Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.1.1. Data
2.1.2. Input and Outcome Variables
2.2. Methods
2.2.1. Unweighted and Weighted Data
2.2.2. Weighted Data
Evolutionary Algorithm Configuration
- -
- Number of parameters α: 60;
- -
- Parameters value range: from −4 to +4;
- -
- Objective function: to maximize the correlation coefficient R2 between some of the low-dimensional-space variables and patients’ %TWL;
- -
- Individuals (combinations of α values) of each generation: 1200;
- -
- Maximum number of generations considered: 10,000;
- -
- Number of times the process is repeated: 3.
2.2.3. Patients in the Low-Dimensional Space after Training
2.2.4. Prediction of Outcomes in the Validation Group
2.2.5. Positioning Estimation in Low-Dimensional Space
3. Results
3.1. Sample Description
3.2. Unweighted Data
3.3. Weighted Data
3.4. Patients in the Low-Dimensional Space after Training
3.5. Importance of the Variables and %TWL
3.6. Positioning Estimation in Low-Dimensional Space
3.7. Assessment of the Patients in the Validation Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez Fisac, J.L.; Guallar Castillón, P.; León Muñoz, L.M.; Graciani, A.; Banegas, J.R.; Rodríguez Artalejo, F. Prevalence of general and abdominal obesity in the adult population of Spain, 2008–2010: The ENRICA study. Obes. Rev. 2012, 13, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Aranceta-Bartrina, J.; Pérez-Rodrigo, C.; Alberdi-Aresti, G.; Ramos-Carrera, N.; Lázaro-Masedo, S. Prevalence of general obesity and abdominal obesity in the Spanish adult population (aged 25–64 years) 2014–2015: The ENPE Study. Rev. Esp. Cardiol. Engl. Ed. 2016, 69, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Sabench Pereferrer, F.; Domínguez-Adame Lanuza, E.; Ibarzabal, A.; Socas Macias, M.; Valentí Azcárate, V.; García Ruiz de Gordejuela, A.; García-Moreno Nisa, F.; González Fernández, J.; Vilallonga Puy, R.; Vilarrasa García, N.; et al. Quality criteria in bariatric surgery: Consensus review and recommendations of the Spanish Association of Surgeons and the Spanish Society of Bariatric Surgery. Cir. Esp. 2017, 95, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [PubMed]
- Global Report on Diabetes. World Health Organization. 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=DC88DB2E9F535A94B01EFC11C9FE6D96?sequence=1 (accessed on 12 July 2020).
- Kokkinos, A.; Alexiadou, K.; Liaskos, C.; Argyrakopoulou, G.; Balla, I.; Tentolouris, N.; Moyssakis, I.; Katsilambros, N.; Vafiadis, I.; Alexandrou, A.; et al. Improvement in Cardiovascular Indices after Roux-en-Y Gastric Bypass or Sleeve Gastrectomy for Morbid Obesity. Obes. Surg. 2013, 23, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Colquitt, J.L.; Pickett, K.; Loveman, E.; Frampton, G.K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, 8, CD003641. [Google Scholar] [CrossRef] [PubMed]
- Maggard, M.A.; Shugarman, L.R.; Suttorp, M.; Maglione, M.; Sugerman, H.J.; Livingston, E.H.; Nguyen, N.T.; Li, Z.; Mojica, W.A.; Hilton, L.; et al. Meta-analysis: Surgical treatment of obesity. Ann. Intern. Med. 2005, 142, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Noparatayaporn, P.; Thavorncharoensap, M.; Chaikledkaew, U.; Bagepally, B.S.; Thakkinstian, A. Incremental Net Monetary Benefit of Bariatric Surgery: Systematic Review and Meta-Analysis of Cost-Effectiveness Evidences. Obes. Surg. 2021, 31, 3279–3290. [Google Scholar] [CrossRef] [PubMed]
