Nutritional Genomics in Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. PEMT Gene
2.1. Interaction PEMT-Choline
2.1.1. Polymorphism rs12325817
2.1.2. Polymorphism rs7946
2.2. Interaction PEMT–Vitamin E
3. PNPLA3 Gene
3.1. Interaction PNPLA3–Essential Fatty Acids
3.2. Interaction PNPLA3–Carbohydrates
3.3. Interaction PNPLA3–Isoflavones, Methionine, and Choline
4. TM6SF2 Gene
4.1. Interaction TM6SF2–Fish Intake
4.2. Interaction TM6SF2–Caloric Restriction
5. CHDH Gene
5.1. Interaction CHDH–Choline
5.1.1. Polymorphism rs9001
5.1.2. Polymorphism rs12676
6. Polygenic Risk Score
7. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease-Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of The Liver and European Association for the Study of Diabetes. EASL–EASD–EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN Guideline on Clinical Nutrition in Liver Disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundi, M.S.; Velapati, S.; Patel, J.; Kellogg, T.A.; Abu Dayyeh, B.K.; Hurt, R.T. Evolution of NAFLD and Its Management. Nutr. Clin. Pract. 2020, 35, 72–84. [Google Scholar] [CrossRef]
- Liu, C.-H.; Ampuero, J.; Gil-Gómez, A.; Montero-Vallejo, R.; Rojas, Á.; Muñoz-Hernández, R.; Gallego-Durán, R.; Romero-Gómez, M. MiRNAs in Patients with Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Hepatol. 2018, 69, 1335–1348. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Shu, X.-O.; Xiang, Y.-B.; Li, H.; Yang, G.; Gao, Y.-T.; Zheng, W.; Zhang, X. Higher Dietary Choline Intake Is Associated with Lower Risk of Nonalcoholic Fatty Liver in Normal-Weight Chinese Women. J. Nutr. 2014, 144, 2034–2040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneghel, P.; Pinto, E.; Russo, F.P. Physiopathology of Nonalcoholic Fatty Liver Disease: From Diet to Nutrigenomics. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Dongiovanni, P.; Valenti, L. A Nutrigenomic Approach to Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2017, 18, 1534. [Google Scholar] [CrossRef] [Green Version]
- Tong, M.; Wang, F. APOC3 Rs2854116, PNPLA3 Rs738409, and TM6SF2 Rs58542926 Polymorphisms Might Influence Predisposition of NAFLD: A Meta-analysis. IUBMB Life 2020, 72, 1757–1764. [Google Scholar] [CrossRef]
- Link, A.; Balaguer, F.; Goel, A. Cancer Chemoprevention by Dietary Polyphenols: Promising Role for Epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792. [Google Scholar] [CrossRef] [Green Version]
- Hyun, J.; Jung, Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 8138. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, T.; Kitamoto, A.; Ogawa, Y.; Honda, Y.; Imajo, K.; Saito, S.; Yoneda, M.; Nakamura, T.; Nakajima, A.; Hotta, K. Targeted-Bisulfite Sequence Analysis of the Methylation of CpG Islands in Genes Encoding PNPLA3, SAMM50, and PARVB of Patients with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2015, 63, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zobeiri, M.; Parvizi, F.; Kalhori, M.R.; Majnooni, M.B.; Farzaei, M.H.; Abdollahi, M. Targeting MiRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. Evid. Based Complement. Altern. Med. 2021, 2021, 6641031. [Google Scholar] [CrossRef]
- Robinson, K.; Rozga, M.; Braakhuis, A.; Ellis, A.; Monnard, C.R.; Sinley, R.; Wanner, A.; Vargas, A.J. Effect of Incorporating Genetic Testing Results into Nutrition Counseling and Care on Dietary Intake: An Evidence Analysis Center Systematic Review—Part I. J. Acad. Nutr. Diet. 2021, 121, 553–581.e3. [Google Scholar] [CrossRef]
