper nigrum against concanavalin A-induced acute liver injury in mouse model. Pak. Vet. J. 2021, 41, 78–84. [Google Scholar] [CrossRef]
- Mrid, R.B.; Bouchmaa, N.; Ainani, H.; El Fatimy, R.; Malka, G.; Mazini, L. Anti-rheumatoid drugs advancements: New insights into the molecular treatment of rheumatoid arthritis. Biomed. Pharmacother. 2022, 151, 113126. [Google Scholar]
- Balendran, T.; Lim, K.; Hamilton, J.A.; Achuthan, A.A. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front. Immunol. 2023, 14, 1196931. [Google Scholar] [CrossRef]
- Berkowitz, R.D.; Mack, R.J.; McCallum, S.W. Meloxicam for intravenous use: Review of its clinical efficacy and safety for management of postoperative pain. Pain. Manag. 2021, 11, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Pawlukianiec, C.; Gryciuk, M.E.; Mil, K.M.; Żendzian-Piotrowska, M.; Zalewska, A.; Maciejczyk, M. A new insight into meloxicam: Assessment of antioxidant and anti-glycating activity in in vitro studies. Pharmaceuticals 2020, 13, 240. [Google Scholar] [CrossRef] [PubMed]
- Burukoglu, D.; Baycu, C.; Taplamacioglu, F.; Sahin, E.; Bektur, E. Effects of nonsteroidal anti-inflammatory meloxicam on stomach, kidney, and liver of rats. Toxicol. Ind. Health 2016, 32, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Dwicandra, N.M.O.; Jaya, M.K.A. The effect of diacerein and meloxicam combination versus meloxicam alone on physical function in patients with knee osteoarthritis. Asian J. Pharm. Clin. Res. 2018, 11, 325–329. [Google Scholar] [CrossRef]
- Fuloria, S.; Mehta, J.; Chandel, A.; Sekar, M.; Rani, N.N.I.M.; Begum, M.Y.; Subramaniyan, V.; Chidambaram, K.; Thangavelu, L.; Nordin, R.; et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022, 13, 820806. [Google Scholar] [CrossRef]
- Agu, C.I.; Uzoma, C.; Okelola, O.E.; Olabode, A.D.; Ebiaku, V. Influence of supplemental levels of turmeric meal (Curcuma longa) on the growth performance and serum biochemistry indices of finisher broiler birds (A case study in Ishiagu, Ivo, LGA of Ebonyi state, Nigeria). Int. J. Agric. Biosci. 2021, 10, 229–232. [Google Scholar]
- Dehzad, M.J.; Ghalandari, H.; Nouri, M.; Askarpour, M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlled trials. Cytokine 2023, 164, 156144. [Google Scholar] [CrossRef]
- Balakumar, P.; Alqahtani, T.; Alqahtani, A.; Lakshmiraj, R.S.; Singh, G.; Rupeshkumar, M.; Thangathirupathi, A.; Sundram, K. A unifying perspective in blunting the limited oral bioavailability of curcumin: A succinct look. Curr. Drug Metab. 2022, 23, 897–904. [Google Scholar] [CrossRef]
- Ambrus, R.; Alshweiat, A.; Szabó-Révész, P.; Bartos, C.; Csóka, I. Smartcrystals for efficient dissolution of poorly water-soluble meloxicam. Pharmaceutics 2022, 14, 245. [Google Scholar] [CrossRef]
- Nieto González, N.; Obinu, A.; Rassu, G.; Giunchedi, P.; Gavini, E. Polymeric and lipid nanoparticles: Which applications in pediatrics? Pharmaceutics 2021, 13, 670. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Joy, R.; George, J.; John, F. Brief outlook on polymeric nanoparticles, micelles, niosomes, hydrogels and liposomes: Preparative methods and action. ChemistrySelect 2022, 7, 202104045. [Google Scholar] [CrossRef]
- Muddineti, O.S.; Omri, A. Current trends in PLGA based long-acting injectable products: The industry perspective. Expert. Opin. Drug Deliv. 2022, 19, 559–576. [Google Scholar] [CrossRef]