- Gasoyan, H.; Tajeu, G.; Halpern, M.T.; Sarwer, D.B. Reasons for underutilization of bariatric surgery: The role of insurance benefit design. Surg. Obes. Relat. Dis. 2019, 15, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Shin, R.D.; Goldberg, M.B.; Shafran, A.S.; Shikora, S.A.; Majumdar, M.C.; Shikora, S.A. Revision of Roux-en-Y Gastric Bypass with Limb Distalization for Inadequate Weight Loss or Weight Regain. Obes. Surg. 2019, 29, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Rawlins, M.L.; Teel, D., 2nd; Hedgcorth, K.; Maguire, J.P. Revision of Roux-en-Y gastric bypass to distal bypass for failed weight loss. Surg. Obes. Relat. Dis. 2011, 7, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Obando, D.; Ramírez-Rentería, C.; Ferreira-Hermosillo, A.; Albarrán-Sanchez, A.; Sosa-Eroza, E.; Molina-Ayala, M.; Espinosa-Cárdenas, E. Are there really any predictive factors for a successful weight loss after bariatric surgery? BMC Endocr. Disord. 2020, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Wise, E.S.; Hocking, K.M.; Kavic, S.M. Prediction of excess weight loss after laparoscopic Roux-en-Y gastric bypass: Data from an artificial neural network. Surg. Endosc. 2016, 30, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Al-Khyatt, W.; Ryall, R.; Leeder, P.; Ahmed, J.; Awad, S. Predictors of Inadequate Weight Loss after Laparoscopic Gastric Bypass for Morbid Obesity. Obes. Surg. 2017, 27, 1446–1452. [Google Scholar] [CrossRef] [PubMed]
- Baltasar, A.; Perez, N.; Serra, C.; Bou, R.; Bengochea, M.; Borrás, F. Weight Loss Reporting: Predicted Body Mass Index after Bariatric Surgery. Obes. Surg. 2011, 21, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Ortega, E.; Morínigo, R.; Flores, L.; Moize, V.; Rios, M.; Lacy, A.M.; Vidal, J. Predictive factors of excess body weight loss 1 year after laparoscopic bariatric surgery. Surg. Endosc. 2012, 26, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Clinical Decision Support (CDS). Office of the National Coordinator for Health Information Technology. 2019. Available online: https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds (accessed on 12 July 2020).
- Zikos, D.; DeLellis, N. CDSS-RM: A clinical decision support system reference model. BMC Med. Res. Methodol. 2018, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.V. Machine Learning and Artificial Intelligence, 1st ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Tran, B.X.; Vu, G.T.; Ha, G.H.; Vuong, Q.H.; Ho, M.T.; Vuong, T.T.; La, V.P.; Ho, M.T.; Nghiem, K.P.; Nguyen, H.; et al. Global Evolution of Research in Artificial Intelligence in Health and Medicine: A Bibliometric Study. J. Clin. Med. 2019, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Al’ Aref, S.J.; Maliakal, G.; Singh, G.; van Rosendael, A.R.; Ma, X.; Xu, Z.; Alawamlh, O.A.H.; Lee, B.; Pandey, M.; Achenbach, S.; et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: Analysis from the CONFIRM registry. Eur. Heart J. 2020, 41, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, F.S.; Jurman, G.; De Nadai, K.; Campa, C.; Furlanello, C.; Parmeggiani, F. Application of Artificial Intelligence in Targeting Retinal Diseases. Curr. Drug Targets 2020, 21, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Xiong, Y.; Zhou, Q.; Wu, J.; Li, X.; Xiao, X. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study. J. Diabetes Res. 2020, 2020, 4168340. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, B.; Eickhoff, S.B. Your evidence? Machine learning algorithms for medical diagnosis and prediction. Hum. Brain Mapp. 2020, 41, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Koumakis, L. Deep learning models in genomics; are we there yet? Comput. Struct. Biotechnol. J. 2020, 18, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fang, X.; Ottosson, J.; Näslund, E.; Stenberg, E. A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery. J. Clin. Med. 2019, 8, 668. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.S.; Morton, J.M.; Kalsekar, I.; Ammann, E.M.; Hsiao, C.W.; Reps, J. Using Machine Learning Applied to Real-World Healthcare Data for Predictive Analytics: An Applied Example in Bariatric Surgery. Value Health 2019, 22, 580–586. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [PubMed]