- Camp, K.M.; Trujillo, E. Position of the Academy of Nutrition and Dietetics: Nutritional Genomics. J. Acad. Nutr. Diet. 2014, 114, 299–312. [Google Scholar] [CrossRef]
- Fenech, M. Genome Health Nutrigenomics and Nutrigenetics—Diagnosis and Nutritional Treatment of Genome Damage on an Individual Basis. Food Chem. Toxicol. 2008, 46, 1365–1370. [Google Scholar] [CrossRef]
- Wang, J.; Ye, C.; Fei, S. Association between APOC3 Polymorphisms and Non-Alcoholic Fatty Liver Disease Risk: A Meta-Analysis. Afr. Health Sci. 2020, 20, 1800–1808. [Google Scholar] [CrossRef]
- Song, J.; Da Costa, K.A.; Fischer, L.M.; Kohlmeier, M.; Kwock, L.; Wang, S.; Zeisel, S.H. Polymorphism of the PEMT Gene and Susceptibility to Nonalcoholic Fatty Liver Disease (NAFLD). FASEB J. 2005, 19, 1266–1271. [Google Scholar] [CrossRef] [Green Version]
- Piras, I.S.; Raju, A.; Don, J.; Schork, N.J.; Gerhard, G.S.; DiStefano, J.K. Hepatic PEMT Expression Decreases with Increasing NAFLD Severity. Int. J. Mol. Sci. 2022, 23, 9296. [Google Scholar] [CrossRef]
- Wan, S.; Veen, J.N.; N’Goma, J.-C.B.; Nelson, R.C.; Vance, D.E.; Jacobs, R.L. Hepatic PEMT Activity Mediates Liver Health, Weight Gain, and Insulin Resistance. FASEB J. 2019, 33, 10986–10995. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary Reference Values for Choline. EFSA J. 2016, 14, e04484. [Google Scholar] [CrossRef]
- Corbin, K.D.; Abdelmalek, M.F.; Spencer, M.D.; Costa, K.; Galanko, J.A.; Sha, W.; Suzuki, A.; Guy, C.D.; Cardona, D.M.; Torquati, A.; et al. Genetic Signatures in Choline and 1-carbon Metabolism Are Associated with the Severity of Hepatic Steatosis. FASEB J. 2013, 27, 1674–1689. [Google Scholar] [CrossRef] [Green Version]
- Fischer, L.M.; DaCosta, K.A.; Kwock, L.; Stewart, P.W.; Lu, T.-S.; Stabler, S.P.; Allen, R.H.; Zeisel, S.H. Sex and Menopausal Status Influence Human Dietary Requirements for the Nutrient Choline. Am. J. Clin. Nutr. 2007, 85, 1275–1285. [Google Scholar] [CrossRef] [Green Version]
- Resseguie, M.; Song, J.; Niculescu, M.D.; Costa, K.-A.; Randall, T.A.; Zeisel, S.H. Phosphatidylethanolamine N -methyltransferase (PEMT) Gene Expression Is Induced by Estrogen in Human and Mouse Primary Hepatocytes. FASEB J. 2007, 21, 2622–2632. [Google Scholar] [CrossRef] [Green Version]
- Ganz, A.; Klatt, K.; Caudill, M. Common Genetic Variants Alter Metabolism and Influence Dietary Choline Requirements. Nutrients 2017, 9, 837. [Google Scholar] [CrossRef] [Green Version]
- Fischer, L.M.; da Costa, K.-A.; Kwock, L.; Galanko, J.; Zeisel, S.H. Dietary Choline Requirements of Women: Effects of Estrogen and Genetic Variation. Am. J. Clin. Nutr. 2010, 92, 1113–1119. [Google Scholar] [CrossRef] [Green Version]
- Costa, K.-A.; Kozyreva, O.G.; Song, J.; Galanko, J.A.; Fischer, L.M.; Zeisel, S.H. Common Genetic Polymorphisms Affect the Human Requirement for the Nutrient Choline. FASEB J. 2006, 20, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, K.; Corbin, K.D.; Niculescu, M.D.; Galanko, J.A.; Zeisel, S.H. Identification of New Genetic Polymorphisms That Alter the Dietary Requirement for Choline and Vary in Their Distribution across Ethnic and Racial Groups. FASEB J. 2014, 28, 2970–2978. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Chang, T.-Y.; Huang, R.-F.S. Relationship Between PEMT Gene Rs7946 Polymorphism and Nutritional Choline Status in Association With Nonalcoholic Fatty Liver Risk. Curr. Dev. Nutr. 2022, 6, 1128. [Google Scholar] [CrossRef]