- Sarkar, C.; Kommineni, N.; Butreddy, A.; Kumar, R.; Bunekar, N.; Gugulothu, K. PLGA nanoparticles in drug delivery. Nanoeng. Biomater. 2022, 7, 217–260. [Google Scholar]
- Choudhary, N.; Bhatt, L.K.; Prabhavalkar, K.S. Experimental animal models for rheumatoid arthritis. Immunopharmacol. Immunotoxicol. 2018, 40, 193–200. [Google Scholar] [CrossRef]
- Aslam, B.; Hussain, A.; Faisal, M.N.; Bari, M.U.; Kousar, S.; Mushtaq, A.; Umer, A. Physicochemical characterization and preliminary in vitro antioxidant activities of curcumin and meloxicam co-encapsulated PLGA nanoparticles. Pak. J. Pharm. Sci. 2023, 36, 345–352. [Google Scholar]
- Aslam, B.; Hussain, A.; Bari, M.U.; Faisal, M.N.; Sindhu, Z.U.; Alonaizan, R.; Al-Akeel, R.K.; Naz, S.; Khan, R.U. Anti-pyretic, analgesic, and anti-Inflammatory activities of meloxicam and curcumin co-encapsulated PLGA nanoparticles in acute experimental models. Metabolites 2023, 13, 935. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.B.; Liu, P.; Shao, F.M.; Miao, Q.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int. J. Clin. Exp. Med. 2015, 8, 19670. [Google Scholar]
- Aziz, S.; Abdullah, S.; Anwar, H.; Latif, F.; Mustfa, W. Effect of engineered nickel oxide nanoparticles on antioxidant enzymes in freshwater fish, Labeo rohita. Pak. Vet. J. 2021, 41, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Shnawa, B.H.; Jalil, P.J.; Aspoukeh, P.; Mohammed, D.A.; Biro, D.M. Protoscolicidal and biocompatibility properties of biologically fabricated zinc oxide nanoparticles using Ziziphus spina-christi leaves. Pak. Vet. J. 2022, 42, 517–525. [Google Scholar]
- Shaaban, H.H.; Hozayen, W.G.; Khaliefa, A.K.; El-Kenawy, A.E.; Ali, T.M.; Ahmed, O.M. Diosmin and trolox have anti-arthritic, anti-inflammatory and antioxidant potencies in complete Freund’s adjuvant-induced arthritic male Wistar rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants 2022, 11, 1721. [Google Scholar] [CrossRef] [PubMed]
- Ahmadabady, S.; Beheshti, F.; Shahidpour, F.; Khordad, E.; Hosseini, M. A protective effect of curcumin on cardiovascular oxidative stress indicators in systemic inflammation induced by lipopolysaccharide in rats. Biochem. Biophys. Rep. 2021, 25, 100908. [Google Scholar] [CrossRef]
- El-Shitany, N.A.; El-Bastawissy, E.A.; El-desoky, K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int. Immunopharmacol. 2014, 19, 290–299. [Google Scholar] [CrossRef]
- Zhang, R.X.; Fan, A.Y.; Zhou, A.N.; Moudgil, K.D.; Ma, Z.Z.; Lee, D.Y.W.; Fong, H.H.; Berman, B.M.; Lao, L. Extract of the Chinese herbal formula Huo Luo Xiao Ling Dan inhibited adjuvant arthritis in rats. J. Ethnopharmacol. 2009, 121, 366–371. [Google Scholar] [CrossRef]
- Lorente, L.; Rodriguez, S.T.; Sanz, P.; Abreu-González, P.; Díaz, D.; Moreno, A.M.; Borja, E.; Martín, M.M.; Jiménez, A.; Barrera, M.A. Association between pre-transplant serum malondialdehyde levels and survival one year after liver transplantation for hepatocellular carcinoma. Int. J. Mol. Sci. 2016, 17, 500. [Google Scholar] [CrossRef]
- Pervin, M.; Hasnat, M.A.; Lim, J.H.; Lee, Y.M.; Kim, E.O.; Um, B.H.; Lim, B.O. Preventive and therapeutic effects of blueberry (Vaccinium corymbosum) extract against DSS-induced ulcerative colitis by regulation of antioxidant and inflammatory mediators. J. Nutr. Biochem. 2016, 28, 103–113. [Google Scholar] [CrossRef]
