A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. DNA Extraction
2.3. NGS Sequencing
2.4. Data Analysis and Annotation
2.5. Statistical Analysis
3. Results
4. Discussion
- SPG11, which encodes for spatacsin, a protein with a role in neuronal axonal growth, function, and intracellular trafficking [68];
- TBK1, required for efficient recruitment in autophagy; mutations in the TBK1 gene may result in impaired autophagy and contribute to the accumulation of protein aggregates in ALS [69];
- VAPB, encoding for a protein that is part of the vesicle-associated membrane protein family, plays a role in suppressing the accumulation of unfolded proteins within the endoplasmic reticulum [70];
- SETX, an ATP-dependent helicase required for unwinding and resolution of RNA:DNA hybrids (R-loops) formed during transcription [71].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martín-Jiménez, R.; Lurette, O.; Hebert-Chatelain, E. Damage in Mitochondrial DNA Associated with Parkinson’s Disease. DNA Cell Biol. 2020, 39, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Guadagnolo, D.; Piane, M.; Torrisi, M.R.; Pizzuti, A.; Petrucci, S. Genotype-Phenotype Correlations in Monogenic Parkinson Disease: A Review on Clinical and Molecular Findings. Front. Neurol. 2021, 12, 648588. [Google Scholar] [CrossRef] [PubMed]
- von Coelln, R.; Shulman, L.M. Clinical Subtypes and Genetic Heterogeneity: Of Lumping and Splitting in Parkinson Disease. Curr. Opin. Neurol. 2016, 29, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Prasuhn, J.; Davis, R.L.; Kumar, K.R. Targeting Mitochondrial Impairment in Parkinson’s Disease: Challenges and Opportunities. Front. Cell Dev. Biol. 2020, 8, 615461. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, H.; Blauwendraat, C.; Leonard, H.L.; Liu, G.; Maple-Grødem, J.; Corvol, J.-C.; Pihlstrøm, L.; van Nimwegen, M.; Hutten, S.J.; Nguyen, K.-D.H.; et al. Genetic Risk of Parkinson Disease and Progression: An Analysis of 13 Longitudinal Cohorts. Neurol. Genet. 2019, 5, e348. [Google Scholar] [CrossRef]
- González-Casacuberta, I.; Juárez-Flores, D.L.; Morén, C.; Garrabou, G. Bioenergetics and Autophagic Imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration. Front. Neurosci. 2019, 13, 894. [Google Scholar] [CrossRef]
- Joza, S.; Hu, M.T.; Jung, K.-Y.; Kunz, D.; Stefani, A.; Dušek, P.; Terzaghi, M.; Arnaldi, D.; Videnovic, A.; Schiess, M.C.; et al. Progression of Clinical Markers in Prodromal Parkinson’s Disease and Dementia with Lewy Bodies: A Multicentre Study. Brain 2023, 146, 3258–3272. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Marchese, G.; Lanza, G.; Cosentino, F.I.I.; Salluzzo, M.G.; Schillaci, F.A.; Ventola, G.M.; Cordella, A.; Ravo, M.; Ferri, R. Role and Dysregulation of miRNA in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 24, 712. [Google Scholar] [CrossRef]
- Finkbeiner, S. Functional Genomics, Genetic Risk Profiling and Cell Phenotypes in Neurodegenerative Disease. Neurobiol. Dis. 2020, 146, 105088. [Google Scholar] [CrossRef]
- Salemi, M.; Lanza, G.; Mogavero, M.P.; Cosentino, F.I.I.; Borgione, E.; Iorio, R.; Ventola, G.M.; Marchese, G.; Salluzzo, M.G.; Ravo, M.; et al. A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 1535. [Google Scholar] [CrossRef]
- Shademan, B.; Biray Avci, C.; Nikanfar, M.; Nourazarian, A. Application of Next-Generation Sequencing in Neurodegenerative Diseases: Opportunities and Challenges. Neuromol. Med. 2021, 23, 225–235. [Google Scholar] [CrossRef]