- Pacana, T.; Sanyal, A.J. Vitamin E and Nonalcoholic Fatty Liver Disease. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Presa, N.; Clugston, R.D.; Lingrell, S.; Kelly, S.E.; Merrill, A.H.; Jana, S.; Kassiri, Z.; Gómez-Muñoz, A.; Vance, D.E.; Jacobs, R.L.; et al. Vitamin E Alleviates Non-Alcoholic Fatty Liver Disease in Phosphatidylethanolamine N-Methyltransferase Deficient Mice. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 14–25. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.-L.; Li, Y.-K.; Chen, D.-K.; He, J.-F.; Yao, N. Functions of Sphingolipids in Pathogenesis During Host–Pathogen Interactions. Front. Microbiol. 2021, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, M.; Kasumov, T.; McCullough, A.J.; Zein, N.N.; Kirwan, J.P. Role of Ceramides in Nonalcoholic Fatty Liver Disease. Trends Endocrinol. Metab. 2012, 23, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, P.; Romeo, S. The Role of PNPLA3 in Health and Disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 900–906. [Google Scholar] [CrossRef] [PubMed]
- He, S.; McPhaul, C.; Li, J.Z.; Garuti, R.; Kinch, L.; Grishin, N.V.; Cohen, J.C.; Hobbs, H.H. A Sequence Variation (I148M) in PNPLA3 Associated with Nonalcoholic Fatty Liver Disease Disrupts Triglyceride Hydrolysis. J. Biol. Chem. 2010, 285, 6706–6715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; He, S.; Li, J.Z.; Seo, Y.-K.; Osborne, T.F.; Cohen, J.C.; Hobbs, H.H. A Feed-Forward Loop Amplifies Nutritional Regulation of PNPLA3. Proc. Natl. Acad. Sci. USA 2010, 107, 7892–7897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsche, M.A.; Hobbs, H.H.; Cohen, J.C. Patatin-like Phospholipase Domain–Containing Protein 3 Promotes Transfers of Essential Fatty Acids from Triglycerides to Phospholipids in Hepatic Lipid Droplets. J. Biol. Chem. 2018, 293, 6958–6968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, G.; Liu, P.; Li, X.; Zhou, X.; He, S. Association between PNPLA3 Rs738409 Polymorphism and Nonalcoholic Fatty Liver Disease (NAFLD) Susceptibility and Severity. Medicine 2019, 98, e14324. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Mansouri, K.; Ghasemi, H.; Hosseinian-Far, M.; Darvishi, F.; Mohammadi, M. Association between PNPLA3 Rs738409 Polymorphism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. BMC Endocr. Disord. 2021, 21, 125. [Google Scholar] [CrossRef]
- Kuttner, C.-S.; Mancina, R.; Wagenpfeil, G.; Lammert, F.; Stokes, C.S. Four-Week Omega-3 Supplementation in Carriers of the Prosteatotic PNPLA3 p.I148M Genetic Variant: An Open-Label Study. Lifestyle Genom. 2019, 12, 10–17. [Google Scholar] [CrossRef]
- Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 Supplementation and Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Hepatol. 2012, 56, 944–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luukkonen, P.K.; Zhou, Y.; Sädevirta, S.; Leivonen, M.; Arola, J.; Orešič, M.; Hyötyläinen, T.; Yki-Järvinen, H. Hepatic Ceramides Dissociate Steatosis and Insulin Resistance in Patients with Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2016, 64, 1167–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, N.; Isaacs, A.; Koek, G.H.; Kuč, S.; Schaper, N.C.; Brouwers, M.C.G.J. PNPLA3, TM6SF2, and MBOAT7 Genotypes and Coronary Artery Disease. Gastroenterology 2017, 152, 912–913. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, P.K.; Nick, A.; Hölttä-Vuori, M.; Thiele, C.; Isokuortti, E.; Lallukka-Brück, S.; Zhou, Y.; Hakkarainen, A.; Lundbom, N.; Peltonen, M.; et al. Human PNPLA3-I148M Variant Increases Hepatic Retention of Polyunsaturated Fatty Acids. JCI Insight 2019, 4, e127902. [Google Scholar] [CrossRef]
