Equilibrium Optimization Algorithm with Deep Learning Enabled Prostate Cancer Detection on MRI Images
Abstract
:1. Introduction
2. Related Works
3. The Proposed Model
3.1. Image Preprocessing
3.2. Feature Extraction Using CapsNet
3.3. Parameter Tuning Using EOA
3.4. Image Classification Using SBiLSTM Model
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamm, C.A.; Baumgärtner, G.L.; Biessmann, F.; Beetz, N.L.; Hartenstein, A.; Savic, L.J.; Froböse, K.; Dräger, F.; Schallenberg, S.; Rudolph, M.; et al. Interactive Explainable Deep Learning Model Informs Prostate Cancer Diagnosis at MRI. Radiology 2023, 307, e222276. [Google Scholar] [CrossRef]
- Bosma, J.S.; Saha, A.; Hosseinzadeh, M.; Slootweg, I.; de Rooij, M.; Huisman, H. Annotation-efficient cancer detection with report-guided lesion annotation for deep learning-based prostate cancer detection in bpMRI. arXiv 2021, arXiv:2112.05151. [Google Scholar]
- Mehralivand, S.; Yang, D.; Harmon, S.A.; Xu, D.; Xu, Z.; Roth, H.; Masoudi, S.; Kesani, D.; Lay, N.; Merino, M.J. Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI. Abdom. Radiol. 2022, 47, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Bosma, J.S.; Saha, A.; Hosseinzadeh, M.; Slootweg, I.; de Rooij, M.; Huisman, H. Semi-supervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI. Radiol. Artif. Intell. 2023, 5, e230031. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Han, X.; Gao, J.; Zhang, Q.; Yang, H.; Liao, S.; Guo, H.; Zhang, B. Deep learning in prostate cancer diagnosis using multiparametric magnetic resonance imaging with whole-mount histopathology referenced delineations. Front. Med. 2022, 8, 810995. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wu, P.; Cui, Y.; Liu, X.; Wang, K.; Gao, G.; Wang, H.; Zhang, X.; Wang, X. Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI. J. Magn. Reson. Imaging 2023, 58, 1067–1081. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Ou, Z.; Hu, J.; Qiu, D.; Quan, C.; Othmane, B.; Wang, Y.; Wu, L. Computer-aided diagnosis of prostate cancer based on deep neural networks from multi-parametric magnetic resonance imaging. Front. Physiol. 2022, 13, 918381. [Google Scholar] [CrossRef]
- Liu, X.; Han, C.; Cui, Y.; Xie, T.; Zhang, X.; Wang, X. Detection and segmentation of pelvic bones metastases in MRI images for patients with prostate cancer based on deep learning. Front. Oncol. 2021, 11, 773299. [Google Scholar] [CrossRef]
- Zhao, L.; Bao, J.; Wang, X.; Qiao, X.; Shen, J.; Zhang, Y.; Jin, P.; Ji, Y.; Zhang, J.; Su, Y.; et al. Detecting Adverse Pathology of Prostate Cancer with a Deep Learning Approach Based on a 3D Swin-Transformer Model and Biparametric MRI: A Multicenter Retrospective Study. J. Magn. Reson. Imaging 2023. [Google Scholar] [CrossRef]
- Min, Z.; Bianco, F.J.; Yang, Q.; Rodell, R.; Yan, W.; Barratt, D.; Hu, Y. Controlling false Positive/Negative rates for deep-Learning-Based prostate cancer detection on multiparametric MR images. In Proceedings of the Medical Image Understanding and Analysis: 25th Annual Conference, MIUA 2021, Oxford, UK, 12–14 July 2021; Proceedings 25. Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 56–70. [Google Scholar]
- Singh, S.K.; Sinha, A.; Singh, H.; Mahanti, A.; Patel, A.; Mahajan, S.; Pandit, A.K.; Varadarajan, V. A novel deep learning-based technique for detecting prostate cancer in MRI images. Multimed. Tools Appl. 2023, 1–15. [Google Scholar] [CrossRef]
- Yildirim, K.; Yildirim, M.; Eryesil, H.; Talo, M.; Yildirim, O.; Karabatak, M.; Ogras, M.S.; Artas, H.; Acharya, U.R. Deep learning-based PI-RADS score estimation to detect prostate cancer using multiparametric magnetic resonance imaging. Comput. Electr. Eng. 2022, 102, 108275. [Google Scholar] [CrossRef]