- Lesage, S.; Brice, A. Parkinson’s Disease: From Monogenic Forms to Genetic Susceptibility Factors. Hum. Mol. Genet. 2009, 18, R48-59. [Google Scholar] [CrossRef]
- Jiang, T.; Tan, M.-S.; Tan, L.; Yu, J.-T. Application of Next-Generation Sequencing Technologies in Neurology. Ann. Transl. Med. 2014, 2, 125. [Google Scholar] [CrossRef] [PubMed]
- International Parkinson Disease Genomics Consortium; Nalls, M.A.; Plagnol, V.; Hernandez, D.G.; Sharma, M.; Sheerin, U.-M.; Saad, M.; Simón-Sánchez, J.; Schulte, C.; Lesage, S.; et al. Imputation of Sequence Variants for Identification of Genetic Risks for Parkinson’s Disease: A Meta-Analysis of Genome-Wide Association Studies. Lancet 2011, 377, 641–649. [Google Scholar] [CrossRef]
- Vilariño-Güell, C.; Wider, C.; Ross, O.A.; Dachsel, J.C.; Kachergus, J.M.; Lincoln, S.J.; Soto-Ortolaza, A.I.; Cobb, S.A.; Wilhoite, G.J.; Bacon, J.A.; et al. VPS35 Mutations in Parkinson Disease. Am. J. Hum. Genet. 2011, 89, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zimprich, A.; Benet-Pagès, A.; Struhal, W.; Graf, E.; Eck, S.H.; Offman, M.N.; Haubenberger, D.; Spielberger, S.; Schulte, E.C.; Lichtner, P.; et al. A Mutation in VPS35, Encoding a Subunit of the Retromer Complex, Causes Late-Onset Parkinson Disease. Am. J. Hum. Genet. 2011, 89, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Nuytemans, K.; Bademci, G.; Inchausti, V.; Dressen, A.; Kinnamon, D.D.; Mehta, A.; Wang, L.; Züchner, S.; Beecham, G.W.; Martin, E.R.; et al. Whole Exome Sequencing of Rare Variants in EIF4G1 and VPS35 in Parkinson Disease. Neurology 2013, 80, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Edvardson, S.; Cinnamon, Y.; Ta-Shma, A.; Shaag, A.; Yim, Y.-I.; Zenvirt, S.; Jalas, C.; Lesage, S.; Brice, A.; Taraboulos, A.; et al. A Deleterious Mutation in DNAJC6 Encoding the Neuronal-Specific Clathrin-Uncoating Co-Chaperone Auxilin, Is Associated with Juvenile Parkinsonism. PLoS ONE 2012, 7, e36458. [Google Scholar] [CrossRef]
- Köroğlu, Ç.; Baysal, L.; Cetinkaya, M.; Karasoy, H.; Tolun, A. DNAJC6 Is Responsible for Juvenile Parkinsonism with Phenotypic Variability. Park. Relat. Disord. 2013, 19, 320–324. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; et al. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Mov. Disord. 2015, 30, 1591–1601. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Nurnberger, J.I. A Rapid Non-Enzymatic Method for the Preparation of HMW DNA from Blood for RFLP Studies. Nucleic Acids Res. 1991, 19, 5444. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Lewis, S.A.; Bakhtiari, S.; Zeng, X.; Sierant, M.C.; Shetty, S.; Nordlie, S.M.; Elie, A.; Corbett, M.A.; Norton, B.Y.; et al. Mutations Disrupting Neuritogenesis Genes Confer Risk for Cerebral Palsy. Nat. Genet. 2020, 52, 1046–1056. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.; Lang, A.E.; Zinman, L.; Nacmias, B.; Sorbi, S.; Bessi, V.; Tedde, A.; Tartaglia, M.C.; Surace, E.I.; Sato, C.; et al. Mutation Analysis of Patients with Neurodegenerative Disorders Using NeuroX Array. Neurobiol. Aging 2015, 36, 545.e9–545.e14. [Google Scholar] [CrossRef]
- Djarmati, A.; Hagenah, J.; Reetz, K.; Winkler, S.; Behrens, M.I.; Pawlack, H.; Lohmann, K.; Ramirez, A.; Tadić, V.; Brüggemann, N.; et al. ATP13A2 Variants in Early-Onset Parkinson’s Disease Patients and Controls. Mov. Disord. 2009, 24, 2104–2111. [Google Scholar] [CrossRef]