- Santoro, N.; Savoye, M.; Kim, G.; Marotto, K.; Shaw, M.M.; Pierpont, B.; Caprio, S. Hepatic Fat Accumulation Is Modulated by the Interaction between the Rs738409 Variant in the PNPLA3 Gene and the Dietary Omega6/Omega3 PUFA Intake. PLoS ONE 2012, 7, e37827. [Google Scholar] [CrossRef] [Green Version]
- Vilar-Gomez, E.; Pirola, C.J.; Sookoian, S.; Wilson, L.A.; Belt, P.; Liang, T.; Liu, W.; Chalasani, N. Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD. Am. J. Gastroenterol. 2021, 116, 994–1006. [Google Scholar] [CrossRef]
- Van Name, M.A.; Savoye, M.; Chick, J.M.; Galuppo, B.T.; Feldstein, A.E.; Pierpont, B.; Johnson, C.; Shabanova, V.; Ekong, U.; Valentino, P.L.; et al. A Low ω-6 to ω-3 PUFA Ratio (n–6:N–3 PUFA) Diet to Treat Fatty Liver Disease in Obese Youth. J. Nutr. 2020, 150, 2314–2321. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Liccardo, D.; Bedogni, G.; Salvatori, G.; Gnani, D.; Bersani, I.; Alisi, A.; Valenti, L.; Raponi, M. Influence of Dietary Pattern, Physical Activity, and I148M PNPLA3 on Steatosis Severity in at-Risk Adolescents. Genes Nutr. 2014, 9, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, K.A.; Jones, R.B.; Rios, C.; Corona, Y.; Berger, P.K.; Plows, J.F.; Alderete, T.L.; Fogel, J.; Hampson, H.; Hartiala, J.A.; et al. Clinical Intervention to Reduce Dietary Sugar Does Not Affect Liver Fat in Latino Youth, Regardless of PNPLA3 Genotype: A Randomized Controlled Trial. J. Nutr. 2022, 152, 1655–1665. [Google Scholar] [CrossRef]
- Morrill, K.E.; Bland, V.L.; Klimentidis, Y.C.; Hingle, M.D.; Thomson, C.A.; Garcia, D.O. Assessing Interactions between PNPLA3 and Dietary Intake on Liver Steatosis in Mexican-Origin Adults. Int. J. Environ. Res. Public Health 2021, 18, 7055. [Google Scholar] [CrossRef]
- Sevastianova, K.; Kotronen, A.; Gastaldelli, A.; Perttila, J.; Hakkarainen, A.; Lundbom, J.; Suojanen, L.; Orho-Melander, M.; Lundbom, N.; Ferrannini, E.; et al. Genetic Variation in PNPLA3 (Adiponutrin) Confers Sensitivity to Weight Loss-Induced Decrease in Liver Fat in Humans. Am. J. Clin. Nutr. 2011, 94, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Sevastianova, K.; Santos, A.; Kotronen, A.; Hakkarainen, A.; Makkonen, J.; Silander, K.; Peltonen, M.; Romeo, S.; Lundbom, J.; Lundbom, N.; et al. Effect of Short-Term Carbohydrate Overfeeding and Long-Term Weight Loss on Liver Fat in Overweight Humans. Am. J. Clin. Nutr. 2012, 96, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.V.; Michelotti, G.A.; Xie, G.; de Almeida, T.P.; Boursier, J.; Bohnic, B.; Guy, C.D.; Diehl, A.M. Mouse Models of Diet-Induced Nonalcoholic Steatohepatitis Reproduce the Heterogeneity of the Human Disease. PLoS ONE 2015, 10, e0127991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anstee, Q.M.; Goldin, R.D. Mouse Models in Non-Alcoholic Fatty Liver Disease and Steatohepatitis Research. Int. J. Exp. Pathol. 2006, 87, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhong, H.; Leng, L.; Jiang, Z. Effects of Soy Isoflavone on Hepatic Steatosis in High Fat-Induced Rats. J. Clin. Biochem. Nutr. 2017, 61, 85–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Chen, C.; Hu, Y.-Y.; Feng, Q. Protective Effect of Genistein on Nonalcoholic Fatty Liver Disease (NAFLD). Biomed. Pharmacother. 2019, 117, 109047. [Google Scholar] [CrossRef] [PubMed]