- Huang, H.; Chen, F.; Long, R.; Huang, G. The antioxidant activities in vivo of bitter gourd polysaccharide. Int. J. Biol. Macromol. 2020, 145, 141–144. [Google Scholar] [CrossRef]
- Cai, X.; Zhou, H.; Wong, Y.F.; Xie, Y.; Liu, Z.Q.; Jiang, Z.H.; Bian, Z.X.; Xu, H.X.; Liu, L. Suppression of the onset and progression of collagen-induced arthritis in rats by QFGJS, a preparation from an anti-arthritic Chinese herbal formula. J. Ethnopharmacol. 2007, 110, 39–48. [Google Scholar] [CrossRef]
- Samy, A.; Hassan, H.M.A.; Elsherif, H.M.R. Effect of nano zinc oxide and traditional zinc (oxide and sulphate) sources on performance, bone characteristics and physiological parameters of broiler chicks. Int. J. Vet. Sci. 2022, 11, 486–492. [Google Scholar]
- Zhang, Z.C.; Zhang, S.J.; Jin, B.; Wu, Y.; Yang, X.F.; Yu, B.; Xie, Q.M. Ciclamilast ameliorates adjuvant-induced arthritis in a rat model. BioMed. Res. Int. 2015, 2015, 786104. [Google Scholar] [CrossRef]
- El-Dawy, K.; Mohamed, D.; Abdou, Z. Nanoformulations of pentacyclic triterpenoids: Chemoprevention and anticancer. Int. J. Vet. Sci. 2022, 11, 384–391. [Google Scholar]
- Azam, S.E.; Yasmeen, F.; Rashid, M.S.; Latif, M.F. Physical factors affecting the antibacterial activity of Silver (Ag) and Zinc Oxide (ZnO) Nanoparticles (NPs), their application in edible and inedible food packaging, and regulation in food products. Int. J. Agri. Biosci. 2022, 11, 181–193. [Google Scholar]
- Kost, B.; Basko, M.; Bednarek, M.; Socka, M.; Kopka, B.; Łapienis, G.; Biela, T.; Kubisa, P.; Brzeziński, M. The influence of the functional end groups on the properties of polylactide-based materials. Prog. Polym. Sci. 2022, 130, 101556. [Google Scholar] [CrossRef]
- Poon, W.; Zhang, Y.N.; Ouyang, B.; Kingston, B.R.; Wu, J.L.; Wilhelm, S.; Chan, W.C. Elimination pathways of nanoparticles. ACS Nano 2019, 13, 5785–5798. [Google Scholar] [CrossRef]
- Haggag, Y.A.; Abosalha, A.K.; Tambuwala, M.M.; Osman, E.Y.; El-Gizawy, S.A.; Essa, E.A.; Donia, A.A. Polymeric nanoencapsulation of zaleplon into PLGA nanoparticles for enhanced pharmacokinetics and pharmacological activity. Biopharm. Drug Dispos. 2021, 42, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Zhang, B.; Sun, R.; Liu, W.; Zhu, Q.; Zhang, X.; Wang, R.; Chen, C. PLGA-based biodegradable microspheres in drug delivery: Recent advances in research and application. Drug Deliv. 2021, 28, 1397–1418. [Google Scholar] [CrossRef] [PubMed]
- Daneshmand, S.; Golmohammadzadeh, S.; Jaafari, M.R.; Movaffagh, J.; Rezaee, M.; Sahebkar, A.; Malaekeh-Nikouei, B. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J. Cell. Biochem. 2018, 119, 4251–4264. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, D.H.; Abosalha, A.K.; Khattab, M.A.; Aldosari, B.N.; Almurshedi, A.S. A novel sustained anti-inflammatory effect of atorvastatin—Calcium PLGA nanoparticles: In vitro optimization and in vivo evaluation. Pharmaceutics 2021, 13, 1658. [Google Scholar] [CrossRef]
- Khan, M.M.; Madni, A.; Tahir, N.; Parveen, F.; Khan, S.; Jan, N.; Ali, A.; Abdurrahim, M.; Farooq, U.; Khan, M.I. Co-delivery of curcumin and cisplatin to enhance cytotoxicity of cisplatin using lipid-chitosan hybrid nanoparticles. Int. J. Nanomed. 2020, 15, 2207–2217. [Google Scholar] [CrossRef]