- Sframeli, M.; Sarkozy, A.; Bertoli, M.; Astrea, G.; Hudson, J.; Scoto, M.; Mein, R.; Yau, M.; Phadke, R.; Feng, L.; et al. Congenital Muscular Dystrophies in the UK Population: Clinical and Molecular Spectrum of a Large Cohort Diagnosed over a 12-Year Period. Neuromuscul. Disord. 2017, 27, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Felletschin, B.; Bauer, P.; Walter, U.; Behnke, S.; Spiegel, J.; Csoti, I.; Sommer, U.; Zeiler, B.; Becker, G.; Riess, O.; et al. Screening for Mutations of the Ferritin Light and Heavy Genes in Parkinson’s Disease Patients with Hyperechogenicity of the Substantia Nigra. Neurosci. Lett. 2003, 352, 53–56. [Google Scholar] [CrossRef]
- Saavedra-Matiz, C.A.; Luzi, P.; Nichols, M.; Orsini, J.J.; Caggana, M.; Wenger, D.A. Expression of Individual Mutations and Haplotypes in the Galactocerebrosidase Gene Identified by the Newborn Screening Program in New York State and in Confirmed Cases of Krabbe’s Disease. J. Neurosci. Res. 2016, 94, 1076–1083. [Google Scholar] [CrossRef]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef]
- Ren, J.; Zhang, R.; Pan, C.; Xu, J.; Sun, H.; Hua, P.; Zhang, L.; Zhang, W.; Xu, P.; Ma, C.; et al. Prevalence and Genotype-Phenotype Correlations of GBA-Related Parkinson Disease in a Large Chinese Cohort. Eur. J. Neurol. 2022, 29, 1017–1024. [Google Scholar] [CrossRef]
- Olszewska, D.A.; McCarthy, A.; Soto-Beasley, A.I.; Walton, R.L.; Magennis, B.; McLaughlin, R.L.; Hardiman, O.; Ross, O.A.; Lynch, T. Association Between Glucocerebrosidase Mutations and Parkinson’s Disease in Ireland. Front. Neurol. 2020, 11, 527. [Google Scholar] [CrossRef]
- Moraitou, M.; Hadjigeorgiou, G.; Monopolis, I.; Dardiotis, E.; Bozi, M.; Vassilatis, D.; Vilageliu, L.; Grinberg, D.; Xiromerisiou, G.; Stefanis, L.; et al. β-Glucocerebrosidase Gene Mutations in Two Cohorts of Greek Patients with Sporadic Parkinson’s Disease. Mol. Genet. Metab. 2011, 104, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Jarman, P.R.; Bandmann, O.; Marsden, C.D.; Wood, N.W. GTP Cyclohydrolase I Mutations in Patients with Dystonia Responsive to Anticholinergic Drugs. J. Neurol. Neurosurg. Psychiatry 1997, 63, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Lautier, C.; Goldwurm, S.; Dürr, A.; Giovannone, B.; Tsiaras, W.G.; Pezzoli, G.; Brice, A.; Smith, R.J. Mutations in the GIGYF2 (TNRC15) Gene at the PARK11 Locus in Familial Parkinson Disease. Am. J. Hum. Genet. 2008, 82, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, E.; Vázquez-Higuera, J.L.; Sánchez-Juan, P.; González-Aramburu, I.; Pozueta, A.; Mateo, I.; Calero, M.; Dobato, J.L.; Infante, J.; Berciano, J.; et al. Screening for Progranulin Mutations by Serum Protein Dosage in Common Neurodegenerative Disorders. Park. Relat. Disord. 2013, 19, 768–769. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Yadav, N.; Pandey, S.; Muthane, U.B.; Govindappa, S.T.; Abbas, M.M.; Behari, M.; Thelma, B.K. Novel and Reported Variants in Parkinson’s Disease Genes Confer High Disease Burden among Indians. Park. Relat. Disord. 2020, 78, 46–52. [Google Scholar] [CrossRef]