- Wegermann, K.; Garrett, M.E.; Zheng, J.; Coviello, A.; Moylan, C.A.; Abdelmalek, M.F.; Chow, S.; Guy, C.D.; Diehl, A.M.; Ashley-Koch, A.; et al. Sex and Menopause Modify the Effect of Single Nucleotide Polymorphism Genotypes on Fibrosis in NAFLD. Hepatol. Commun. 2021, 5, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; Gao, Y.; Ma, H.; Zhan, S.; Yang, Y.; Xin, Y.; Xuan, S. Association of TM6SF2 Rs58542926 Gene Polymorphism with the Risk of Non-Alcoholic Fatty Liver Disease and Colorectal Adenoma in Chinese Han Population. BMC Biochem. 2019, 20, 3. [Google Scholar] [CrossRef]
- Luukkonen, P.K.; Zhou, Y.; Nidhina Haridas, P.A.; Dwivedi, O.P.; Hyötyläinen, T.; Ali, A.; Juuti, A.; Leivonen, M.; Tukiainen, T.; Ahonen, L.; et al. Impaired Hepatic Lipid Synthesis from Polyunsaturated Fatty Acids in TM6SF2 E167K Variant Carriers with NAFLD. J. Hepatol. 2017, 67, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Longo, M.; Rustichelli, A.; Dongiovanni, P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int. J. Mol. Sci. 2020, 21, 2986. [Google Scholar] [CrossRef] [Green Version]
- Kalafati, I.P.; Dimitriou, M.; Borsa, D.; Vlachogiannakos, J.; Revenas, K.; Kokkinos, A.; Ladas, S.D.; Dedoussis, G.V. Fish Intake Interacts with TM6SF2 Gene Variant to Affect NAFLD Risk: Results of a Case–Control Study. Eur. J. Nutr. 2019, 58, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, M.; Stachowska, E.; Milkiewicz, P.; Lammert, F.; Milkiewicz, M. Reduction of Caloric Intake Might Override the Prosteatotic Effects of the PNPLA3 p.I148M and TM6SF2 p.E167K Variants in Patients with Fatty Liver: Ultrasound-Based Prospective Study. Digestion 2016, 93, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Ganz, A.; Cohen, V.; Swersky, C.; Stover, J.; Vitiello, G.; Lovesky, J.; Chuang, J.; Shields, K.; Fomin, V.; Lopez, Y.; et al. Genetic Variation in Choline-Metabolizing Enzymes Alters Choline Metabolism in Young Women Consuming Choline Intakes Meeting Current Recommendations. Int. J. Mol. Sci. 2017, 18, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeisel, S.H. Gene Response Elements, Genetic Polymorphisms and Epigenetics Influence the Human Dietary Requirement for Choline. IUBMB Life 2007, 59, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.; Tavaglione, F.; Romeo, S.; Valenti, L. Genetic Risk Scores and Personalization of Care in Fatty Liver Disease. Curr. Opin. Pharmacol. 2021, 61, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hennein, R.; Liu, C.; Long, M.T.; Hoffmann, U.; Jacques, P.F.; Lichtenstein, A.H.; Hu, F.B.; Levy, D. Improved Diet Quality Associates With Reduction in Liver Fat, Particularly in Individuals With High Genetic Risk Scores for Nonalcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefler, D.; Malyutina, S.; Kubinova, R.; Pajak, A.; Peasey, A.; Pikhart, H.; Brunner, E.J.; Bobak, M. Mediterranean Diet Score and Total and Cardiovascular Mortality in Eastern Europe: The HAPIEE Study. Eur. J. Nutr. 2017, 56, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Al-Ibrahim, A.A.; Jackson, R.T. Healthy Eating Index versus Alternate Healthy Index in Relation to Diabetes Status and Health Markers in U.S. Adults: NHANES 2007–2010. Nutr. J. 2019, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Bossé, Y.; Chagnon, Y.C.; Després, J.