- Li, C.; Deng, M.; Zhong, X.; Ren, J.; Chen, X.; Chen, J.; Xiao, F.; Xu, H. Multi-view radiomics and deep learning modeling for prostate cancer detection based on multi-parametric MRI. Front. Oncol. 2023, 13, 1198899. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wang, H.K.; Wang, F.N.; Peng, Y.C.; Lin, T.P.; Peng, H.H.; Shen, S.H. Autosegmentation of prostate zones and cancer regions from biparametric magnetic resonance images by using deep-learning-based neural networks. Sensors 2021, 21, 2709. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.Y.; Miao, X.Y.; Cai, W.S.; Xu, W.J. Medical image diagnosis of prostate tumor based on PSP-Net+ VGG16 deep learning network. Comput. Methods Programs Biomed. 2022, 221, 106770. [Google Scholar] [CrossRef] [PubMed]
- Ragab, M.; Kateb, F.; El-Sawy, E.K.; Binyamin, S.S.; Al-Rabia, M.W.; Mansouri, R.A. Archimedes Optimization Algorithm with Deep Learning-Based Prostate Cancer Classification on Magnetic Resonance Imaging. Healthcare 2023, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Moroianu, Ş.L.; Bhattacharya, I.; Seetharaman, A.; Shao, W.; Kunder, C.A.; Sharma, A.; Ghanouni, P.; Fan, R.E.; Sonn, G.A.; Rusu, M. Computational Detection of Extraprostatic Extension of Prostate Cancer on Multiparametric MRI Using Deep Learning. Cancers 2022, 14, 2821. [Google Scholar] [CrossRef] [PubMed]
- Bouslimi, Y.; Echi, A.K. Deep Learning Based Localisation and Segmentation of Prostate Cancer from mp-MRI Images. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 2023, 22, 52–70. [Google Scholar]
- Hassan, M.R.; Islam, M.F.; Uddin, M.Z.; Ghoshal, G.; Hassan, M.M.; Huda, S.; Fortino, G. Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence. Future Gener. Comput. Syst. 2022, 127, 462–472. [Google Scholar] [CrossRef]
- Abbasi, A.A.; Hussain, L.; Awan, I.A.; Abbasi, I.; Majid, A.; Nadeem, M.S.A.; Chaudhary, Q.A. Detecting prostate cancer using deep learning convolution neural network with transfer learning approach. Cogn. Neurodynamics 2020, 14, 523–533. [Google Scholar] [CrossRef]
- Gavade, A.B.; Nerli, R.; Kanwal, N.; Gavade, P.A.; Pol, S.S.; Rizvi, S.T.H. Automated diagnosis of prostate cancer using mpmri images: A deep learning approach for clinical decision support. Computers 2023, 12, 152. [Google Scholar] [CrossRef]
- Narayan, V.; Mall, P.K.; Alkhayyat, A.; Abhishek, K.; Kumar, S.; Pandey, P. Enhance-Net: An Approach to Boost the Performance of Deep Learning Model Based on Real-Time Medical Images. J. Sens. 2023, 2023, 8276738. [Google Scholar] [CrossRef]
- Rangel, G.; Cuevas-Tello, J.C.; Rivera, M.; Renteria, O. A Deep Learning Model Based on Capsule Networks for COVID Diagnostics through X-ray Images. Diagnostics 2023, 13, 2858. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chattopadhyay, S.; Singh, P.K.; Ahmadian, A.; Ferrara, M.; Sarkar, R. A hybrid meta-heuristic feature selection method using golden ratio and equilibrium optimization algorithms for speech emotion recognition. IEEE Access 2020, 8, 200953–200970. [Google Scholar] [CrossRef]
- Latif, A.; Mehedi, I.M.; Vellingiri, M.T.; Meem, R.J.; Palaniswamy, T. Enhanced Remora Optimization with Deep Learning Model for Intelligent PMSM Drives Temperature Prediction in Electric Vehicles. Axioms 2023, 12, 852. [Google Scholar] [CrossRef]
Reference | Objective | Methodology | Dataset | Measures | Merits | Demerits |
---|---|---|---|---|---|---|
Singh et al. [11] | Classify PrC which belongs to the Gleason grade group | Faster RCNN with Inception-Resnet-V2 | Prostate-2 dataset | Accuracy, sensitivity, specificity | Effective segmentation of lesion | Less experimentation |
Yildirim et al. [12] | Aimed to detect the PI-RADS groups using mpMR images. | MobilenetV2, Efficientnetb0, and Darknet53 | Own data | Accuracy | Can be used to reduce unnecessary biopsies | moderate to lower level agreement in PI-RADS scoring evaluation |
Li et al. [13] | Classify PCa and prostate hyperplasia | Swin Transformer | Own data | AUC, ROC | Better predictive outcomes | Hard to detect the accurate area on MRI images |