- Strauss, K.M.; Martins, L.M.; Plun-Favreau, H.; Marx, F.P.; Kautzmann, S.; Berg, D.; Gasser, T.; Wszolek, Z.; Müller, T.; Bornemann, A.; et al. Loss of Function Mutations in the Gene Encoding Omi/HtrA2 in Parkinson’s Disease. Hum. Mol. Genet. 2005, 14, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Cetin, H.; Wöhrer, A.; Rittelmeyer, I.; Gencik, M.; Zulehner, G.; Zimprich, F.; Ströbel, T.; Zimprich, A. The c.65-2A>G Splice Site Mutation Is Associated with a Mild Phenotype in Danon Disease Due to the Transcription of Normal LAMP2 mRNA. Clin. Genet. 2016, 90, 366–371. [Google Scholar] [CrossRef]
- Kachergus, J.; Mata, I.F.; Hulihan, M.; Taylor, J.P.; Lincoln, S.; Aasly, J.; Gibson, J.M.; Ross, O.A.; Lynch, T.; Wiley, J.; et al. Identification of a Novel LRRK2 Mutation Linked to Autosomal Dominant Parkinsonism: Evidence of a Common Founder across European Populations. Am. J. Hum. Genet. 2005, 76, 672–680. [Google Scholar] [CrossRef]
- Mata, I.F.; Kachergus, J.M.; Taylor, J.P.; Lincoln, S.; Aasly, J.; Lynch, T.; Hulihan, M.M.; Cobb, S.A.; Wu, R.-M.; Lu, C.-S.; et al. Lrrk2 Pathogenic Substitutions in Parkinson’s Disease. Neurogenetics 2005, 6, 171–177. [Google Scholar] [CrossRef]
- Shojaee, S.; Fazlali, Z.; Ghazavi, F.; Banihosseini, S.S.; Kazemi, M.H.; Parsa, K.; Sadeghi, H.; Sina, F.; Shahidi, G.-A.; Ronaghi, M.; et al. Identification of Four Novel Potentially Parkinson’s Disease Associated LRRK2 Variations among Iranian Patients. Neurosci. Lett. 2009, 467, 53–57. [Google Scholar] [CrossRef]
- Nichols, W.C.; Elsaesser, V.E.; Pankratz, N.; Pauciulo, M.W.; Marek, D.K.; Halter, C.A.; Rudolph, A.; Shults, C.W.; Foroud, T. Parkinson Study Group-PROGENI Investigators LRRK2 Mutation Analysis in Parkinson Disease Families with Evidence of Linkage to PARK8. Neurology 2007, 69, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Smaili, I.; Tesson, C.; Regragui, W.; Bertrand, H.; Rahmani, M.; Bouslam, N.; Benomar, A.; Brice, A.; Lesage, S.; Bouhouche, A. Gene Panel Sequencing Identifies Novel Pathogenic Mutations in Moroccan Patients with Familial Parkinson Disease. J. Mol. Neurosci. 2021, 71, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Quadri, M.; Guedes, L.C.; Coelho, M.; Valadas, A.; Mestre, T.; Lobo, P.P.; Rosa, M.M.; Simons, E.; Oostra, B.A.; et al. Comprehensive LRRK2 and GBA Screening in Portuguese Patients with Parkinson’s Disease: Identification of a New Family with the LRRK2 p.Arg1441His Mutation and Novel Missense Variants. Park. Relat. Disord. 2013, 19, 897–900. [Google Scholar] [CrossRef]
- Khan, N.L.; Jain, S.; Lynch, J.M.; Pavese, N.; Abou-Sleiman, P.; Holton, J.L.; Healy, D.G.; Gilks, W.P.; Sweeney, M.G.; Ganguly, M.; et al. Mutations in the Gene LRRK2 Encoding Dardarin (PARK8) Cause Familial Parkinson’s Disease: Clinical, Pathological, Olfactory and Functional Imaging and Genetic Data. Brain 2005, 128, 2786–2796. [Google Scholar] [CrossRef] [PubMed]
- Skipper, L.; Shen, H.; Chua, E.; Bonnard, C.; Kolatkar, P.; Tan, L.C.S.; Jamora, R.D.; Puvan, K.; Puong, K.Y.; Zhao, Y.; et al. Analysis of LRRK2 Functional Domains in Nondominant Parkinson Disease. Neurology 2005, 65, 1319–1321. [Google Scholar] [CrossRef]
- Ross, O.A.; Soto-Ortolaza, A.I.; Heckman, M.G.; Aasly, J.O.; Abahuni, N.; Annesi, G.; Bacon, J.A.; Bardien, S.; Bozi, M.; Brice, A.; et al. Association of LRRK2 Exonic Variants with Susceptibility to Parkinson’s Disease: A Case-Control Study. Lancet Neurol. 2011, 10, 898–908. [Google Scholar] [CrossRef]