-P.; Rice, T.; Rao, D.C.; Bouchard, C.; Pérusse, L.; Vohl, M.-C. Genome-Wide Linkage Scan Reveals Multiple Susceptibility Loci Influencing Lipid and Lipoprotein Levels in the Québec Family Study. J. Lipid Res. 2004, 45, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.-M.; Hu, L.; Gu, J.; Wang, R.-Y.; Li, L.; Tang, J.; Zhang, B.-H.; Yan, X.-Z.; Zhu, Y.-J.; Hu, C.-L.; et al. Choline Kinase α Mediates Interactions Between the Epidermal Growth Factor Receptor and Mechanistic Target of Rapamycin Complex 2 in Hepatocellular Carcinoma Cells to Promote Drug Resistance and Xenograft Tumor Progression. Gastroenterology 2017, 152, 1187–1202. [Google Scholar] [CrossRef]
- VanWagner, L.B.; Armstrong, M.J. Lean NAFLD: A Not so Benign Condition? Hepatol. Commun. 2018, 2, 5–8. [Google Scholar] [CrossRef]
- Bale, G.; Vishnubhotla, R.V.; Mitnala, S.; Sharma, M.; Padaki, R.N.; Pawar, S.C.; Duvvur, R.N. Whole-Exome Sequencing Identifies a Variant in Phosphatidylethanolamine N-Methyltransferase Gene to Be Associated With Lean-Nonalcoholic Fatty Liver Disease. J. Clin. Exp. Hepatol. 2019, 9, 561–568. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, J.; Dan, L.; Xie, Y.; Sun, Y.; Li, X.; Larsson, S.C. Homocysteine, Folate, and Nonalcoholic Fatty Liver Disease: A Systematic Review with Meta-Analysis and Mendelian Randomization Investigation. Am. J. Clin. Nutr. 2022, 116, 1595–1609. [Google Scholar] [CrossRef]
- Braakhuis, A.; Monnard, C.R.; Ellis, A.; Rozga, M. Consensus Report of the Academy of Nutrition and Dietetics: Incorporating Genetic Testing into Nutrition Care. J. Acad. Nutr. Diet. 2021, 121, 545–552. [Google Scholar] [CrossRef]
Gene | SNPs | Impact in Protein Function | Authors | Publication Year | Study Type | N | Nutritional Aspect | Main Results |
---|---|---|---|---|---|---|---|---|
PNPLA3 | rs738409 | Santoro et al. [45] | 2012 | Observational cross-sectional study | 127 subjects | High dietary n-6/n-3 PUFA ratio | Positive interaction with hepatic fat content | |
Kuttner et al. [40] | 2019 | Clinical trial | 20 subjects | Short-term n-3 fatty acid supplementation | Did not significantly alter hepatic steatosis | |||
Reduced triglyceride hydrolysis capability | Vilar-Gomez et al. [46] | 2021 | Observational cross-sectional study | 452 subjects | n-3 PUFA intake; Isoflavones intake; Choline intake; Methionine intake | Inversely associated with increased risk of significant fibrosis | ||
High-carbohydrate intake | Positively associated with increased risk of significant fibrosis | |||||||
Name et al. [47] | 2020 | Clinical trial | 20 subjects | low n–6:n–3 PUFA ratio (4:1) | Amelioration of metabolic phenotype in adolescents with NAFLD | |||
Nobili et al. [48] | 2014 | Observational prospective study | 200 subjects | High intake of sweetened beverages; High intake of vegetables | Significant positive interaction with steatosis severity in children and adolescents at risk of NAFLD | |||
Sevastinova et al. [51] | 2011 | Clinical trial | 18 subjects | Weight loss through hypocaloric low-carb diet | Decreased liver fat | |||
Sevastianova et al. [52] | 2012 | Clinical trial | 16 subjects | Short-term carbohydrate overfeeding and weight gain | Increased liver fat | |||