Lai et al. [14] | For auto-segmenting the prostate zone and cancer region | SegNet, DCNN | Own data | Accuracy, DSC, Recall | Superior results for PCa auto segmentation | Less amount of training data and requires model fine-tuning |
Ye et al. [15] | Develop a prostate tumor diagnosis model | PSP-Net+VGG16 | Own data | Accuracy | Superior in accuracy and processing time | Less experimentation |
Ragab et al. [16] | Investigate MRI images for prostate cancer detection | DenseNet-161, LS-SVM, AOA | Own data | Accuracy, sensitivity, specificity, F-Score | Enhanced performance | Computational complexity analysis is needed |
Moroianu et al. [17] | Identify PCa that spreads outside the prostate | U-Net | Own data | ROC, AUC | Parameter tuning is accomplished | Computational complexity analysis is needed |
Bouslimi, and Echi [18] | Offer a fully automatic system for prostate detection | MultiResUnet | Radboudumc prostate cancer dataset | Accuracy | Enhanced performance | Less experimentation |
Hassan et al. [19] | Detect prostate cancer using a fusion of different DL models | SVM, Adaboost, K-NN, and Random Forests | Own data | Accuracy | Examined by XAI | Requires fine-tuning of model parameters |
Abbasi et al. [20] | Employ transfer learning model for prostate cancer detection | GoogleNet+ML classifiers | Harvard University prostate dataset | Sensitivity, specificity, PPV, NPV, and total accuracy | Enhanced performance | Requires fine-tuning of model parameters |
Gavade et al. [21] | Classify prostate cancer | U-Net architecture+LSTM | I2CVB dataset | Accuracy, F1 score, precision, recall, ROC, dice | Reduce bias and enhance the generalization ability | Less experimentation |
Classes | No. of Instances |
---|---|
Prostate | 200 |
Brachytherapy | 200 |
Total Samples | 400 |
Class | MCC | ||||
---|---|---|---|---|---|
TRAP (80%) | |||||
Prostate | 99.69 | 99.39 | 100.00 | 99.69 | 99.38 |
Brachytherapy | 99.69 | 100.00 | 99.39 | 99.68 | 99.38 |
Average | 99.69 | 99.70 | 99.70 | 99.69 | 99.38 |
TESP (20%) | |||||
Prostate | 98.75 | 97.22 | 100.00 | 98.59 | 97.50 |
Brachytherapy | 98.75 | 100.00 | 97.22 | 98.88 | 97.50 |
Average | 98.75 | 98.61 | 98.61 | 98.73 | 97.50 |
Class | MCC | ||||
---|---|---|---|---|---|
TRAP (70%) | |||||
Prostate | 99.29 | 99.28 | 99.30 | 99.28 | 98.57 |
Brachytherapy | 99.29 | 99.30 | 99.28 | 99.30 | 98.57 |
Average | 99.29 | 99.29 | 99.29 | 99.29 | 98.57 |
TESP (30%) | |||||
Prostate | 99.17 | 100.00 | 98.28 | 99.20 | 98.34 |
Brachytherapy | 99.17 | 98.28 | 100.00 | 99.13 | 98.34 |
Average | 99.17 | 99.14 | 99.14 | 99.17 | 98.34 |
Methods | ||||
---|---|---|---|---|
EOADL-PCDC | 99.69 | 99.70 | 99.70 | 99.69 |
AOADLB-P2C | 99.50 | 99.50 | 99.50 | 99.50 |
NB | 98.46 | 98.47 | 98.64 | 98.81 |
DT | 97.29 | 97.26 | 98.47 | 98.83 |
SVM-Gaussian | 98.36 | 98.43 | 98.54 | 97.91 |
SVM-RBF | 98.12 | 98.63 | 97.89 | 98.52 |
GoogleNet | 98.28 | 98.28 | 98.49 | 98.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, E.; Shankar, K.; Kumar, S.; Seo, C.; Moon, I. Equilibrium Optimization Algorithm with Deep Learning Enabled Prostate Cancer Detection on MRI Images. Biomedicines 2023, 11, 3200. https://doi.org/10.3390/biomedicines11123200
Yang E, Shankar K, Kumar S, Seo C, Moon I. Equilibrium Optimization Algorithm with Deep Learning Enabled Prostate Cancer Detection on MRI Images. Biomedicines. 2023; 11(12):3200. https://doi.org/10.3390/biomedicines11123200
Chicago/Turabian StyleYang, Eunmok, K. Shankar, Sachin Kumar, Changho Seo, and Inkyu Moon. 2023. "Equilibrium Optimization Algorithm with Deep Learning Enabled Prostate Cancer Detection on MRI Images" Biomedicines 11, no. 12: 3200. https://doi.org/10.3390/biomedicines11123200
APA StyleYang, E., Shankar, K., Kumar, S., Seo, C., & Moon, I. (2023). Equilibrium Optimization Algorithm with Deep Learning Enabled Prostate Cancer Detection on MRI Images. Biomedicines, 11(12), 3200. https://doi.org/10.3390/biomedicines11123200