- Nadal, E.; Muñoz, D.; Lucas-Tomas, I.; Ródenas, J.J. Evaluation of hip fracture risk using the Locally Linear Embedding technique. C. R. Mécanique 2019, 347, 856–862. [Google Scholar] [CrossRef]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed.; Addison-Wesley Longman Publishing: Boston, MA, USA, 1989; p. 412. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemometr. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Bzdok, D.; Nichols, T.E.; Smith, S.M. Towards Algorithmic Analytics for Large-scale Datasets. Nat. Mach. Intell. 2019, 1, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Nudel, J.; Bishara, A.M.; de Geus, S.W.L.; Patil, P.; Srinivasan, J.; Hess, D.T.; Woodson, J. Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: An analysis of the MBSAQIP database. Surg. Endosc. 2021, 35, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Livhits, M.; Mercado, C.; Yermilov, I.; Parikh, J.A.; Dutson, E.; Mehran, A.; Ko, C.Y.; Gibbons, M.M. Preoperative predictors of weight loss following bariatric surgery: Systematic review. Obes. Surg. 2012, 22, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Masrur, M.; Bustos, R.; Sanchez-Johnsen, L.; Gonzalez-Ciccarelli, L.; Mangano, A.; Gonzalez-Heredia, R.; Patel, R.; Danielson, K.K.; Gangemi, A.; Elli, E.F. Factors Associated with Weight Loss After Metabolic Surgery in a Multiethnic Sample of 1012 Patients. Obes. Surg. 2020, 30, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.C.; Benotti, P.N.; Lee, C.J.; Mirshahi, T.; Still, C.D.; Gerhard, G.S.; Lent, M.R. Evaluation of the Association between Preoperative Clinical Factors and Long-term Weight Loss after Roux-en-Y Gastric Bypass. JAMA Surg. 2016, 151, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, R.; Chen, R.; Trickey, A.; Eisenberg, D. Positive and Negative Independent Predictive Factors of Weight Loss After Bariatric Surgery in a Veteran Population. Obes. Surg. 2020, 30, 2124–2130. [Google Scholar] [CrossRef]
- Waldman, B.; Jenkins, A.J.; Davis, T.M.; Taskinen, M.R.; Scott, R.; O’Connell, R.L.; Gebski, V.J.; Ng, M.K.; Keech, A.C. FIELD Study Investigators. HDL-C and HDL-C/ApoA-I predict long-term progression of glycemia in established type 2 diabetes. Diabetes Care 2014, 37, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity.; metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Karkhaneh, M.; Qorbani, M.; Mohajeri-Tehrani, M.R.; Hoseini, S.J. Association of serum complement C3 with metabolic syndrome components in normal weight obese women. Diabetes Metab. Disord. 2017, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Wlazlo, N.; van Greevenbroek, M.; Ferreira, I.; Feskens, E.; van der Kallen, C.; Schalkwijk, C. Complement factor 3 is associated with insulin resistance and with incident type 2 diabetes over a 7-year follow-up period. Diabetes Care 2014, 37, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mijares, A.; Bañuls, C.; Bellod, L.; Jover, A.; Solá, E.; Morillas, C.; Víctor, V.M.; Rocha, M. Effect of weight loss on C3 and C4 components of complement in obese patients. Eur. J. Clin. Investig. 2012, 42, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sedoris, K.C.; Steed, M.; Ovechkin, A.V.; Moshal, K.S.; Tyagi, S.C. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2649–H2656. [Google Scholar] [CrossRef] [PubMed]
- Van de Lagemaat, E.E.; de Groot, L.C.P.G.M.; van den Heuvel, E.G.H.M. Vitamin B12 in Relation to Oxidative Stress: A Systematic Review. Nutrients 2019, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.H.; Adler, S.; Stevens, H.B.; Darcy, A.M.; Morton, J.M.; Safer, D.L. What variables are associated with successful weight loss outcomes for bariatric surgery after 1 year? Surg. Obes. Relat. Dis. 2014, 10, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Pencina, M.J.; D’Agostino, R.B., Sr.; D’Agostino, R.B., Jr.; Vasan, R.S. Evaluating the added predictive ability of a new marker: From area under the ROC curve to reclassification and beyond. Stat. Med. 2008, 27, 157–172, discussion 207–212. [Google Scholar] [CrossRef]