- Kovacs, G.G.; Wöhrer, A.; Ströbel, T.; Botond, G.; Attems, J.; Budka, H. Unclassifiable Tauopathy Associated with an A152T Variation in MAPT Exon 7. Clin. Neuropathol. 2011, 30, 3–10. [Google Scholar] [CrossRef]
- Giaccone, G.; Rossi, G.; Farina, L.; Marcon, G.; Di Fede, G.; Catania, M.; Morbin, M.; Sacco, L.; Bugiani, O.; Tagliavini, F. Familial Frontotemporal Dementia Associated with the Novel MAPT Mutation T427M. J. Neurol. 2005, 252, 1543–1545. [Google Scholar] [CrossRef]
- Park, W.D.; O’Brien, J.F.; Lundquist, P.A.; Kraft, D.L.; Vockley, C.W.; Karnes, P.S.; Patterson, M.C.; Snow, K. Identification of 58 Novel Mutations in Niemann-Pick Disease Type C: Correlation with Biochemical Phenotype and Importance of PTC1-like Domains in NPC1. Hum. Mutat. 2003, 22, 313–325. [Google Scholar] [CrossRef]
- Hague, S.; Rogaeva, E.; Hernandez, D.; Gulick, C.; Singleton, A.; Hanson, M.; Johnson, J.; Weiser, R.; Gallardo, M.; Ravina, B.; et al. Early-Onset Parkinson’s Disease Caused by a Compound Heterozygous DJ-1 Mutation. Ann. Neurol. 2003, 54, 271–274. [Google Scholar] [CrossRef]
- Van Goethem, G.; Schwartz, M.; Löfgren, A.; Dermaut, B.; Van Broeckhoven, C.; Vissing, J. Novel POLG Mutations in Progressive External Ophthalmoplegia Mimicking Mitochondrial Neurogastrointestinal Encephalomyopathy. Eur. J. Hum. Genet. 2003, 11, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Lamantea, E.; Tiranti, V.; Bordoni, A.; Toscano, A.; Bono, F.; Servidei, S.; Papadimitriou, A.; Spelbrink, H.; Silvestri, L.; Casari, G.; et al. Mutations of Mitochondrial DNA Polymerase gammaA Are a Frequent Cause of Autosomal Dominant or Recessive Progressive External Ophthalmoplegia. Ann. Neurol. 2002, 52, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Bertoli-Avella, A.M.; Giroud-Benitez, J.L.; Akyol, A.; Barbosa, E.; Schaap, O.; van der Linde, H.C.; Martignoni, E.; Lopiano, L.; Lamberti, P.; Fincati, E.; et al. Novel Parkin Mutations Detected in Patients with Early-Onset Parkinson’s Disease. Mov. Disord. 2005, 20, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Hedrich, K.; Kann, M.; Lanthaler, A.J.; Dalski, A.; Eskelson, C.; Landt, O.; Schwinger, E.; Vieregge, P.; Lang, A.E.; Breakefield, X.O.; et al. The Importance of Gene Dosage Studies: Mutational Analysis of the Parkin Gene in Early-Onset Parkinsonism. Hum. Mol. Genet. 2001, 10, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Lücking, C.B.; Dürr, A.; Bonifati, V.; Vaughan, J.; De Michele, G.; Gasser, T.; Harhangi, B.S.; Meco, G.; Denèfle, P.; Wood, N.W.; et al. Association between Early-Onset Parkinson’s Disease and Mutations in the Parkin Gene. N. Engl. J. Med. 2000, 342, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Quinzii, C.M.; Mitsumoto, H.; Hays, A.P.; Roberts, J.K.; Richard, P.; Rowland, L.P. Senataxin Mutations and Amyotrophic Lateral Sclerosis. Amyotroph Lateral Scler. 2011, 12, 223–227. [Google Scholar] [CrossRef]
- Krüger, S.; Battke, F.; Sprecher, A.; Munz, M.; Synofzik, M.; Schöls, L.; Gasser, T.; Grehl, T.; Prudlo, J.; Biskup, S. Rare Variants in Neurodegeneration Associated Genes Revealed by Targeted Panel Sequencing in a German ALS Cohort. Front. Mol. Neurosci. 2016, 9, 92. [Google Scholar] [CrossRef]
- Tezenas du Montcel, S.; Clot, F.; Vidailhet, M.; Roze, E.; Damier, P.; Jedynak, C.P.; Camuzat, A.; Lagueny, A.; Vercueil, L.; Doummar, D.; et al. Epsilon Sarcoglycan Mutations and Phenotype in French Patients with Myoclonic Syndromes. J. Med. Genet. 2006, 43, 394–400. [Google Scholar] [CrossRef]