- Hussain, A.; Aslam, B.; Muhammad, F.; Faisal, M.N.; Kousar, S.; Mushtaq, A.; Bari, M.U. Anti-arthritic activity of Ricinus communis L. and Withania somnifera L. extracts in adjuvant-induced arthritic rats via modulating inflammatory mediators and subsiding oxidative stress. Iran. J. Basic Med. Sci. 2021, 24, 951–961. [Google Scholar]
- Dekkers, J.S.; Schoones, J.W.; Huizinga, T.W.; Toes, R.E.; Van Der Helm-Van Mil, A.H. Possibilities for preventive treatment in rheumatoid arthritis? Lessons from experimental animal models of arthritis: A systematic literature review and meta-analysis. Ann. Rheum. Dis. 2017, 76, 458–467. [Google Scholar] [CrossRef]
- Holmdahl, R.; Malmström, V.; Burkhardt, H. Autoimmune priming, tissue attack and chronic inflammation—The three stages of rheumatoid arthritis. Eur. J. Immunol. 2014, 44, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
- Totoson, P.; Maguin-Gaté, K.; Nappey, M.; Prati, C.; Wendling, D.; Demougeot, C. Microvascular abnormalities in adjuvant-induced arthritis: Relationship to macrovascular endothelial function and markers of endothelial activation. Arthritis Rheumatol. 2015, 67, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Efthymiou, E.; Grammatikopoulou, M.G.; Gkiouras, K.; Efthymiou, G.; Zafiriou, E.; Goulis, D.G.; Sakkas, L.I.; Bogdanos, D.P. Time to deal with rheumatoid cachexia: Prevalence, diagnostic criteria, treatment effects and evidence for management. Mediterr. J. Rheumatol. 2022, 33, 271. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, H.; Wang, Y.; Chen, S.; Liu, J.; Li, W.; Dou, H.; Hou, W.; Meng, M. Study of the adoptive immunotherapy on rheumatoid arthritis with thymus-derived invariant natural killer T cells. Int. Immunopharmacol. 2019, 67, 427–440. [Google Scholar] [CrossRef]
- Khanfar, E.; Olasz, K.; Gajdócsi, E.; Jia, X.; Berki, T.; Balogh, P.; Boldizsár, F. Splenectomy modulates the immune response but does not prevent joint inflammation in a mouse model of RA. Clin. Exp. Immunol. 2022, 209, 201–214. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Xu, S.Q.; Xu, Y.C.; Li, W.J.; Chen, K.M.; Cai, J.; Li, M. Inflammatory anemia may be an indicator for predicting disease activity and structural damage in Chinese patients with rheumatoid arthritis. Clin. Rheumatol. 2020, 39, 1737–1745. [Google Scholar] [CrossRef]
- Hu, X.X.; Wu, Y.J.; Zhang, J.; Wei, W. T-cells interact with B cells, dendritic cells, and fibroblast-like synoviocytes as hub-like key cells in rheumatoid arthritis. Int. Immunopharmacol. 2019, 70, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Abdelhafiz, D.; Baker, T.; Glascow, D.A.; Abdelhafiz, A. Biomarkers for the diagnosis and treatment of rheumatoid arthritis–a systematic review. Postgrad. Med. 2023, 135, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Lu, C.; Zhang, L.; Zhou, X.; Zou, H. Osteoporosis in patients with rheumatoid arthritis is associated with serum immune regulatory cellular factors. Clin. Rheumatol. 2022, 41, 2685–2693. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.; Lu, X.; Huang, J.; He, M.; Xu, J.; Huang, H.; Chen, Q. Rheumatoid arthritis synovial fibroblasts promote TREM-1 expression in monocytes via COX-2/PGE2 pathway. Arthritis Res. Ther. 2019, 21, 169. [Google Scholar] [CrossRef]