Variable Number | Variable Number | Variable Number |
---|---|---|
1. Gender | 21. Pre-VLCD BMI | 41. Uric acid |
2. Age | 22. Preoperative BMI | 42. Sodium |
3. Dyslipidemia | 23. Waist circumference before surgery | 43. Potassium |
4. Hypertension | 24. Systolic blood pressure before surgery | 44. Chlorine |
5. Diabetes | 25. Diastolic blood pressure before surgery | 45. Creatinine |
6. Impaired fasting glucose | 26. Fasting glucose | 46. Urea |
7. Hepatic steatosis | 27. HbA1c | 47. Free Thyroxine |
8. Obstructive sleep apnea | 28. Insulin levels | 48. Thyrotropin |
9. Arthrosis | 29. HOMA-IR | 49. Fibrinogen |
10. Hyperuricemia | 30. Triglycerides | 50. C reactive protein |
11. Anxiety-depressive disorder | 31. Total cholesterol | 51. Complement component 3 |
12. Hypothyroidism | 32. LDL-cholesterol | 52. Complement component 4 |
13. Smoking habit | 33. HDL-cholesterol | 53. Lipoprotein a |
14. Minutes of physical exercise per week | 34. Non-HDL cholesterol | 54.Homocysteine |
15. Metformin | 35. Free fatty acids | 55. Folic acid |
16. Insulin treatment | 36. Apolipoprotein A | 56. Vitamin B12 |
17. Other non-insulin agents | 37. Apolipoprotein B | 57. Vitamin D |
18. Height | 38. AST | 58. Leukocytes |
19. Pre-VLCD weight | 39.ALT | 59. Hemoglobin |
20. Preoperative weight | 40. GGT | 60. Platelets |
Males (n = 43) | Females (n = 75) | |
---|---|---|
Age (years old) | 45.9 ± 9.2 | 45.4 ± 9.9 |
Baseline weight (kg) | 144.4 ± 24.6 | 121.9 ± 19.1 * |
Baseline BMI (kg/m2) | 46.8 ± 6.4 | 46.7 ± 6.3 |
Baseline waist circumference (cm) | 144.3 ± 13.8 | 131.3 ± 12.7 * |
%TWL | 37.8 | 32.3 * |
Systolic blood pressure (mmHg) | 144.9 ± 13.8 | 141.5 ± 18.6 |
Diastolic blood pressure (mmHg) | 89.3 ± 10.2 | 87.8 ± 8.9 |
Fasting glucose (m/dL) | 104.7 ± 34.2 | 102.7 ± 38.3 |
HOMA-IR | 6.0 ± 5.5 | 5.7 ± 4.9 |
Total cholesterol (mg/dL) | 147.9 ± 34.9 | 166.4 ± 34.5 * |
Triglycerides (mg/dL) | 123.4 ± 59.1 | 114.6 ± 43.8 |
Dyslipidemia, n (%) | 28 (65.1) | 48 (64) |
Hypertension, n (%) | 32 (74.4) | 42 (56) |
Diabetes, n (%) | 29 (67.4) | 35 (46.6) * |
Coronary heart disease, n (%) | 5 (11.6) | 1 (1.3) * |
BMI > 50 kg/m2, n (%) | 8 (18.6) | 18 (24) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadal, E.; Benito, E.; Ródenas-Navarro, A.M.; Palanca, A.; Martinez-Hervas, S.; Civera, M.; Ortega, J.; Alabadi, B.; Piqueras, L.; Ródenas, J.J.; et al. Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Biomedicines 2024, 12, 1175. https://doi.org/10.3390/biomedicines12061175
Nadal E, Benito E, Ródenas-Navarro AM, Palanca A, Martinez-Hervas S, Civera M, Ortega J, Alabadi B, Piqueras L, Ródenas JJ, et al. Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Biomedicines. 2024; 12(6):1175. https://doi.org/10.3390/biomedicines12061175
Chicago/Turabian StyleNadal, Enrique, Esther Benito, Ana María Ródenas-Navarro, Ana Palanca, Sergio Martinez-Hervas, Miguel Civera, Joaquín Ortega, Blanca Alabadi, Laura Piqueras, Juan José Ródenas, and et al. 2024. "Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study" Biomedicines 12, no. 6: 1175. https://doi.org/10.3390/biomedicines12061175
APA StyleNadal, E., Benito, E., Ródenas-Navarro, A. M., Palanca, A., Martinez-Hervas, S., Civera, M., Ortega, J., Alabadi, B., Piqueras, L., Ródenas, J. J., & Real, J. T. (2024). Machine Learning Model in Obesity to Predict Weight Loss One Year after Bariatric Surgery: A Pilot Study. Biomedicines, 12(6), 1175. https://doi.org/10.3390/biomedicines12061175