- Robak, L.A.; Jansen, I.E.; van Rooij, J.; Uitterlinden, A.G.; Kraaij, R.; Jankovic, J.; International Parkinson’s Disease Genomics Consortium (IPDGC); Heutink, P.; Shulman, J.M. Excessive Burden of Lysosomal Storage Disorder Gene Variants in Parkinson’s Disease. Brain 2017, 140, 3191–3203. [Google Scholar] [CrossRef]
- Keyser, R.J.; Oppon, E.; Carr, J.A.; Bardien, S. Identification of Parkinson’s Disease Candidate Genes Using CAESAR and Screening of MAPT and SNCAIP in South African Parkinson’s Disease Patients. J. Neural Transm. 2011, 118, 889–897. [Google Scholar] [CrossRef]
- Scarlino, S.; Domi, T.; Pozzi, L.; Romano, A.; Pipitone, G.B.; Falzone, Y.M.; Mosca, L.; Penco, S.; Lunetta, C.; Sansone, V.; et al. Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. Int. J. Mol. Sci. 2020, 21, 3346. [Google Scholar] [CrossRef] [PubMed]
- de Majo, M.; Topp, S.D.; Smith, B.N.; Nishimura, A.L.; Chen, H.-J.; Gkazi, A.S.; Miller, J.; Wong, C.H.; Vance, C.; Baas, F.; et al. ALS-Associated Missense and Nonsense TBK1 Mutations Can Both Cause Loss of Kinase Function. Neurobiol. Aging 2018, 71, 266.e1–266.e10. [Google Scholar] [CrossRef] [PubMed]
- Farlow, J.L.; Robak, L.A.; Hetrick, K.; Bowling, K.; Boerwinkle, E.; Coban-Akdemir, Z.H.; Gambin, T.; Gibbs, R.A.; Gu, S.; Jain, P.; et al. Whole-Exome Sequencing in Familial Parkinson Disease. JAMA Neurol. 2016, 73, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Cady, J.; Allred, P.; Bali, T.; Pestronk, A.; Goate, A.; Miller, T.M.; Mitra, R.D.; Ravits, J.; Harms, M.B.; Baloh, R.H. Amyotrophic Lateral Sclerosis Onset Is Influenced by the Burden of Rare Variants in Known Amyotrophic Lateral Sclerosis Genes. Ann. Neurol. 2015, 77, 100–113. [Google Scholar] [CrossRef]
- Karimi-Moghadam, A.; Charsouei, S.; Bell, B.; Jabalameli, M.R. Parkinson Disease from Mendelian Forms to Genetic Susceptibility: New Molecular Insights into the Neurodegeneration Process. Cell Mol. Neurobiol. 2018, 38, 1153–1178. [Google Scholar] [CrossRef]
- Day, J.O.; Mullin, S. The Genetics of Parkinson’s Disease and Implications for Clinical Practice. Genes 2021, 12, 1006. [Google Scholar] [CrossRef]
- Salemi, M.; Cosentino, F.; Lanza, G.; Cantone, M.; Salluzzo, M.G.; Giurato, G.; Borgione, E.; Marchese, G.; Santa Paola, S.; Lanuzza, B.; et al. mRNA Expression Profiling of Mitochondrial Subunits in Subjects with Parkinson’s Disease. Arch. Med. Sci. 2023, 19, 678–686. [Google Scholar] [CrossRef]
- Pérez-Brangulí, F.; Mishra, H.K.; Prots, I.; Havlicek, S.; Kohl, Z.; Saul, D.; Rummel, C.; Dorca-Arevalo, J.; Regensburger, M.; Graef, D.; et al. Dysfunction of Spatacsin Leads to Axonal Pathology in SPG11-Linked Hereditary Spastic Paraplegia. Hum. Mol. Genet. 2014, 23, 4859–4874. [Google Scholar] [CrossRef]
- Oakes, J.A.; Davies, M.C.; Collins, M.O. TBK1: A New Player in ALS Linking Autophagy and Neuroinflammation. Mol. Brain 2017, 10, 5. [Google Scholar] [CrossRef]
- Kanekura, K.; Nishimoto, I.; Aiso, S.; Matsuoka, M. Characterization of Amyotrophic Lateral Sclerosis-Linked P56S Mutation of Vesicle-Associated Membrane Protein-Associated Protein B (VAPB/ALS8). J. Biol. Chem. 2006, 281, 30223–30233. [Google Scholar] [CrossRef]
- Kannan, A.; Cuartas, J.; Gangwani, P.; Branzei, D.; Gangwani, L. Mutation in Senataxin Alters the Mechanism of R-Loop Resolution in Amyotrophic Lateral Sclerosis 4. Brain 2022, 145, 3072–3094. [Google Scholar] [CrossRef] [PubMed]