- Al-Shammari, S.K.; Al-Nouri, D.M.; Arzoo, S.; Al-Harbi, L.N. Effect of different nuts oil consumption on morphological features and some biomarkers of inflammation in adjuvant-induced arthritis (AIA) rat model. Appl. Sci. 2023, 13, 3318. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Mehmood, K.; Nabi, F.; Ahmed, S.; Rehman, T.U.; Faheem, M.; AshraF, M.; Tang, Z.; Zhang, H. Role of oxidative stress and antioxidants in thiram-induced tibial dyschondroplasia. Pak. Vet. J. 2021, 41, 1–6. [Google Scholar] [CrossRef]
- Remigante, A.; Morabito, R. Cellular and molecular mechanisms in oxidative stress-related diseases. Int. J. Mol. Sci. 2022, 23, 8017. [Google Scholar] [CrossRef]
- Duan, Z.; Yu, S.; Wang, S.; Deng, H.; Guo, L.; Yang, H.; Xie, H. Protective effects of piperine on ethanol-induced gastric mucosa injury by oxidative stress inhibition. Nutrients 2022, 14, 4744. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Hussain, A.; Sindhu, Z.U.D.; Nigar, S.; Jan, I.U.; Alrefaei, A.F.; Albeshr, M.F.; Tufarelli, V.; Khan, R.U. Polyphenols-rich polyherbal mixture attenuates hepatorenal impairment, dyslipidaemia, oxidative stress and inflammation in alloxan-induced diabetic rats. J. Appl. Anim. Res. 2023, 51, 516–524. [Google Scholar] [CrossRef]
- Koper-Lenkiewicz, O.M.; Sutkowska, K.; Wawrusiewicz-Kurylonek, N.; Kowalewska, E.; Matowicka-Karna, J. Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) single nucleotide polymorphisms in rheumatoid arthritis—A literature review. Int. J. Mol. Sci. 2022, 23, 2106. [Google Scholar] [CrossRef] [PubMed]
- Chae, D.S.; Park, Y.J.; Kim, S.W. Anti-arthritogenic property of interleukin 10-expressing human amniotic MSCs generated by gene editing in collagen-induced arthritis. Int. J. Mol. Sci. 2022, 23, 7913. [Google Scholar] [CrossRef]
- Su, X.; Chen, Y.; Zhan, Q.; Zhu, B.; Chen, L.; Zhao, C.; Yang, J.; Wei, L.; Xu, Z.; Wei, K.; et al. The ratio of Il-6 to Il-4 in synovial fluid of knee or hip performances a noteworthy diagnostic value in prosthetic joint infection. J. Clin. Med. 2022, 11, 6520. [Google Scholar] [CrossRef] [PubMed]
- Gloyer, L.; Golumba-Nagy, V.; Meyer, A.; Yan, S.; Schiller, J.; Breuninger, M.; Jochimsen, D.; Kofler, D.M. Adenosine receptor A2a blockade by caffeine increases IFN–gamma production in Th1 cells from patients with rheumatoid arthritis. Scand. J. Rheumatol. 2022, 51, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Quaresma, T.O.; de Almeida, S.C.L.; da Silva, T.A.; Louzada-Júnior, P.; de Oliveira, R.D.R. Comparative study of the synovial levels of RANKL and OPG in rheumatoid arthritis, spondyloarthritis and osteoarthritis. Adv. Rheumatol. 2023, 63, 13. [Google Scholar] [CrossRef]
- Meng, S.; Jing, L.; Zhang, W.; Wang, F.; Dong, Y.; Dong, D. Research progress on serological indices and their clinical application in rheumatoid arthritis. J. Clin. Lab. Anal. 2022, 36, 24576. [Google Scholar] [CrossRef]
- Versteeg, G.A.; Steunebrink, L.M.M.; Vonkeman, H.E.; Ten Klooster, P.M.; Van Der Bijl, A.E.; Van De Laar, M.A.F.J. Early radiological progression remains associated with long-term joint damage in real-world rheumatoid arthritis patients treated to the target of remission. Scand. J. Rheumatol. 2022, 51, 87–96. [Google Scholar] [CrossRef]