Schmidt et al. [49] | 2022 | Randomized controlled trial | 105 subjects | Reduction of sugar intake | No improvements in liver outcomes, such as fat accumulation | |||
Morrill et al. [50] | 2021 | Observational cross-sectional study | 288 subjects | Dietary intake | No significant association with levels of hepatic steatosis | |||
TM6SF2 | rs58542926 | Distorted hepatic triglyceride secretion | Kalafati et al. [61] | 2019 | Case control study | 351 subjects | High intake of fish, fatty fish, and nuts | Associated with decreased risk of developing NAFLD |
High intake of starchy foods, fast food, sweet spread, sugar, sauces, and fried food | Associated with increased risk of developing NAFLD | |||||||
Krawczyk et al. [62] | 2016 | Clinical trial | 323 subjects | Caloric restriction | Variant did not influence the positive outcomes and improvement in hepatic steatosis of a calorie-restricted dietary intervention | |||
PEMT | rs12325817 | Reduced endogenous choline synthesis | Costa et al. [27] | 2006 | Clinical trial | 57 subjects | Low choline intake | Significantly increased risk of developing organ disfunction, especially for postmenopausal women |
Costa et al. [28] | 2014 | Clinical trial | 79 subjects | Low choline intake | Increased risk of developing organ dysfunction, especially for women carriers of the C allele | |||
Fisher et al. [26] | 2010 | Randomized controlled trial | 49 subjects | Low choline intake | Increased choline requirements and risk of developing organ dysfunction, especially for postmenopausal women | |||
rs7946 | Song et al. [18] | 2005 | Observational cross-sectional study | 87 subjects | Choline deficiency | Associated with greater susceptibility to NAFLD | ||
Reduced endogenous choline synthesis | Costa et al. [27] | 2006 | Clinical trial | 57 subjects | Low choline intake | Lack of effect in NAFLD susceptibility | ||
Wu et al. [29] | 2022 | Observational cross-sectional study | 253 subjects | High plasma choline concentrations | Associated with increased risks of hepatic fat accumulation in patients with metabolic disease | |||
CHDH | rs9001 | N/A | Costa et al. [27] | 2006 | Clinical trial | 57 subjects | Low choline intake | Protective effect on susceptibility to develop organ dysfunction |
rs12676 | N/A | Costa et al. [27] | 2006 | Clinical trial | 57 subjects | Low choline intake | Associated to susceptibility to develop organ dysfunction in premenopausal women |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcellos, C.; Ferreira, O.; Lopes, M.F.; Ribeiro, A.F.; Vasques, J.; Guerreiro, C.S. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines 2023, 11, 319. https://doi.org/10.3390/biomedicines11020319
Vasconcellos C, Ferreira O, Lopes MF, Ribeiro AF, Vasques J, Guerreiro CS. Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines. 2023; 11(2):319. https://doi.org/10.3390/biomedicines11020319
Chicago/Turabian StyleVasconcellos, Carolina, Oureana Ferreira, Marta Filipa Lopes, André Filipe Ribeiro, João Vasques, and Catarina Sousa Guerreiro. 2023. "Nutritional Genomics in Nonalcoholic Fatty Liver Disease" Biomedicines 11, no. 2: 319. https://doi.org/10.3390/biomedicines11020319
APA StyleVasconcellos, C., Ferreira, O., Lopes, M. F., Ribeiro, A. F., Vasques, J., & Guerreiro, C. S. (2023). Nutritional Genomics in Nonalcoholic Fatty Liver Disease. Biomedicines, 11(2), 319. https://doi.org/10.3390/biomedicines11020319