- Walker, L.C.; Jucker, M. Neurodegenerative Diseases: Expanding the Prion Concept. Annu. Rev. Neurosci. 2015, 38, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, R.E. The Genetics of Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006296. [Google Scholar] [CrossRef] [PubMed]
- Renton, A.E.; Chiò, A.; Traynor, B.J. State of Play in Amyotrophic Lateral Sclerosis Genetics. Nat. Neurosci. 2014, 17, 17–23. [Google Scholar] [CrossRef]
- Beers, D.R.; Henkel, J.S.; Xiao, Q.; Zhao, W.; Wang, J.; Yen, A.A.; Siklos, L.; McKercher, S.R.; Appel, S.H. Wild-Type Microglia Extend Survival in PU.1 Knockout Mice with Familial Amyotrophic Lateral Sclerosis. Proc. Natl. Acad. Sci. USA 2006, 103, 16021–16026. [Google Scholar] [CrossRef]
- Guo, J.L.; Narasimhan, S.; Changolkar, L.; He, Z.; Stieber, A.; Zhang, B.; Gathagan, R.J.; Iba, M.; McBride, J.D.; Trojanowski, J.Q.; et al. Unique Pathological Tau Conformers from Alzheimer’s Brains Transmit Tau Pathology in Nontransgenic Mice. J. Exp. Med. 2016, 213, 2635–2654. [Google Scholar] [CrossRef]
- Porta, S.; Xu, Y.; Restrepo, C.R.; Kwong, L.K.; Zhang, B.; Brown, H.J.; Lee, E.B.; Trojanowski, J.Q.; Lee, V.M.-Y. Patient-Derived Frontotemporal Lobar Degeneration Brain Extracts Induce Formation and Spreading of TDP-43 Pathology In Vivo. Nat. Commun. 2018, 9, 4220. [Google Scholar] [CrossRef]
- Peng, C.; Trojanowski, J.Q.; Lee, V.M.-Y. Protein Transmission in Neurodegenerative Disease. Nat. Rev. Neurol. 2020, 16, 199–212. [Google Scholar] [CrossRef]
ID | Sex | Gene | NM | Variant | HGDM | Reference | Condition |
---|---|---|---|---|---|---|---|
9PD 3PD | F M | AP4Ml | NM_004722.4 | c.1117C>T; STOP CODON; Et. | DM | [22] | SQDM |
134PD | M | APP | NM_000484 | c.1795G>A (p.E599K); MISSENSE; Et. | DM? | [23] | PD |
79PD | F | ATP13A2 | NM_022089 | c.2836A>T (p.1946F); MISSENSE; Et. | DM? | [24] | PD |
102PD | M | FKRP | NM_024301.5 | c.469G>C (p.Al57P); MISSENSE; Om. | DM | [25] | MUD |
44PD 55PD | M M | FTHl | NM_002032 | c.161A>G (p.K54R); MISSENSE | DM? | [26] | PD |
108PD | M | GALC | NM_000153.4 | c.236G>A (p.R79H); MISSENSE; Et. | DM | [27] | KD |
128PD 57PD | M M | GBA | NM_001005741 | c.1226A>G (p.N409S); MISSENSE; Et. | DM | [28] | PD |
98PD 116PD | M F | GBA | NM_001005741 | c.1448T>C (p.L483P); MISSENSE; Et. | DM | [29] | PD |
130PD | M | GBA | NM_001005741 | c.1223C>T (p.T408M); MISSENSE; Et. | DM | [30] | PD |
llPD | M | GBA | NM_001005741 | c.882T>G (p.H294Q); MISSENSE; Et. | DM | [31] | LBD |
132PD | F | GCHl | NM_000161 | c.68C>T (p.P23L); MISSENSE; Et. | DM? | [32] | DDR |
87PD | M | GIGYF2 | NM_001103146 | c.1370A>C (p.N457T); MISSENSE; Et. | DM? | [33] | PD |
106PD | F | GRN | NM_002087.4 | c.415T>C (p.C139R); MISSENSE; Et. | DM | [34] | CBS |
54PD | F | HTRA2 | NM_013247 | c.215T>C (p.L72P); MISSENSE; Et. | DM? | [35] | PD |
101PD 121PD 137PD | M F M | HTRA2 | NM_013247 | c.1195G>A (p.G399S); MISSENSE; Et. | DM? | [36] | PD |
123PD | F | LAMP2 | NM_002294 | c.586A>T (p.T196S); MISSENSE; Et. | DM? | [37] | DD |
107PD | F | LRRK2 | NM_198578.4 | c.6055G>A (p.G2019S); MISSENSE; Et. | DM | [38] | PD |
5PD 63PD | M F | LRRK2 | NM_198578 | c.4541G>A (p.R1514Q); MISSENSE | DM? | [39] | PD |
89PD | F | LRRK2 | NM_198578 | c.5467C>A (p.Q1823K); MISSENSE; Et. | DM? | [40] | PD |
117PD | F | LRRK2 | NM_198578 | c.lOOOG>A (p.E334K); MISSENSE; Et. | DM | [41] | PD |