- Dogra, A.; Kour, D.; Bhardwaj, M.; Dhiman, S.; Kumar, A.; Vij, B.; Kumar, A.; Nandi, U. Glabridin plays dual action to augment the efficacy and attenuate the hepatotoxicity of methotrexate in arthritic rats. ACS Omega 2022, 7, 34341–34351. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Zhang, X.P.; Zhang, Q.; Zou, Y.Y.; Ma, J.D.; Chen, L.F.; Zou, Y.W.; Xue, J.M.; Ma, R.F.; Chen, Z.; et al. Gasdermin-e mediated pyroptosis—A novel mechanism regulating migration, invasion and release of inflammatory cytokines in rheumatoid arthritis fibroblast-like synoviocytes. Front. Cell Dev. Biol. 2022, 9, 810635. [Google Scholar] [CrossRef]
- Shokry, A.A.; El-Shiekh, R.A.; Kamel, G.; Bakr, A.F.; Sabry, D.; Ramadan, A. Anti-arthritic activity of the flavonoids fraction of ivy leaves (Hedera helix L.) standardized extract in adjuvant induced arthritis model in rats in relation to its metabolite profile using LC/MS. Biomed. Pharmacother. 2020, 145, 112456. [Google Scholar] [CrossRef]
Parameters | Groups | |||||||
---|---|---|---|---|---|---|---|---|
Normal | Model | Cur | Mlx | Cur/Mlx | nCur | nMlx | nCur/Mlx | |
RBCs (106/µL) | 11.12 ± 1.36 a | 4.71 ± 0.57 d | 7.89 ± 0.61 bc | 7.16 ± 0.44 c | 7.27 ± 0.51 c | 8.96 ± 1.11 b | 8.28 ± 0.62 bc | 9.22 ± 1.05 b |
Hb (g/dL) | 13.64 ± 0.99 a | 6.06 ± 0.66 d | 9.13 ± 1.34 c | 8.56 ± 0.73 c | 9.18 ± 1.19 c | 11.04 ± 0.91 b | 9.89 ± 0.97 bc | 11.61 ± 0.91 b |
WBCs (103/µL) | 8.11 ± 0.48 e | 17.36 ± 1.27 a | 13.72 ± 1.13 b | 12.16 ± 1.15 bc | 10.61 ± 1.84 cd | 11.32 ± 1.61 bc | 10.57 ± 1.01 cd | 9.04 ± 0.82 de |
Parameters | Groups | |||||||
---|---|---|---|---|---|---|---|---|
Normal | Model | Cur | Mlx | Cur/Mlx | nCur | nMlx | nCur/Mlx | |
RF (IU/L) | 4.64 ± 0.53 f | 49.78 ± 3.13 a | 41.93 ± 2.01 b | 27.84 ± 3.15 c | 22.99 ± 2.93 d | 29.04 ± 1.96 c | 18.52 ± 1.57 e | 14.69 ± 2.74 e |
CRP (mg/L) | 1.73 ± 0.19 f | 8.39 ± 0.59 a | 6.11 ± 0.44 b | 4.56 ± 0.36 c | 4.48 ± 0.21 cd | 5.12 ± 0.45 c | 3.80 ± 0.31 d | 2.87 ± 0.34 e |
PGE2 (pg/mL) | 131.05 ± 3.74 f | 773.64 ± 31.18 a | 501.07 ± 38.87 b | 362.60 ± 24.62 d | 338.43 ± 24.02 d | 422.14 ± 40.41 c | 264.82 ± 39.98 e | 233.92 ± 18.66 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aslam, B.; Hussain, A.; Faisal, M.N.; Sindhu, Z.-u.-D.; Khan, R.U.; Alhidary, I.A.; Naz, S.; Tufarelli, V. Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model. Biomedicines 2023, 11, 2662. https://doi.org/10.3390/biomedicines11102662
Aslam B, Hussain A, Faisal MN, Sindhu Z-u-D, Khan RU, Alhidary IA, Naz S, Tufarelli V. Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model. Biomedicines. 2023; 11(10):2662. https://doi.org/10.3390/biomedicines11102662
Chicago/Turabian StyleAslam, Bilal, Asif Hussain, Muhammad Naeem Faisal, Zia-ud-Din Sindhu, Rifat Ullah Khan, Ibrahim A. Alhidary, Shabana Naz, and Vincenzo Tufarelli. 2023. "Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model" Biomedicines 11, no. 10: 2662. https://doi.org/10.3390/biomedicines11102662
APA StyleAslam, B., Hussain, A., Faisal, M. N., Sindhu, Z. -u. -D., Khan, R. U., Alhidary, I. A., Naz, S., & Tufarelli, V. (2023). Curcumin Co-Encapsulation Potentiates Anti-Arthritic Efficacy of Meloxicam Biodegradable Nanoparticles in Adjuvant-Induced Arthritis Animal Model. Biomedicines, 11(10), 2662. https://doi.org/10.3390/biomedicines11102662