30PD | F | LRRK2 | NM_198578 | c.356T>C (p.L119P); MISSENSE; Et. | DM? | [42] | PD |
4PD | M | LRRK2 | NM_198578 | c.6929C>T (p.T2310M); MISSENSE; Et. | DM? | [43] | PD |
29PD | F | LRRK2 | NM_198578 | c.7067C>T (p.T23561); MISSENSE; Et. | DM? | [44] | PD |
31PD | M | LRRK2 | NM_198578 | c.3200G>A (p.R1067Q); MISSENSE; Et. | DM? | [45] | PD |
32PD | M | LRRK2 | NM_198578 | c.6566A>G (p.Y2189C); MISSENSE; Et. | DM | [46] | PD |
59PD | M | MAPT | NM_005910 | c.454G>A (p.A152T); MISSENSE; Et. | DM | [47] | VND |
67PD | F | MAPT | NM_016835 | c.1280C>T (p.S427F); MISSENSE; Et. | DM | [48] | FD |
2PD 74PD | M F | NPC2 | NM_006432 | c.88G>A (p.V30M); MISSENSE; Et. | DM? | [49] | NPD |
94PD | F | PARK7 | NM_007262 | c.293G>A (p.R98Q); MISSENSE; Et. | DM? | [50] | PD |
48PD | M | POLG | NM_002693 | c.1760C>T (p.P587L); MISSENSE; Et. | DM | [51] | PEO |
48PD | M | POLG | NM_002693 | c.752C>T (p.T2511); | DM | [52] | PEO |
lOOPD 45PD 78PD | M M M | PRKN | NM_004562 | c.1204C>T (p.R402C); MISSENSE; Et. | DM? | [53] | PD |
94PD | F | PRKN | NM_004562 | c.245C>A (p.A82E); MISSENSE; Et. | DM? | [54] | PD |
68PD | M | PRKN | NM_004562 | c.lOOOC>T (p.R334C); MISSENSE; | DM? | [55] | PD |
46PD | F | SETX | NM_015046 | c.7640T>C (p.12547T); MISSENSE; Et. | DM? | [56] | ALS |
59PD | M | SETX | NM_015046 | c.3229G>A (p.D1077N); MISSENSE; Et. | DM? | [57] | ALS |
9PD 3PD 104PD | F M M | SGCE | NM_003919.3 | c.232+1G>T; SPLICING MUTATION; Et. | DM | [58] | MDY |
lPD | F | SMPDl | NM_000543 | c.1550A>C (p.E517V); MISSENSE; Et. | DM | [59] | PD |
88PD 37PD | F M | SNCAIP | NM_005460 | c.2125G>C (p.E709Q); MISSENSE | DM? | [60] | PD |
63PD | F | SPGll | NM_025137 | c. 2764G>A (p.V9221); MISSENSE | DM? | [61] | ALS |
106PD | F | TBKl | NM_013254.4 | c.1073G>A (p.R358H); MISSENSE; Et. | DM | [62] | ALS |
115PD 5PD | M M | TNR | NM_003285 | c.496A>G (p.T166A); MISSENSE; Et. | DM? | [63] | PD |
135PD 68PD | M M | TNR | NM_003285 | c.538A>C (p.N180H); MISSENSE; Et. | DM? | [63] | PD |
97PD | M | VAPB | NM_004738 | c.390C>T (p.D130E); MISSENSE; Et. | DM | [64] | ALS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salemi, M.; Lanza, G.; Salluzzo, M.G.; Schillaci, F.A.; Di Blasi, F.D.; Cordella, A.; Caniglia, S.; Lanuzza, B.; Morreale, M.; Marano, P.; et al. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease. Biomedicines 2023, 11, 3118. https://doi.org/10.3390/biomedicines11123118
Salemi M, Lanza G, Salluzzo MG, Schillaci FA, Di Blasi FD, Cordella A, Caniglia S, Lanuzza B, Morreale M, Marano P, et al. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease. Biomedicines. 2023; 11(12):3118. https://doi.org/10.3390/biomedicines11123118
Chicago/Turabian StyleSalemi, Michele, Giuseppe Lanza, Maria Grazia Salluzzo, Francesca A. Schillaci, Francesco Domenico Di Blasi, Angela Cordella, Salvatore Caniglia, Bartolo Lanuzza, Manuela Morreale, Pietro Marano, and et al. 2023. "A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease" Biomedicines 11, no. 12: 3118. https://doi.org/10.3390/biomedicines11123118
APA StyleSalemi, M., Lanza, G., Salluzzo, M. G., Schillaci, F. A., Di Blasi, F. D., Cordella, A., Caniglia, S., Lanuzza, B., Morreale, M., Marano, P., Tripodi, M., & Ferri, R. (2023). A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson’s Disease. Biomedicines, 11(12), 3118. https://doi.org/10.3390/biomedicines11123118